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Abstract

Recent yesrs saw & dramatic increase in existence results for (-designs with large i, e, & = 5.
Designs are now known to exist for several thousamd parameter seds, mostly constructed by the
method of orbiting under a group. This note is & contribution to the classification of these
designs by parameters. We take an absteact look at admissible parameter sets in general. We
introduce & partial order, reflecting relationships between designs, and we analyse the structure
of the resulbing posets, The parameter sets of koown designs fall in oo mose than TH categorios,
which wo call ancestor ¢lans.
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1 Introduction

Let ¢, v, &k and A be natoral nuombers. A t-(v, &, A) design is a pair T = (V, B) where V is a set of ©
elements called points and B = {B,,..., By} i3 a set of k-subsets of V' - called blocks - such that
every t-element subset of 17 is contained in exactly A blocks, The quadruple of integers (v, £, A)
ig called the parameter set of the design. The integer t is the point regularity, v is the size of the
underlying poimt set, & 15 the block size and A is the mdez. The number of Mocks, b, 15 determined
by t,v,k and A as b= Jll:ﬂl.l' I:':] A design with A = 1 s called Slegrer Systemn, Certain designs are
g0 obvious that one considers them ag trivial. One of these is the complete design which consists of
ol k-subgets. It is a t-design for all § < &, The parameters as a k-design are k-(v, &, 1), with b= [ﬂ
Lot ug recall some more parameters of t-designs. For nonnegative integers © and j with i + j < £,
and for T and J fixed disjoint subsets of points of size ¢ and 7, respectively, the mumber of blocks
containing I and disjoint from J is a constant, denoted as A; y. Ray-Chaondburi and Wilson [6]
proved that

fori+j<t (1)

|.li._;|
-Jl.c[l_-|'=-l|{ :—1.:.

(k=)
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We consider the following relationships between designs: Let T = (V, B) be a (v, &k, A) design
with 1 <{ < &k < v. Then T yields further designs:

(i) The design T also is a (£ — 1)-(u, &, Arq) design where Agg = £=H5 We call it the design

with respect to smaller £, or simply the reduced design red T

(11) If r is a point of V, the dersved design (with respect to the point z) is der, T = (W {z}.B:)
where B, = {8z} | B £ B, ¥ € B}. Each derived design has parameters (f — 1)-{v — 1, & —
1, A) {regardless of the choice of the point & € V). Put Ager = A

(111) If r is a point of V, the residual design (with respect to the point x) is res, D = Wz}, B¥)
where 8% = {B | B € B, ¢ ¢ B}. Each residual design has parameters (t — 1)-(v — 1, &, Apes)
where Apeg = lﬁf_—l iregardless of the choice of the point = © V). For the purpose of forming
the residual design, the assumption & < o 18 required. Note that

-]"rul:l.=-'!"|:1|:r+ -]"rle:=-':'"_-"'-rm- iﬂ::l

Since the parameteor sote which we obtain are indopendent of the choice of =, we define the opera-
tors red, der and res in a more abstract way, namely as maps between parameter quadruples: For
t=(v, &, A), we let ved t-(v, &, A), dert-(v, &, A) and resé-(u, &, A) be the parameter set of the reduced,
the derived and the residual design, respectively {provides these designs exist]. Note that for pa-
rameters of designs, the operations derivation and forming the residual commute, since it makes no
difference in which order we delete the points. Also, the reduce operator commutes with these, since
considering a design as a lower -design does not change the design itself. Henee for nonnegative
integers h, i and j with i +i+ 7 <t and j < v — &, we can speak of the design parameter set

red” der’ res’ t-{w, Kk, A),

which is obtained from (v, &, A) by reducing fi times, deriving 1 times and forming the residual §
times. For the rest of this article, we are going to exploit the structure which is indueed by the
three operations red, der and res on the set of desipn parameter sets,

2 The poset of admissible design parameter sets

Not every quadruple of nonnegative integers £-(v, k, A) is a valid parameter set of a design. Certain
nevessary conditions on the parameters are 80 undamental, that parameter 2643 which satisfy these



have a special name. Bofore we give the definition, let ue introdues

Amasc (£, 0, k) 2= (E:D (3]

which s the largest index A, which a (v, k, A} design may have (exactly the complete designs

attain this bound).

Definition 2.1 Let ¢, », k¥ and A be natural numbers. The parameter set ¢-(w, & A) is called
admissible if (ADM1), (ADM2) and (ADM3-s) hold for 0 < & < t where
(ADM1) t< k<,
(ADM2) 1< X € Amaa(t, v, k) = (£25),
;:I =A[1‘J—R]|::l:‘—ﬂ— Levifm—t4+1)

{Eﬂ {k—ajfﬂc—a—l}...{k_i+1}=.-’u,u=

(ADM3-5) A

The last condition comes from the fact that in every §-design, and for any nonnegative integer # < f,
the number A; g of (1) is integral. This is also the index of the (¢ — s)-fold reduced design, A L.

