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Almtract

We present an algorithm that constructs and classifies -
nite linear spaces admitting a given line-transitive group which
leaves invariant a nontrivial point-partition.  Thiz algorithm
was developed from an alzorithm of Nickel and Niemeyer that
classified 2uch linear SpRCes ofl 720 |.:-c:-i11|:-|- with line-size 8, bat
WHS [EveT |::-u|::-|i.~ih-:'rj. It has boen upplii:'rl ({=] -:'-c:-|11|::-|l::I-:' i elas-
sification of such spaces for which the Delapdishese-Doyen pe-
rameters are small.

ey Waords: linear sparcas, block design. line-transitive,
point-imprimitive, combinatorial search algorithms.

AME subject classification: 03805, 05825, 20825

1 Introduction

A finite Iimear space i an incidence structure S ['P. L where P s
g fmite set of points, £ = X, ..., ) 15 8 st of subeets of P called
line=. =iich that sach 'P.'l.ir af 'F-::-'mLH- lie=z i1 a1 u|1i-::||m line., and each line
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contains at least two points. An automorphism of 5 is & permutation
ol F' which leaves £ invariant, and & b= called bne-transosee if it=
automorphism group Aut(S) is transitive on £, In particular, for a
lime-transitive linsar space S, all lines have the same size & say, and
& i called mon-trivial if 2 < k < |P|. By a theoremn of Block |2, each
lime-transitjve :1-u|‘:-|3 rolp af Aut [S] = also brapsitive an P.

The major result that inspired our interest in line-transitive linear
spaces. and ultimately this paper, is a theorem of Delandbshesr and
|:|-::-I'r'|.1|| |:':-| I:r:-::l:' Theosrem !E.]_:I: i a line-trans=itive :1u|:l|3_|'r|:|u|:| of .-".uLI:._"_I':I
leavee invariant 8 nontrivial partition of P (that & to say, if the
subgroup acts imprimitively on P), then |[P| < [:l:i-] - '|J-. This
upper bound was ehown to be sharp precisely when & = 8, and there
Are i::;l-'.:ﬂ-::ll:,' AGT linear BpaLCe & that attain the bound |:"P."i." |';||]

In this paper, we present an algorithm that copstructs and classifies
lme-transitive linear spaces admitting a given line-transitive, point-
'|'|'n|:|ri|r|iL'|1.'v:: :i-uhm'-c:-up of :|.|.|.L-::-|r|-::-;|'|:||‘|i:1|r|:i-. These :il.l.|:lg|r|:|u|:|:i ne=s] ot
coincide with Aut{S), the full automorphism group. The algorithm
makes full use of the eymmetry of the design provided by the subgronp
and i=a -':|l::"."-r'|-::-|::-rr||.'r|l af the :|.|J.'.'-::-riL|'|'rn al Mickel and ."'.-ii:"rni:'y'v:'r |H| that
wae used to construct and classify the designe in |3], but was never
published.

Line-transitive, point-imprimitive automorphism groups & of finite
linear spaces were investigated Murther in |G| for the special caze where
some non-identity element of & fixes sach class of the point partition
getwise. In this situation, if the *Delandishesr-Doven parameters” are
!'i-”l-'l.”- l|'||.'r| ll‘l!! |ir|l::'.11' SPALCER Were l:'l'rL"P'!'iiI'ii."l'i irl |E| '|'|'|-e:-c:-rl::rr| |'1| II'I‘."
prool of this result required the elimination of one parameter seb for
which it turned out that ne linear spaces existed, namely spaces with
1431 points, line size 11, such that a line-transitive group preserved a
'F-::-'|11L |::-.1.:|'|ili|:|1'| into 53 clsses of sjze 27, The .'|.||=_"-::-r'||.|1|11 'Frve*eu'-uli::-'_{ in
this paper was implemented and applied to this situation, checking
by exhaustive search that there were no examples [(see Theorem 2.2].
Scme |:l.1.|::k|:_'_|r|:|u|1-'_{ discussicon and preparatory results are |:_'_|i=.'|.1|| in Sec-
tion 2, and the algorithm is presented and proved in Section A, The
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algorithm 18 essentially a backirack search mvolving several addi-
tional features. On the one h'.111-':|: twe conditions are intraduced |:l|‘||.'
partial orbit condition and the partial infersection condition) that
allow significant reduction of the search tree. In addition, maximum
use is made of the given group & of automorphisms to reduce the
search further. This involves computation within the normaliser of
7 in the svmmetric group on P. The crucial component of the al-
gorithm & given in Algorithm 1, and this & called recursively in the
final algorithm Algorithm 2.

2  Preliminaries

2.1 Delandtsheer-Doyen parameters

A partition C of a finite st X is a set of pairwise disjoint subesis
whose unlon equals the s=t X, The subsets & £ O are called paris
or elasses of C and C is called driviel if either C consiets of only one
clage or it containe only cne-element classes, Otherwize O s sald o
be nondrivéial. Let @7 be a group that acts on X, Then & i= said to
leave a partition C invaciant M, for all g € O and all O £ O, the image
78 5 aleo a class of O, Also & is said to act fmprimilively on X i &
is transitive on A and there exists 2 nontrivial G-invariant partition
of X, Otherwize, o7 is said to be primitive on X,

Linear spnces .'L-'_:l'rnilli|||3 i :1-u|::-qr\-::-u'|:| af r'|.|.|.L-::-|r|-::-:|'|:||'|i:‘;|r|:‘:- that i= koth
line-traneitive, and point-imprimitive, deserve special atbention due
to the following result, which shows that the number of points =
bounded above by a function of the line size .

Theorom 2.1 |]| |:| :I|.1|.'|.1'|-':|l:ihl."l.'r-”-::-.'-.'nrl |::-.11';|.rr|L'lL"r:1-] Lel & |:'.-I|:‘| ..I':I
be a nen-trivial near space admifling a line-fronesiive point-imprim-
drve aulbornorphism group & Letf {'['-'| e 1,-]- be a parfifion aof
P ousth d elosses of size o, and assume Bal © £ fmearianl under O
Let = be the number af inRneT Fnz:l'rs q_,r a line A, Hhat s, Fﬂ:l:rs a‘r Pafm’s
[a.3} CANC for some & € C. Then there exista anofher positive
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infeger g such fhat

k
e 22l T and d []—!"
L x

(1

We eall the |::-'.1.ir |::'. _g] the= I.Jrﬂandl'ﬂ.ln-r-”r.lyrn. Pﬂmrnrl'r'rs o e
sponding to C. By |10, Theorem 1.1(a}],

Flie—1 5id =1
[;iiill and g [_.1-3_1}' 2)

and hence the triples (e, d, &) and [z, o, &) mutually determine each
other. Moreover, if (e, d, &) corresponde to (z, g, &) then {d, e, &) has
I:y. T; J:r:I ax e mate. We remark further that while the first of the
Delandtsheer-Doyen parameters © has a combinatorial interpretation
as described in the theorem, no such meaning is known for the second
parameter ¥ in general.

Let & be a pon-trivial linesr Bpace with line si=es k, let & be a block-
transitive. point-imprimitive group of automorphisme of &, presery-
Ing a point-partition O consisting of o classes of size o, and let [x, g)
be the corresponding Delandteheer-Doyen parameters given by (2).
We shall refer to the S-tuple (z,y. od. k) as the parameler set Tor
(&.0,0). We note that the number of points v = od s determined.
Moreover, sinee a point-transitive group may leave mvariant more
than ane non-trivial point-partition., corresponding to different val-
ues for ooy, eod, there may be different parameter sets for the same
limear space & and line-transitive, point-imprimitive group &,

Let & act on X and let C be a &-invariant partition of X, The kernel
of &7 on © is the subgroup G of elaments g £ & with l'."f' 8

for i = 1...., d. We say that © is G-normal il & is transitive on
each of the classes of O The result |6, Theorem 14| mentioned in the
imtroduction gives a classification In the case where the Delandts heer-
|:|-::-I'r'|.1|| pararmebers ape batkh very =mall and the |::-:,1:|'|.ili|:||1 s -
normal. For clarity of the exposition we state this result below,
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Theorem 2.2 |6, Theorem 14| Let S (L) he a non-trivial
!:l.ﬂl'!'ﬂ.f' SINLC ﬂd’?ﬂ!‘!ll.lgﬂg (4§ Iﬂ.ﬂﬂ"emﬂ..‘ﬂﬂ.h.ﬂﬂ' EHEE?TLI'.ITP;EE-FH'.' yroug E: E;’Eﬂ!
preserves a non-trivial G-normal partition © af P osuch thel (5, 0,C)
fas parameter sel [:.y.r.ﬂ", ﬁ':l. Suppose further that = 1 and
4 = 2. Then either S is one of the A6T designs wilh parameter set
I:]_. 1. 27, 27, F:I ronstructed I!:’||. ar & i one af frerc n!r's:l'_glru with Piz-
rameter sef (1,2,7,13,6) constructed in |4, 7).

The |'|:|||-::J|'."|1'|F; L':-t-:'l::F:-I.i-::-rl'.1| pararmeter sek arose in the prn-::-f al this

result in [6, Theorem 1.2, and see Lemma 4.2]:
(x.y.e.d k) = (1,2,27,33, 111

It was proved in [6] that a linear space corresponding to this pa-
rarmester et would admit a Dine-transitiee Eroilp af the form [.Ff;;& S
.F":;i:l- Z1m. Fach isomorphism type of group with this structure was
tested with cur algorithm, proving that there weres no line-transitine,
point-imprimitive linear spaces with this parameter set, and thus
completing the prool of Theorem 2.2,