A parameter set which is the parameter set of an existing design is called realizable. Clearly
every t-design has admissible parameters but not every admissible parameter set is realizable. For
example, Kibler in [3] shows that the admissible parameter set 13-(32, 16, 3) i not realizable {other
examples would include the parameter sets of projective planes of order 6 and 10 which are known
not £o exist].

For £ < k, the parameters of the complete design as a ¢ design are (v, &, Aqax(f, v, k). Hence
for fixed f, v and k with ¢ < & < v there always 15 at least one admissible parameter set. The

A A (£, ) ( = b/ (:))

which is a rational number between zero and one, describes how complete a t-{v, &, A) design is.

quokient

Lemma 2.2 Lef D ke one of e operators red, der, res, which is applicalde fo e admissible
parameter set t-(v, k, A). Let .DI:E-I[::,.‘:: JL]} =t'-(v", K. N). Then

A A

Amax (B0, k) T Amad 0, K7

In particular, .El'[‘_!:-['r.l1 &, J.‘,I] 15 complete if and only if (v, &, A} 15 complete.

Lemma 2.3 If t-{v, &, A) is admissible with ¢ > 1, then redd=(v, k, A) and der t<{v, k, A) are admis-
sible, too. In addition, if & < v, then resf-(v, &, A) 18 admisgible oz well.



Proof: Let I be one of red, der and res, and put .Dl{t—[f.l, k. .].}I] = t'-{v", ¥, }'). By Lemma 2.2,
1< A< Amaclt 0, k) implies 1 < X < Amae(t', o', &), which is (ADM2).

(i) The parameters of redt-{v, k, A} = {f — 1]-{ﬂ, J.:,.x"“‘;'l:j are integral by [ADM3-(t — 1)).
Moreover, by induction the parameters of iterated reduced designs are integral as weell;
vedired t-(v, k, A) = red™ " -, k, A) is admissible for i < ¢ — 1. Finally, t — 1 < k < .

(i) dert-{v, kA = {#=1-{v—1, k=1, 2). For 0 <5 < ¢t =1, red* der ¢-(w, k, A) = derred® t-{v, k, A)
is integral, (ADMI) is valid since é — 1 <k —-1<wo—1,

(i) If k < v, the operator res is defined. 'We prove that res §-(v, k, A) = [t—l}-( - Lk AT m l]}
5 admissible, Using (2] we got Ay = A#—_ﬁfl—:‘ = Mg = A 15 inbepral. In addition, ¢ = 1 <
k< v —1. 8inee (Auxs)der = [Ader Jres 18 integral by (i), (ADM3I) follows by induction.

O

Whe deduee:

Corollary 2.4 Let #-(v, k. A) be admissible. Then, for nonnegative infegers h, 1 and j safisfying
h+i+i<tandj<v-—Fk

red"der‘res’ t-(u, b, X) = (£ =i — 5~ B)-(0 i — G,k — 5, Aeenes )
18 admissihle
Henee the concept of a family makes sense:

Definition 2.5 (cf. Fig. 1) Lot -{v, k, A) be admissible. The family of design parameters generated
by t-{v, k, A) 18

Fa.mi]yl{t—[il,.l:,,i]l] = {rmi"dnfrmﬂ—[mk,ﬁ.j hijel h+i+i<t, j=v— k}.
We give some more information about family members;

Theorem 2.6 The paramefer sefs t'-(v', &', X' in the family generated by £-(v, &, A) are character-
ezed by fhe following condfions:

fol 0=t <,
fii] ¥ < v <u,

(i) ¥ < K <k,



fir) k— kK <o—w' <¢—4,

fi] A = Ao st pew =i

it | -f : ._\5\5\
|IIIEIK”£__ <% g
-

Figure 1: The family of a &-(u, k, A)

Proof: Let £-(v", &', X') be a parameter set satisfying (1)-(v). Thent = k=& and j := v—v"={k=k")

i<v—k—(v"—¥F)<v-k By Lemma 2.4,

and hi=t—-t'—i—-j=1—¥ — (v —v') are nonnegative integers with A +i+j=1t—t' < {, and

red*der'res! t-(v, k, A) = (£ —i — 5 — h)-(v — i — .k — iy M—i_gs)

= Er- [f-lr-. H ] ":h'lf‘ +ik— R -1 — (k- H]}

and thus -{»/, k', A") € Family(i-{v, k, .5'1]:!. A routine check uwsing Lemma 2.4 shows that all design
parameter sets contained in the family of a t-(v, &, A) satisfy (i)-[v).

Consider the following question: given ¢, k and v, what are the possible values of A 1n admissible

t-{i, k, )7 Before we can answer thig, let us introduce the number

Then

k—a
AL v, K) = m{ (i)

d (2). (22)) ‘ v= "“”}'

AME v, B) =AME v, v — k),

Ak, v, k)=AXD, v, k) = AME v, v) = 1

ad

(4)



for all £ < & < v. The following result gives a characterization of admissible parameter sets. In

particular, it shows that given !, k and v, the smallest index A for an admissible parameter set
t-{w, k. A) is DAL, v, K).

Proposition 2.7 Let £,v. k and X be nonnegative raftonals with k < v. The following conditions
are equiialent:

i} The parameter sef t-(v, k, A) 15 admissible.
(i) ved® t-{v, k, A} is integral for 0 < i< t, where £ < k and 1€ 4 < At v, k).
fFg) too, kA e M, ANME v k) | A<k and 1 £ A < Agaelt, v, k).
o) dert=(u, k, A) and resd-{v, &k, X) are admissible.
{v) redt-(u, &, A) and dert-{v, k, ) are admissible.
fvij redt-{v, k, A) and resé-(v, k, A} are admissible and £ < &' where res-(v, &, &) = £'-(v/, &', A7),

Progf:
(i) & (i) : Asres't-(v. K A) = a—(u,k, A-{'-E%'E-%

) with & := ¢ — 1, (#) and (i) are equivalent.

{1} & (#32) : If £-(w, k, A) is admissible, then for 0 < s < ¢, the number J.-f'k‘éﬁ%
[ 5 |

divides X for all these s, Therefore AX divides A

is integral. Thus (4~*

divides Jkl{::;:l which implies that

The ather implication is clear,

e ((320.4320)

{i) & (iv) : By Lemma 2.3, (i) implies (iv). On the other hand, assume that dert-{v, k, A) and
rest-{v, k, A) are admissible. In particular, Ap., = "lﬂu%] ig integral. Then (2) implies Ag =
Mer + Aps 15 integral, so red #-{v, k, A} 15 integral. It remains to show that Ay is integral for
1 <i<t Ift=1 there is nothing to show. 50 assume t > 2. We apply (2) to get A_» =
(Area)der + (Ared)res = (Mderred + (Ares )red, parameters which are integral by our assumption. So
Agr I8 integral. We can proceed by induction.

{i) & (v) : By Lemma 2.3, (i) implies (v). Now assume that redit-(v, k, A) and dert-(v, &, A) are

admissible. In particular, Age = A I8 integral. Moreover, ¢ < &k sinee t — 1 < & — 1 holds for
the derived parameter set. Also, A < Ay (v.t, k) by Lemma 2.2, The conditions {ADM3-5) for
()< s < ¢ — 1 are satisfied, and hence £-(v, &, A) is admissible.

(1) & (vi) : Again by Lemma 2.3, (1) implies {vi). Now assume that red (v, &, A) and res (o, &, )
are admiassible. By (2], A = Ager = Ared — Ares 18 integral which is (ADM3-t). The assumption £ < &



implies t — 1 < k, hence ¢t < k < v, (ADM2) follows by Lemma 2.2. The conditions {ADM3-s) for
1< s <t —1 correspond to the conditions for the parameter set red t-(v, &, A) for 5 > 0.

Since the parameters of the complete design are admissible, the previous result implics that

AME LK) | Amaxit, v, &) (4]

It is useful to introduce the poset of admissihle design porameters, denoted as P, as the transitive
closure of the relationships induced by the operators der, red and res on admissible parameter sets.
This means that we have

-’ KL A £ i-{u, kA

if and only if there 18 a sequence I, ..., Dy of operators chosen from der, red and res such that
D - -~ {-DI {I'{“I k -':ll-]] e ] = !Il"-r.“il ki‘ """::I'

Note that the families of Definition 2.5 are just the order theoretic ideal in the poset F.

The gquestion arises whether there exists a largest family containing a given parameter set. In
terms of the poset P, this questions amounts to whether or not there always 15 a maximal element
above any given element. The purpose of this section is to settle this question. We note that the
complete design is the derived design of an infinite number of complete designs with larger block
size, This means we will have to exclude complete designs from our consideration.

We introduce the inverse operators red ~', der™! and res™! [(cf. Fig. 2). These are only partially

(F+ 1) (v, , AE= (o Ufo+ 1k + 1,00 [+ Defv+ 1,k A5

ot
L " )
HHK f,-""f
L dnr"ff res !
~N |
(o, k, A)

A S
ﬂ:-d./ I:L'_'r res
- \\“
ra L 1~H“'hvln.
[t — 1}[11,;:,1;:5::,‘{] ft— 1o —Lk—1LA) (- LU-jv- LEAZED)

Figure 2: The operators red=!, dert! and res*’

defined functions as we require the image to be admissible:



Definition 2.8 Let (v, &, A} be an admissible parameter sot. Put
(i) red ™ "t-(v, &, X) = (t+ 1)-{, &, .-\f,—f] if admisgible
(11} der_]:l-l[::,k: A=t +1)-{v+ L k+1,X) if admissible and

(i) res™ (v, k, A} == (£ + 1)-(w + L, k, AzE2L) if admissible.