2.2 Base lines and orbit conditions

Lest & et om s set of |::--::-i|1l:1- P.Fora |1-::-||1'|l:'|3;|.Li1.'v:: i|1|.l:'gi::;|' =, we denolte
the set of a-subsets of 7 by Pk An arbit of 7 on P e called an
s-orbit,. Thus a 2-orbit i an orbit on pairs. For & © P, et =
denote the crbit of 5 under &) that is, the sat of images 59 [or all
elements g in €. We call 5% the span of 3 under 7. Under certain
circumstances, the span of a f-subset A C F can be taken as the set
of lines of a linear space with line size &, [n this case, we sav that A
iz n base fine for a I:|'|nr:-lr;1|1:1iL'|W] linear space. We also say that A
apansg a linear space. We will characterize base lines shortly. Flirst,
we examine some properties of G-orbits on palm. For two polnts a
and A, we dencte by Afa, 3) the unique line joining o with 3. Fecall
that the number af lines of 3 linear space = E'-"“'-"f""-”.'r' called & and
erquals [':]l."[:‘.’] where v = |P|.
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Lemma 2.3 Let &7 be a Dne-fransifive aulomorphism group of a lin-
car spece & I:'F' .E:I wilh Ime size b and |.|':| b, Then the lenglth of
crery ortil O of & on Pl s divisible by b In parlicwlar, e number

of arbils of & or parrs @5 ef most [J,‘_,:I

PrnnF. |_"|:|r oy 'P.'l.ir -::-[ |:||:|'|1'|Lr;- {r.l.. J}. {-;I[I'I.I?l' f|x-e*:- .-:'|.[|:|. ._f:l .-|_||-_:|
henee €7, g = Gy, Thus b = |Afa, 317 = |G 1 Gy | divides
G 2 Gpogl = [{a, 317

. In particular [O/5 & a positive integer,

where O {n-._..r}'.". Clounting all pairs of polnte vields the upper
bound on the number of those orbites: I:f] b O] = Ii[L:II,." [J.‘::I:] .
% e 1, and hence [:]l =% a0l O

We call a group feasible [lor a particular linear space paramester set|

if the length of every orhit cn pairs & divisible by &

We are going to present a eriterion for testing whether the G-span of
a k-=ubset A lorms the s=t of lines of a linear space. | his well-known

criterion is in terms of the ntegers w(, A) defined by
u(C. A) |c:'r1 A|:J| H{fy.-:i} EG:{“,:J}';AH- (3)

far ¢ an arbit of & on P Note that g, A) does not depend on
the chojee af A within itz G-orbit. We ape pow able to chapacterize
base lines. The conditione (i) and (i) of the following result are called

the orbid conditions for a line-transitive linear space.

Lemma 2.4 (e orbid esema) Lel & b oa group aclting on a sel
r.l‘r v ;Daz'm's P. Lei k b a ;n'.l.tz'.':z'w' ::nl'r':gli-:r _gln"'ﬂ.l'r':r than 2 zuck Fhat
f {;]-’{Z] iz an integer. Then A € PIM ia a base line of a linear
space usth point set P i and only if

(i) [A%| =& and

{7il g, X)) = |2|/b for each G-orkit @ on PIEL
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This result is well-known. 1t is shown, for example in |3, Proposition
1.3|: t hat Fl:f:' .-:'n.]ln'lll:_':'l iz a constant, =av a, independent of the G-arbit
& in P, i and anly i each pair of points liee in & constant number
of the k-subszets in A%, An easy counting argument shows that this
number is a|A%|. Thus A is a base line for a linear space if and only
il the constant a = ]_.-"b where b |.31.".'-
(1) hold.

, that is, if and anly il (1) and

We conelude this discussion with an elementary observation,

Lemma 2.5 For a lne A and o subeet A C A with |A| = 2, the
setuise stabiliser G4 of A salisfies Gy < Ga. In parfcular, every

muofulion fites a fine.

Proof. Let a8 be distinet points of A, Sinee A i= the unigue
ling containing {a, 3} it follows that & 38 the unigque line containing
A, Therefore &y < 7. Let new g be an automorphism of order
twor, Assume o = J. Then 3% = o and therelore g stabilizes the set
[a. 3}, Henee g fixes the line Ala, J).

2.3 Intersection numbers

Let & I:'F ..I'::I b a line—transitive palnb-impcimitive linear gpace with
respect tooa group & of automorphisms and a nontrivial partition C
with o classes of slze o, and let A € L. Then the inferseclion numbers

defined as
d; |{{"E|'.T:|t'*r"|34.| a}|= (4]

for 0= ¢ < & are independent of the choiee of the ne A and satisfy

, i G) T ()

The infersecfion tupe is the vector (dp, dy,. ... dy).

k
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3 Constructing linear spaces

Buppoee we are given a transitive, imprimitive permutation group &
on a set P oof size v and an integer k > 2 such that & [:,']ll."[:] e I.
We coneider here the praoblem of deciding computationally whether or
not thers exists a line-transitive linear space I:T" ..I'::I for mome Gi-orhit
£ on P As noted in Section 1, £ is completely deseribed by ane
clf ks members, called a baze line. Morecver, Lemma 204 containe a
criterion, called the orbit condition, for deciding whether [P. A9 is
a linear space, for a gi'.'l.'.u A= PiEL We shall describe a 'p]'-::--::l:'r_lu]'-:!
for finding, up to an equivalenee, all k-subsets A satisfving the orbit
condition.