If one of these functions is defined, we say that the given parameter sef extends under that operator,
Let us return to the study of maximal slements in the poset P, A related but much harder
problem 15 bo determine whether a design can be extended, i.e. whether there exists another

design whose derived design is the given one (for example, Cameron in [3] determines which square
designs are extendible). Of course, for a design to be extended, the parameter set of the extension
must be admissible, ie. the operator red ™' must be defined. Hence admissibility of parameter sets
give necessary conditions for extensions of designs. Let us quote two results in this context, which
were mentioned by Dembowski [4, p. 76, 77). We should recall that the parameters A; ; of (1) are
integral for admissible parameter sets,

Lemma 2.9 Let t-[v, k,A) be on admissible i-design parameter sel. Recoll that b = Agg denotes
the number of bocks of o design, and r = Ao o5 the number of Nocks on o pomd,

{1} A necessary condition for der™! to be defined s that blv + 1) s divisible by k + 1.

(ii) Assume t > 2. A necessary condition for ves™" to be defined is that A p(k — 2) is divisible by
w4+ 1-kK

MNote that Alltop [1] describes further conditions under which t-desipns can be extended,
The following analogue of Lemma 2.2 iz easily proved:

Lemma 2.10 Let t-(v, k, A) be an admissible parameter set. Assume that D (t-(w, k, X)) = £'-(v' k', X')
is admissible for gome D € {red ™! der™" res~'}. Then

A _ A
J'l'l'l#“:- Tty k] B -:'l-nup: {I’r, llr-. kr] :

From this we deduee that
=t D= rl:-l:l_],

X Amax{t, v K T '
A f“[“ ] -’l:]:I _frj:?r.h where f;f:-.k - 1 if D = der™, (6)
max k¥ 3
ety D =re

Mote that -f!i:::-.# is just the factor by which the index changes under the operator 0.

The next result follows from commutativity of the six operators {red®!, dert!, res?'}



Lemma 2.11 Lef f-(v, k. A) be an admissible dessgn paorameter sef, and assume thaf
red M der ’rm'-"{l-{u, F.:,,J'l.]}l e85 admissible for some nonnegalive infegers f, 1 oond j. Then
red " der— res~ 4 {t-(v, k. A)) is admissible for all nonnegative integers h' < h, ' <4 and j' < 5.

Lemma 2,12 Lef (v, &, A) be admissible, and ossume thal D I:E-{:.r, k, .-:IL]} arnd Dy I:i-{l.r, k, .JL.]} e
defined for Dy, Dy € {red ™" der™ ' ves—'}, Dy # Dy, In addition, if {0y, Dy} = Jred ™" res ™'} we
aesume that A # Apa. Then DDy (t-{v, .i:,.l.}}l = Dy [t-{v, k, .l}}l 15 admissible, too.

Proof:  We distinguish 3 cases according to D4, s, Up to a reordering of 2 and [ these are all
possible cases.

Dy =der™ ', I}y = res~! : We do not yet know if der 'res—! [t—[u, J::,Jl.}]l iz admissible, but the com-
mutativity of the operators allows to deduce

res(der ™ 'res™ (v, k, X)) = der™ (v, k, A)
and

der (der ™ 'rea” (v, k, ) = ves” (v, &, A

are admissible by assumption. Hence by Proposition 2.7, (iv) < (i), der"res™'t-(u, k, A) is admis-
sible, 1. e. Dy Dg(t-{v,k, X)) is defined,

Dy =red ™', Iy = der! © We can proceed in a similar way uging Proposition 2.7, {v) < (i), respec-
tively, to get the result 1o that case.

I =red™! Iy = res~! : In this case we have the additional assumption A # Aqa which we need
to show that red 'res™! (t-(v, k, A)) satisfies {ADM1): Deny this. Theni+1 = k and rud_]:l-{::,t+
LA) = {t+1)-[v,t+ I,Lﬁ} and res™'e-(v,t + 1A} = {(t+ 1)-[v + Lt + I,Aﬁ], But the last
two parameter sets are complete, hence t-(u, &, A) is complete by Lemma 2,10, contradicting the
assumption A ¥ Apa. We conclode that £ < k — 2, so red ™ 'res™! I:E:-['r.l1 k,A)) satisfies (ADM1). We
proceed as usual:

rm{mr]"rm']t-{u,k:.l]:l = red™'t-(u, k, A)
and
red (red ™ 'res ™" t-{v, k, A)) = res™'t-(v, k, A)

are admissible by assumption, Moreover, £+ 1 < &, which means that the two parameter sets on the
right hand side satisfy the additional assumption of Proposition 2.7, (vi). Hence red 'res="t-(v, k, A)
is admissible, 1. e. DDy (i-{v. k, X)) is defined. 0



Lemma 2.13 Lef £-(v, k. A) be an admissible design paramefer set uith A £ IL:_EI Agsume that for

nornnegnttve enfegers fy, fe, 11, 10, 71, g2 the parameter seis
ved " der™ res~H t-(u, k, A) are admissible for #=1,2, (7)
Then red™ ™ hhal gop— maxtiviz) pog—masifidah g (y k A} is admissible as well.