By the definition of a linear space, any pair of points lies in a unigue
line, eowe may assume that & baze line containe a given pair of points.
Our strategy is to build up a baze line, point by point. [ A i= an
f-gubset encountered in this process (where F < k), A cannot be
extended to a f-subset satisfying the crbit condition unless

u(o, 1) = 1 (6)

for all G-orbits € in :p[EJ_ where _r..'[ﬂ'. Al ds defined as in [ZEII. Thi=
condition is called the pertial erbil condition and 1= clearly satisfied
by all subsets of base lines. Note however that a bsubset satisfying
the partial arbit condition iz not necessarily a base line sinee 5 base
lime A must alsao :mli:-:[:,' |I'.':r_5,_|
sta biliser of A in O

%, w e {'-"_g_ depotes the setwise

3.1 Search Trees and the partial intersection condition

In arder to check the orbit condition on all f-=subsets of 7, a back-
track search may be emploved. The firet step in the backirack search
= b 'Pl'.1.-:'i:: a Lotal |:|rr_‘|-e'-ri|||3 o . Thi=s order induces 5 natural lexi-
cographical ordering on subsels of P

Dzﬂnll:lnn. 3.1 L=t [F', 5] bea hnite |'::'|-""-”,'r' orlererd set and consider
two subeets A = {aj,aa,--« . ar} and B = {3, 5.+, G}, where
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oy o o e oD kg oand By o Gl oo B Then A < B i and only

il sither

(1) f=#Fand a; = 3 forall i < [, or

I:'|'|:I there exists @ < |r|i||I:I|". {1 such that a; < 4, and ay J_I- [oor all
g satisfying 1 = § = 4.

This search then places all f-subgets of P with £ < & into a tres such
that the children of a node A with [A] < & are all subsete AL {a}
with & € P4 A and A lexicographically preceding AU [a}.

The reason for this |l:';|-'.i-:'-::-|:-|",|'.'|.|::-|1'|-:: condition i= the |:::-||-::-1'."|1'|g. The
nodes of the tree correspond bijectively to the subsets of P of size at
most &, The root of the tree js the empty s=t, which is the only set of
size 0. In general, for i < k&, the sete of size § are at level € of the tres,
and the bsubsets of P form the l=aves of this tree. The order in wwhich
the nodes are encountered when passing through the tree is exactly
the lexicographic order on subeets, provided that we arrange the de-
seendants at AT giWn naode in the arder which iz defined an P Bor
example, the subsets of sige abt most 3 of the set {1, 2, 3,4, 3}, in lexi-
cographical order, are @, {1} (1.2}, {1. 2.3}, {1, 2.4}. {1, 2.5}, {1.3}.
[1.2.4%,41.3,5}, {1, 4}, {1.4,5}, [ 1.5}, 42}, {2, 8}, 12,3, 4}, [2. 3.5},

[2.4},12.4,5}. {3}, {3, 4}, {3.4,5}.

IT 2 node fails the partial arbit condition, then none of its descendants
will pags 1t, so0 the tree may be pruned at that node, If a leaf & found
to pass the partial orbit condition and its setwise stabilizer in & s of
Lhe required size, then it satisfies the conditions of Lemma 2.4 and
thus it is a base line.

Unfortunately the number |:::::| of A-=ub=ets = in almost all case= too
large to perform a backirack search using only the orbit condition.
There are twao further copdition=s that are i::'rn'pl-::-:,'l.'.r_{ to pediuce the
search further.

The first of these mlates to the Delandisheer-Doven Theorem 2.1,
while the zecopd is more Eroup theopetic and iz dizcussed 0 Sec-

tiom 3.2, Suppose that © is a non-trivial, O-invariant partition of
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P with d clasess of siwe & and that = and ¥ are the corresponding
|]-e'.-|.1.r|r|.L:1-|'|-er1*-|:|-::-j'|.'r| parameters as in heoresn 2.1, 1t i pc:-:iei-il‘:-h'.- L
find all feasible intersection types (do,dy, -+ ,dy) for a base line, that
15, integer solutions to I:EIH] For a given Intersection type, define the
partial intersection condifion on an f-subeat A of P by

[{clagses e C: [OMA| =i} <d; foral i =0, 1,....k (7]

Since thie condition is dependent on the intersection type, several
backtrack searches must be performed, one for each of the feasikble
intersection types. IFf a subset fails the partial intersection condition,
it eanpnat be extended to 8 subset e-:;tlie-:[:,"mg the ‘E:i'l'v.'!Tl imterzaction
ivpe. Since any base line must correspond to one of the given inter-
gection types, this condition may be used to restrict the backtrack
search Murther. | thers s more than one S-invariant partition, the
intersection types for each partition give extra restrictions. A epecial
nstance of this, discussed in |]_|1 = the existenes of a Eri-’j structure
Invariant under Oy,

3.2 Using Svmmetry

In thiz zectjon we confine our comments to consideration of 2 =in-
gle G-invariant partition C of P, The second additional condition
on base lines relies on the et that we -::-|1|I'r' rl.'.-:.luirl.'. a classification
of line-transitive limear spaces up to isomorphism.  An equivalence
relation on base lines may be definsd such that two base lines are
equivalent if the linear spaces they generate are zomorphic. The
gearch should be restricted such that as few base lines as possible per
equivalence class are dentified. To do this, we use a group H such
that & < H = Ny (1G], where Neyyi0y (7] i8 the normaliser of
in Sym(F). (Clearly & s contained in _-"-.r_q‘?m(.P][fI:I and it may be a
proper snbgroup.)

Given O 0 we define & - ."'.'!._-__,l,m,:p]l::f;] n HI;Ll::-I:I'.':]. This is the largest
group with the property above that still preserves the -invariant
'F;l.rlili-::-u i, I..-H-i|1|3_|' thi= Eroilp we may define an L'.-:.||Ji=.'.'|.|l:'|||::|.1 relation
on eubaets of P
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Definition 3.2 Given two subsets A, 5 of P we say A and B are
equivalent, and write 4 ~ B, 1 A" = B9 using H as defined above,

Motice that if Ay and Az are both f-subsets of P and A ~ Az then
(P, A7) is a linear space if and only if (P, AF') is. This follows becanse
if Ay~ Ag then Ay = AL forseme k£ H and R induces an isomarphism
from (P, A5 to (P, A7)

Thus we only need to test one representative of each H-orbit an P
Properties of H may be used to derive restrictions on the subsets
we nead to test, For example, since 7 <0 H and & & point transitive,
H s transitive on P. Hence the representative A of an H-orkit in
Pl conld be chosen to contain a given @ £ F.

For f <k and A € PU), we call A a partial base line if A satisfies
the= 'F:l.rL'|'.1.| orbit and |::-'.1.rLi:=1| intersection conditions, I:ﬂ] and I::':T] If
A is a partial base line and & € 8 then A* satisfies the partial arhit
candition, since b permutes the Goorkits O in 'F":!} arnong themsealves,
and A* satisfies the partial intersection condition sinee & leaves ©
invariant, Thus H leaves invariant the set of partial base lines of size
i for each f < & As far as possible, we should test at stage [ oof

our search only one et from each H-orbit on partial bass lines in
plit,

3.3 'The Search Algorithm

Recall that to organizse the ssarch we place an arbitrary total ordering
on the point set P, Sinee in a linear space any pair of points les in a
|.|.||'|q|.|.|.1 limie, we Ay nssUlgne that the two F:--::-i“l.‘.i £, g that are |east
in this ordering lie in our partial base line, that is to say we only nesd
to conzider children of the node {|:|-|.r.|.-_:-} in our =earch trees,

At this stage, the set of points that nesd to be considered for addition
to the partial base line {aq, aa} is @ = P\ {0, az}. From our previ-
ous remarks, we need only test the least point Fin each H{ﬁl_ﬂ:}-::-]'hil
in ) to determine whether it may be added to {o), az}. Selecting the
least = in fact '.1.r|::-'|l:|'.'|.|_':|r, it e sufhicient to salect any |::--::-i||l froam =ach
orhit 1o represent that orbit. Suppose we add the least point 3 of &)
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to {eep,cn}f. Sinee in any linear space admitting &, by Lemma 2.5,
If-r',:qln__lj leavies Invariant the line containing {n-|.|:|:}. il 7 lies in the
line then the whole &y, oy-orhit A{2) containing 2 iz also contained
im the line. Hepnee we nesd to test swhether {l:r|..|:|:} I .-"l[.f'] is a par-
tial base lime. If it is not, we remove from © the whole ”[n. e 0T bIL
I‘:?I:J:I |::|:|1'|L'.1.i||i|||3 4 mned r|.1|::-l:".1.| this test [or the least |::--::-i||| in l'.'h]".ll'.;][..f]
O the other hand, if A = {a,a:} UA(3) is a partial base line then
we must repeat this testing procedure with QAT = &% AQF) in place
af £, and A In place of {a), a0},

In the following algorithm the notation Hy4 s used to denote the
setwise stabiliser of A in H. The algorithm e recursive. The general
gtep of the search takes as input a partial base line A of size at least
2, and a subsat €} C 'F'l'ul A and procesds as follows.