Proof:  First note that red™™nlkhal gop—miniiids) ppg—minififl ¢ (p k) s admissible by
Lemma 2,11, Henee it suffices to prove the claim for the case that one of the cormesponding
integers is sero, L.oe. Aohe = 0, d14e = 0 and fij2 = 0, The assumption is still given by (7). As-
sume that ke 2 0, hence by = . In this case we pick red™" and use Lemma 2.12 to show that
red ~'der " res—# (v, k, A) is admissible, By Lemma 2,11, der—"'res™ (red~'¢-(v, k, A)) is admis-
sible, as well as der res (red ™ 't-(1, &, A)), i e. the assumption (7) holds for red™'t-(u, &, A)
instead of +-{v, k, A) and hs reduced by one. We proceed by induction. Similarly, we proceed with
the other operators, The assumption A # ([7}) is needed for applying Lemma 2,12, 0

Theorem 2.14 Let £-(v, kX)) be an admissible porameter sef with A # {x'ﬂ Then there exists o
unique largest admissible parameter set, called Ancestor [t-{v, k, .].}I] . such that £-(v, k, A) is confained
m ifs famely. More precisely, there emst nonnegobive mtegers Rmas, Smax 808 Jmax marvnal with

respect fo the properfy that
Ancestor (t-{u, k, A)) = rod s Jor—iees pogieas ¢y k. A)

i defined. The given parameler set 48 the hgqax-fold reduction, imas-fold derived and jopax-fold
residual of ths ancestor. A design parameter sef which egquals it oun ancestor 18 cofled ancestor
parameter set. If Ancestor (t-(v, k, A)) = t'-(v/, K, X') then
A A
A (B 7 ) Amac(tyv k)

Henee the ancesfor is again incomplete.

Proaf: Fix an admissible parameter set &-(v, k, A) with A < [:':__t} = M\ax. We first have to show
that J'LEI.ECEEDIE*—['EI., Ji:,,ﬂ] is defined, 1. e, that the integers e, tpax and Jie, exist, Therefore, we
look at the parameters arising as results of the operations der™", red ™' and veg~! (cf. Fig. 2). In
case of red ™! and res™!, the difference k — ¢ strictly decreases, 50 iy, 804 e are both bounded
above by k — £, What can be said about the number of times that der™' can be applied? Assume
this is the case infinitely often and put
_ (in)
by = # of blocks of der™™ t-{1, k, A} = Aﬁ-

10



By (ADM3-0), b, is an integer. Note that

bpy1  v4n+1
By k+n+1

holds, even for the complete design with A = Apa.(f, v, k). For simplicity, we write Aqa, instead of
a:llumg_-. “1 Ty kl:lu P'I.I‘l.

(8)

. I:J:::} u 4+
o, = #t of blocks of der™ &{v, k, djpax) = lmuﬁ = (k‘+ n)'

By (8), the sequences of numbers (b, ) and (c,) are proportional. Hence there exists a rational
number ¥ with (0 <<+ < 1 and v = g—: for all n = 0. In particular,

S S S
a () GG Ame

b oreover, .
Erﬁ=1tn=‘h—‘£:1:1 EM

for all integere n > (. Let p be & prime dividing Eﬁ'ﬁ,ﬂ (such a prime exists since 0 < % < Aqax
by assumption]. We deduce that p divides [:'_::I for all =, But this is impossible as for example
(") = TH_ 2522 = 0 modp for all 0 < j < p™ — 1 and arbitrary m : If the mumerator is
divisible by p*, say, then the denominator is divisible by that sumber, too. Hence all factors p
cancel in the product. We conclude that the number of times that red ™" can be applied is finite,
and we let hya, be maximal with respect to the property that res—"= g defined.

Lemma 2,13 implies the uniqueness of the ancestor parameter set. The final two statements
follow by repeated application of Lemma 2,10, a0

Example 2.15 There exist 5-(23.6,6) designs invariant under Hol{Cqg). We find that
der ™ 5-(23, 6,6) = 7-(25, 8, f)

is ancestor. (Note that it is not known whether or not & 7-(26, 8, 6) design exists.] Figure 3 displays
the family of this parameter set. On the left, the pyramid of parameter sets with £ > § 15 shown
Note that in the bottom layer, there are three more design parameter sefs. A more concise way
of displaying the family is indicated to the right, which shows the layers one after another. The
underlined parameter sets are known to be realizable, @

As an application, we evaluate the ancestor for Steiner systems S(t,f + 1,v) with v — £ prime:

11



7-{25, 8, 6)
}féﬁx
6-(25, 8, 57 s _"_\_33-{24.3.51]

5-(25.8, 380 TN 7-(25,8, 6)