Algorithm 1 Searcu( A0}
Global sarlables: I and &, transitive permulelion groups on P
preseroing a bnoum parfdhion (O, and sach bhat & < H < ."".":.-,],m[p:,l:{'n':lﬁ
Btabi ). The line size k. An indersection type and the G-orbils on
itk
Input: A, o partiel base Ine with 2 < |A] < &; 2 nonewmpty subsel
P such thal M A 0. of ponts thai need to be fesied for
addition o A;
ﬂL:I.tl:lL:I.t.' erfarn base frnes A such that 4 A E l.-'|.I_|'l".li| :,'Jr such erest,
Fach A is the levicopraphimlly leaal element, sulyect fo confaining A
and bemng contmined in A UG, af s equivalence class.
begin

Find G a;

Select the least poind 1 £ 0);

Find the I g -orhit, A7), conlaining 3;

# These poinks must be conlained m )

i A(3) 2

Call SEarca(A. Q) ALD);
else
lf Au .-"|.I:J:I snznlfslﬁ'ﬂ: Fhe Fnz:rl':l:m! orbit and milersectzon conda-

tions
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i AU A)] = k
f:'am_pﬂnl.i- {-!1'_‘ FIc

. P
ir |{-n|. ;l.(-.']| 5

|:|1.l‘|'.1:l1.l+. .f‘l.l_l:![.f] and confinue with fhe a!gan'l'hrn;
else IF |A U A(F)| < & and Q5 A(F) £ 0
Call SEarcH(A WA, Q5 A(S));
# Now we consider adding o different & -orhit fo A,
Find H 4;
Find the Hy-orbit Q) containing 3;
# Nofe that QU3 mag contmin peinds nof from Q).
# We de nol need lo conbinue if there are no meore pornids o
consider, ifoh QLo
Call SEarca{A, QY QUE));

end;

If & s base line containing A then & 4 is the largest known subgroup
of (75, by Lemma 250 As a result, if 32 A% A then AU A[F) C A
Then sinee we are eeeking only base linee X A UG, we must have
Jdl:rj:l I:"::I'I'IL'r'IiI'I'."I'J .I'I'I {d'l .|“|.|'L|."r rirli‘.‘il'lil'lﬁ I.I'IEE ‘.'i'.'!'r'l.rl:'l'l r-::-r I':l'r'IE'HE Iirl'.'!‘!'i .}u !’iLI.l:'I'I
that AU AF S A S AU, we are no longer interested in base lines
epuivalent to ones satisfying AL ..-!I:J] C A C AU In particular,
we are not interested in base lines containing (AU IR = AU {30
[or ATy h = ”_..1_. Thus all 'F-::-'|1'|Lﬂ af the I.I'__-'|--::-r|:li| 'I?IIJII that lie in I".'l_}
are removed (if €2 F) containg points not from @, then these pointe
ware never going to be considered .'|.1'|_'|.'1.l.".1.:|':l.

As remarked above, if A(3) & € then we remove A(F) from £ and
recursively call BSEarcal A, Q% A(F)). Mote that we may not at this
stage remove the H g-orbit Q03] containing [ since there may be
some other @5 -orhit contained in Q03] that hes meide ¢ and hence
must be tested.

The next result shows that the procedurs SEARCH ferminates, anc
that each k—subset returped is a base line. Following this we prove
a second technieal proposition that is eritical for our purposes, Tt
shows that SEARCH will -::-uL'Pul all the base lines -::|:||1l'.1.i||i|||3 A that
are lexicographically least in their equivalence class, subject to the
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condition that they contain A,

Propozition 3.3 The procedure SEARCH funclions correcily,
namely:

fil A eall to SEARCH{A,Q ) ferminalea,

.f":l:E_.l I A is refurned by the procedure, then X 0s a base Ifne rnoarzant
wnder O3 4 such dhat A C A C AU Q.

Proof. (i} Every time a recursive call to SEARCH i made, the car-
dinality of the second parameter, the set £, decreases strictly. Since
the procedure stops when ) Js empty. and it i=s initially finite, the
procedurs must terminate after a finite number of calls to SEARCH.
|":I'E__.| 'Eul::-l::--::eﬂ.'. Ads returne<d. From the debnition of the '|:\|;|'-c:--::l:'r_|.u;|'-::1 thi=
5 the case if and only if [A] = & and A satiefies the arhit conditions.
Thiz mean= that A sati=fies the condition= of Lemma 2.4 and henee A
iz a8 base line. Further, since we obtain A by adding points from O to
A, we must have A4 A E [,.-'l.l_ll'?::l Ta -::-::-|11|::-|-e'~|-e'- the |::-|_'-::-|:|[ we sk
show that A is invariant under & 4.

Let A; denote the first parameter of the ith recumsive call of BEARCH
in Algorithm 1. We claim that &4 < 74, for all 0 From this claim
it will follow that A is O 4-invariant, sinee A = A; for some £, thus
completing the prool of part (i) Initially at § = 1 we have 4 A,
g0 our elaim holde in this case. Suppose inductively that 74 < 04,
for mome o and consider ..-1.:-_ 14 There are toro Fn:ieiihiliL]m for ..'!:-_ 1s
Either ;01 A or A A L A(F) for some 7 € ) In the
first case, {04 = &4, 34, by our inductive hypothesis. In the
second case A(F) is a 7 -orbit, A; & left invariant by 4, . and eo
f"..l.. = E—".-l-..j' T hii= |:l:|r our :,15=1|.|.|r|'|:|li-::-||. If;__l = I'.':r_|l_j. It fallowrs h-:,'
Induction that &y = &7y, for all £ O

Propozitlon 3.4 Suppose we are grven a tolally ordered poind set P,
tronsitive permufalion groups & and H on P, where & < H and H
normalizes {4, and sels .f'l..l".'l_} P owethk A I_I'l".l._il I.'fl. .‘El'up;n'.l.w- Air a
taeee Iine awel Heat A hae De required inderseclion ype for BEARCH,
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Ac AC AUQ, and A is the leticographically least elesment of AH
.tub_;irrl! !I'.l .‘1 C .-!'l a’li.*ﬂ EFE (= Ir:ll'!' EJ‘?I‘! JI'!EEE I"'!Eﬂ'.‘:l'.'! E_lr.-!'l I||I.|"1. I.II:II.IITH. I'!J.!II].ITF

.":l,n' A AU I:l:r'.r-"']. and fhrs sed will be redurned by a ooll o
SEARCH{A. Q). or

fii) A # AU (a4), so AU (a®4) E A and a ol to BEARCHS A, Q)
will resull in a recursine call lo SEARCH{A U n-'."-":l[?“l wifaere
a CQ and A\ (AUuaNC QS Q.

In all eases a oall to BEARCHAQ ) will refurn A,

Proof. We will prove that part (i) or (i1) holds for SEARCH( A, )
by induction on the number m ol points in 0 which are less than .
The first case is m = 0.

In this case the least point 3 of ) is @, 80 @ € A% AL Sinee 34 < @7,
by Lemma 2.5 we must have .-"l[.f] A4 C |:.-3|. "|I ..'I:I C ), so the
algorithm will coneider A(4) U A, Now AL A(4) © A and hence
Au ..-1.I:.J:I = a |::-'.1.rL'|'.1.| base line. Theps apes twa |::--::-r.-::1-i|:li|i|i-e'-ﬁ- for how
the algorithm will handle thie case. If AL A(F) = A then, since A
i5 a hase line and henee will pass the stahiliser check performed by
SEARCH, A will be cutputted at thiz stage. Otherwise, since there
exiels gome v £ A (AL AEN) C Q0 AQZ) the set Q% A & non-
ernpty, =0 SEARCH| A, Q) will eall SEARcH[AUa™A, Q4 a5 4], Clearly
AN [AUa®) C(gY a”) as required. Thus the assertion holds for
m o= [,

Mow suppose the assertion halde for all integers lese than a given
e = () and that there are me points in &) less than oo Take F to he
the le=ast point in . Note that § < o, We claim that ALS) T A i,
IT there exiets v € A M A(A) then A containe 494 — 394 — A(A4) o
= |::-::-1'|Lr.'|.-'_ﬁ|::li|||3 thyes |r|'|1'|'|1'n.'|.|illlr' of a. Thers are twa F:ll::ﬂﬂ-ll:lili”ﬂﬁ-
for the behaviour of SEARCH( A, Q).

It A(F) £ @ the algorithm will eall SEARCH(A, QY A(3)). Since
AN ..-'I.I::.J:I i e hawes A ".I A '; I';:l "nl .fll:ﬂ. H:,r the indductive h:|r|::--::-L|'|l:'ﬂi:1-.
gince there are fewer than m pointe less than a in @Y A(4), the
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assertion holds for SEarcri A, O ALF)). Sinee SEARCHLA, Q) calls
EI-.'.-\Ii.I.'Ill:ﬂ:Ql'nl .-"H:._r]] Ptk |:|] or [ii:l helds true in this case,
Alternatively, i A(F) € @ the algorithm will call SEARCH(A, QY
I".?I:J:I:I. We claim QI:J:I mna ihoIr ~ = GF) N A then *':.'l‘ T for
some € My and henee {4} 104 C Ak, However, since 3 < a and
= '|r;- lhi:: |l:".1.=:-L |.1|-e'-|r|-e'~|1l -::-[ A ".I ..-1. iL [-::-|||:|'|'.'~ﬁ l|'|.'|.L .-!'.'I" i:’i |-e~;-|;'|-::-::-|3_|'r'.'|.|::-|‘|i|:'.1.||l'.,'
lese than A, contradicting the minimality of A, Thus Q{F)MA = @ g0
AN A SN e 3] Notice that there are fewer than s pointe less than
aoin 00 £ A). so by the inductive hypothesis, the aseertion holds
for SEARCH{A, Y CHF)). Since SEARCHA. Q) calls SEARCHA, QY
A7), part 1) cr part 1) holds for SEArcH(A, Q) also,

Thus for all e, part (i) or (i) holds.