6-(25,8,57) 6-(24,8,51)
6-(24,7,6)
5-(25,8,380) 5-(24,8,323) 5-(23,8,272)
5-(24,7,57)  5-(23,7,51)
5-(23,6,6)

Figure 3: The family of 7-{25, 8, &)

Proposition 2.16 Let t and v be integers with v — ¢ a prime. Then

Ancestor(t-(v,£ 4+ 1,1)) = der ™ t{v, £+ 1,1) = {4+ n) [u_ nt+n+ 1,1)
with n=v — 2t + 1). In particular, f Ancestor(f-(v, ¢+ 1,1)) = "-(+", k', 1) then Er =1
Proaf:

(1) We first show that {# + »)-{v + n,# + n + 1,1) is admissible if and only if n < v — 2{¢ + 1}.
We have the following equivalence:

(t+n)-(v+n,t+n+1,1) is admissible
= (ADM3-s) holds for 0 < s < ¢+ n
=t (ADM3-(f +n —s)) holds for 0 € 2 < t+ n

(v—(t—1))--(w—(t—s) 1 {1:.'+!+.s
2. (s+1) Tu—th s+1

A= Jiaintng;'alfnrﬂg.eﬂ:l+ﬂ.

£ -4
If s+ 1 < v — ¢ then v — t prime implies ged ((s + 1)), v — t) = 1. Since (F; _ 15) is an
integer for all s,
(s+ 1 | (v —(t— 1) (v~ (t—a))

for s+1<wv—tes<v—t—2 Hence (E+n)-(v+nt+n+1,1) is admissible for all n
satisfying t +n v -t -2 n <9 — 2(t — 1). On the other hand, if n = o — 2t — 1 then

12



the parameter set in question would be (v — ¢ — 1)-{20 — 2t — 1, v — £, 1), 80 IIADMH-[J] would
require Lhat
(v -2-1-(v—t-2))--(2wv-A—-1) (v—t+1)--20w—1t)—1)
fo—t—{v—t—2))---{v—t—0) - 2o (v —1)
were integral. But the prime »—t divides none of the factors in the numerator, a contradiction.

(i) Part (i) implies that der™¢ — (v, + 1,1) = [t + n)}-{v + nt + n + 1,1) is defined for

T ko

n=uv-2(t+ 1) and no larger n. We claim that it is not possible to apply red ™" or res
thiz parameter set; If red™! were applicable, then (v +n) —{t+n—1) = v — ¢ + 1 had to
divide 1: (t+n+1—{t+n)) = 1 which it does not {since » — £ £ (). If res—! were applicable,
them v+ n4 1= (t+n+1) = v ~¢ had to divide 1 which it does not (sinee v - £ % 1).
Hence, Ancestor(t — (v,t+1,1)) =der ™ — (¥, t+1,1) with n = v — 2{t + 1). In particular,
if Ancestor(f — (v,£+1,1)) =& — (v, K, 1) = (t+n)-(v + n,t + n + 1,1), then

F t4+n+1  w—-f-1 1

' vdn  Qp-H-2

o

For example, Ancestor(5-(244, 6,1)) = der™™* (5-(244, 6, 1)) = 237-(476, 238, 1).

3 Which design parameter sets extend?

The ancestors of parameter sote differing only in the index can look quite different:

Example 3.1 Consider the collection of parameter sets of the form 5-(24,8,A) where 1 < A <
Amax(5, 24, 8) = 969 = 3. 17 - 19 {note that AX(5, 24,8) = 1}. We get

Ancestor [!:—i 24, 8, ..:'l.}]

r 17-(36, 18,m - 1) = red “der Yres—* 5-(24,8,m -51) if A =m- 5l

1532, 16,m -1} = red*der Pres Y5-(24,8,m-57) ifA=m-&7

13-(32, 16,7 - 3) = red “der "res 0 5-(24,8,m - 3) iFA=rm-3 G114 6714

¢ 6-(25,8m-3) = red 'der Ures ' 5-(24, 8, m . 17)  fA=m.17,19{)

6-(24,8,m-3) = red 'der Ures U5 (24,8, m 19)  fA=m-19,171 A

7-(25,8,m -6) = ved 'der Vres—15-(24,8 m-323) ifA=m-323=17-19
2,84 = red "der res U 5-(24, 8, A) otherwise

Maote that the “otherwise™ case i3 equivalent to

M} = ged(X, 969,1) = god(A, 3-17-19) = 1.

god (”" AME, 24, H)

13



In order to determine the ancestor, we have to find oot which parameter sets extend under the
operators red ™', der™! or res— ", For this, we examine properties of the function AX.