MNeow we will prove by induction on f [A% Al that SEarcH({A, Q)
returne A, Motice that £ 2 1, so the first case 1o prove is £ = 1. Here
A Au {r.r} and {n:u} e ..-II:::r:I sipnce A s O -lnvariant. Thus
(i) holds, and & call to SEARCH( A, Q) will output A

HIJFF--::H-I.‘! that |.-5'."|I ..-!l f = 1 and the claim halds true for all inte-
gers less than €0 1F A AU a4 then il holds, =0 A bs returned by
SEarRcH(A, ). Hence we may assume that A # AU a4, Thus part
{ii) holde, g0 a call to SEARCH[A, Q) will call SEARCH{A U a™4,60))
whera a4 C Q@ and A\ (AUa™4) C Q) C Q). Notice that Ala™4 ¢
A E I".'l_}| M) |:,.'II_|r.|.':.:-'1] l; I‘;:I A, sa the conditions of the lemms are alea
satisfied for this call. However, [AY (AU a4y < ¢, 5o by the indue-
tive hypothesis, A Js returned by 5I-.'.-'|.H.l."|]|:.i'| g™ . I"."h] and hepoes by
BEARCH[ A, Q). O

Algorithm 1 s the crucial part of our procedure to search for the least
hase line in each equivalenoe class. In order to use the algorithm
to =earch for all base |lines Uup Lo l::|.|ui".".1.|i:'1'|-:'l:: wer une the I'-::-||-::-1.'l.'i|1p;

protocol,

Algorithm 2 Input: Poini set P, permulalion group 3 on P wilh
@ nor-frivial O -fneariant partdlion O, ine size &, a sl of inlersection
types, a lesé r.l_f {5 -orbrlz on Pa:z':rs aJr Pafm’s.

Output: The least base Bne in each epwivalence class of base lines.
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begin
(.:II.IMFE [ EI'.III.EE EF‘I.'-.I.I'!TIEREI o .F'_,
Find aq and az, the lwo smallesl poinds in P;
Calevlalie 4"'-.';:.:__3."“:?_15[{:"] M E-l;l.h[l{_'.':l;
Sel global variables &3, H and & for SEARCH;
E::r each snlerseclion ||5I_|".'li'
Call SEARCH{{ oy, an L P Y oy agt);
end for
o

Theorem 3.5 Given a poind sef P oand @ permedialion group 7 pre-
servirg o nen-triviad pertttton of P, e call fo Algoritkmm 2wl oufpul,
wp lo fapmerphism, a base lne for each O -ine fransilive, O-poind
smprirmibive linear space on P,

Proof. Let (P, L) be such a linear space. Let ap, o2 be the two
least elements of P under the ordering impossd by Algorithm 20 Lest
A L. Then A e a base line, We will show that Algorithm 2 cutputs
the lexicographically l=ast element Ay of A

Mow A A" for some k€ H, and S : iP. .-:'u.':;::l P, Eh;'l = oa
linear gpace eomaorphie to (P, L) admitting a line-traneitive action
of % = 7. Therefore some line of 8, = .-!'.f with g € I, contains
Lhe twa points g, cea, by the definition of a linear space. As A & the
least element af aH it follows that Ay < .-:'u.fi' and by the definition of
the lexicographic ordering this implies that {o, a1 © A, However,
5 TiceE {n.|.r.r:]- lie= in a u|1i-::||m line= of .5'|. it [allows that .-5|| .-!'.?'. Lest
[dg.dy. -« ,dp} be the intersection type of 41, When this intersection
type is considered, Algorithm 2 calls SEARCH{{ae, ma}, PY e, aa 1.
Setting, A {|:||:r.|':]' and ) 'F'l'ul{n|.n-_:-}. we have A C A C AU,
and henece by Proposition 34 this call to SEARCH must output A;.

O

We conelude with some remarks abaout |::--::-r.-aﬂi|:||i:: modifications of this

algorithm.
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Remark 3.6 (a) Sometimes the caleulation of the order of @7y 15 not
neceszary in SEARCH. We know from design thecry that |.-:'|| ak [or

. a . ..
same integer a and henes |I'.':'_5_| = It i= thus =ufficient to know

that |fr"_g_| = % As we saw in Lemma 3.3, {-}[l'll--!ttl' = Iﬂ-'_;,_. Thus il
LEm—

{b] Generallv, a; and a: are chosen bo maximise the size of this
etahiliser. In many cases this i= large enough that the check is not
neaded in SEARCH,

7] ;
—L'—: we are guarantesd that &, has the correct sise

() The procedure BEARCH calls for up to two setwize stabilizers
r a4 to be caloulated In each recursive call. Computing set sta-
hilisers can be computationally expensive. To overcome this, we may
use known :1-u|':-|::‘“|'-::-|.|.'|'.|5- aof these grollpe. For l::bl.'l.'rnp|c'. instenard of {-;'1.1_
being recaleulated at every step, Gy, o, could be used instead. As
we saw earlier, &), ) = 6, 5o this is o valid substitution, but will
result Inomore recursive calls being required, sinee less points may be
added to the 'F:l.rli.'l.l base |ine at =ach sbage, ‘."li|r|i|.'|.:|'|:,'.. o |::--::-r:af:'||:l|i::
to use the subgroup, Hy,, .o of Hy.
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