Proposition 3.2 Lef v and & be infegers with & < v. Then

(i
k-1 AME, v, k)
AMt+ 1,0, k) = forall t<k (9)
.El:d{‘l-' -1,k - ::I E‘d"d |:ﬂ...’|.|:t o, ﬁ:] m]
i)
(i)
mu:t—1.v+l,k—lj=|¢m(m[t,u,k}, = ) {10)
god ”Lll}! EL_-II]I}I
le+
Note that o {“ |]' o i the smallest natural number a such that ﬁ%ﬁ% is infegral.
Proaf:

(1) By definition, AAE, v, k) is the smallest natural number such that (ADM3-0) A--- A (ADM3-
t} hold for the parameter set t—[u, ke, AMLE, :::k:l}. Congider the corresponding admissibility
condition for the parameters (£ 4 1}—[1?, E AME 4 1o, k}], which we denote by (ADMI-0)
A A (ADMI-(t+ 1)) (ADMI-(#+1)) just implies that AAt+1,v, k) is an integer. Write

vt _ gapiE

k-t e
with coprime numerator and denominator. Since {ADM'-t) states that AA(t + Lv k)£ is
integral, AME + 1, v, k) must be a multiple of ey e Put
Eli+1) = AME+ 1,v, k) e M

T

and consider the two sots of conditions in parallel. For (0 < 8 < ¢ — 1, we have

v—s)-(v—(t-1))
(ADM3-5) <= a,x(s,-a-,k}m_ =) M,

o —(t— 1)) (v — )

{ADM3-5) <= AM{+1,v, k}{ 8) -

(k= a) (k=1 —) =
e gy, BT - WSy

(k= s} (k= (b= 1))

14



Mote that the sdditional factor ﬁ in (ADMY-2) does not depend on 2. The last integrality

condition shows that
AME v k)

ged [M“ﬂs k), ik
is the smallest solution for LY, Hence by definition of LI,

k—t AN, v, k)

AME+1,v,K) = ' .
ged{v — ¢,k — ) g (.ﬂ'l.ﬁ;[t, v, k), ﬁﬁ,__‘;‘r”}

(1) For 0 < s < ¢, let (ADM3-5) be the admissibility condition for the t-(v, &, A)X) design and for
0<as<t+1, let (ADMY-a) be the admissibility condition for the (# + 1)-{v + 1,k + 1,4)
design, Note that (ADM3-s) == [(ADMI-(s + 1)) for 0 < s < ¢ while (ADM3-0) requires
Ehat

(1)
{41
AME+ Lo+ Lk+ 1]{—#IF

£
i% intepral. This last condition can be reworded as

k41
i1

e (E. )|

Hence AAE+ 1, v+ 1, &+ 1) is the least common multiple of AME, v, k) and that number,

AME+ Lo+ 1L k+1).

d

Example 3.3 (cf. Example 3.1) Consider the parameter set 5-(24, 8, 1) again. We have:

(i) AMG,24,8) = | =3

a

Al 1t h .

Bedl1031 et (1, ;)

(i) AAG,25,9) = lom(1,3) = 3 as TFFTE = ELU hence 3 is the smallest natural

number making this fraction integral;

(iil) AM6,25,8) = 3 since g = 3 is the smallest natural number such that all prefixing partial
products in a - ? ; 241 : 152 . Eﬂﬁ ; 2.:,.-"' : % evaluate to integers.

o

The question of whether an admissible design parameter set t-{v, k., A} extends under one of the
operators red ™', der™! or res™! turns out to be equivalent to certain divisibility conditions for A in
terms of ¢, ¥ and k. Our results are strongest in the case of the operators red ™! and der™ since we
have the recursion formulae {9) and (10} of Proposition 3.2 in that cases,



Proposition 3.4 Lef £-(v, k, A) be an admissible design porameter set (hence m i3 an infeger
by (4)). Then

fa} red ™! E-{v, k, A) is defined of and only if
fal t < k and

() <k | axpiamy where
i1 =i
-1 grdjiv=Le=1)
tuk = ) {1 l}
god (."."I.-ll[h v k], mﬁh]

{it) der~"¢-{v.k, A} is defined if and only g'fcﬂs,[,,"| aa where

[k+]
et A+ Lyt Lk 1 _ ged ((HH1.G51)) _ (12)

S &A“I ” k] ki1
gl (86, ), ot o)

T

fii1) res™ ! t-{v, k, A) s defined if and only if
fal t < k and

-1
(b} r.'ﬁh a._&_h[!,u:k] where

At + 1w+ L) - (v+1-&)

e Y Y S RFs W s vy vy e ML

(i) The operator [ = red ™' iz not defined for parameter sets with £ = k. Hence assume t < k.
By (4), der™" t — (v,k,A) = (£ +1) — (v, k, AE=L) is admissible if and only if

k-1
ANt + 1,1, —
Mi+1,0,8) | A==
" k—t AMt, v, k)
_— t.l—t . i ; .:!'| k_t
( ) ged{v — ¢,k — ] g{:ﬂ[ﬁl{hﬂ,klmfﬂm} | { :I
¥t
prdiv—Lk—{) | A )
god (AL, v, K), gty ) | AAEPE)
=%

16



(ii) Using (4) again, we find that der™" &(v, k, A) = {t + 1)-(v + 1,k + 1, A} is admissible if and
only if

AME+ 1,0+ 1Lk +1) | A

i)

o AME+Lu+Lk+1) sed ({54 (1)) l A
AME, v, K) god (&l{t,v,ﬂ, — {‘55]. 1[=+1]}:] AME, v, k)

e

r'!‘“" !

(i) If £ = k, the operator res™! is not defined for t-{v, &k, A). Hence assume ¢+ < k. By (4),
res— t-{v, k, A) = (t4 D-{v + 1,k A "‘,_‘,..] is admissible if and only if

h’\—
k—1
.ﬁl{1+1,ﬂ+l1k} Am
i A
— ﬁ.}u{t+11'ﬂ+l1k}'[ﬂ+1—ﬂ-] | mﬂﬁ[t.ﬂ1k]{‘r—ﬂ
— &.A[!‘l‘l-.l?—l.k}'[ll"'l—k] A
‘gﬂl{ﬂ.ﬁ[ﬂ— 1,v+ l,,.ﬂ -I::i.?— 1- k},ﬂﬁ[f,u, fi] '{k - f-:l}l' ﬂ.-’L[I!-,'I.'-.k}.
=iy

d

As the complete design extends under each of the operators [assuming ¢ < & for D = red =" or
= r-es“} we get:

Corollary 3.5

Aamal £, 21, )

D | Amalt,v, k)
Gk | AN v K) (14)

forall0<t<k<vand D e {red™, der™"res '} If D = red™" or D =res™!, we require £ < k.

Example 3.8 {cf. Examples 3.1, 3.3) For which A does the parameter set 53-(24, 8, A) extend under

e {red™", der™', res~'}7 As t < k, we get a result in all three cases. Using Proposition 3.4, we
compute
1
() Shs = e:cﬂ[l.:!?;a = 19, hence red™" 5-(24,8,19) = 6-(24,8,19 . %) = 6-(24,8,3) is

admissible. This is in accordance with AM6, 24,8) = 3 (of. Example 3.3).

17



(i) %, g = war = 3 hence der™" 5-(24, 8, ) = 6-(25,9, 1) is admissible. This is in accordance
with AM6,25,9) =3 (ef. Example 3.3).

(i1} .ﬁ;r'ﬂ = gaptrra = 17, hence res™! 5-(24.8,17) = 6-(25,8,3) is admissible. This is in
accordance with AMG,25,8) = 3 (ef. Example 3.3).

4 Clans of design parameter sets

In the previous section, we encountered collections of design parameter sets with equal ¢, v and &

and whose set of indices form multiples of a certain number, We call that a clan (recall from (5)
that AA(t, v, k) divides Aqa. (2 o, k)

Definition 4.1 The clan of the parameter quadraple (f, v, k, 8) with AME v, k) | 8 | Apaalf, v, k) I8
A £k
'-'_l'la.n{-!, vk, a] = {E-{u, ke &) | meM 1 <m=< %},

Loe. the set of admissible design parameters for £, v and & whose index is a multiple of &, The full
clan is EI.B.JJI:E,?.I, .E} = Glau[t,ﬂ, k, At v, ﬁ:]}l A clan is friviad if it consists of just one element.
For a natural number ¢ | w, prutk

¢+ Clan(t, v, k, 8] := Clan({{, v, k, ¢s). (15)
For s and s with AX | 5 | Anax(L v, &) Tor i = 1,2 we have
Clan(t, v, k,a1) C Clan(t, v, k,82) <= 32| 81, {16}

in which case we call Clan(t. v, k,5) a subclan of Clan(t, v, k, 52). For fixed £, v and k, the ordered
set of clans Clan(t, v, k, ) where AA(t,v,k) | & | Amax(t,v, k) is anti-isomorphic to the lattice of
divisors of 2248 A short notation for Clan(t, v, k,s) is

o L) N T E {17}

Let us get back to the situation of Proposition 3.4:

Proposition 4.2 Constder Clan{f, v, k], & e. the sef of admissible design parameter sels of the
form t-(v, k,m - AX(t, v, k) with 1 < m < dpaltia]

fi) For any D € {red™!, der™!, res1}, the set of elements efﬂla.n{i,w,k]l Sfor which D is defined

is either empty or forms a subclan cf, - Clan(t, v, k) frecall the notation of (15)) where &) ,

i s in (11), {12) or {13). The sct is empty if and only ift = k and D = red ™ or D = res™ !,

18



(i) For I & {rﬂ'l_l,dﬂ'_],m: '}, assume there erists o natural number ¢ such that

Dt-{v, k,cAMb v, k) s defined. Toke ¢ to be minimal, i. e ¢ = t-f‘.lt as in (i), Then
Dit-[v, ke, cAME v k) = H-{o K, X) with A" = AAY, o', k). Therefore the mapping

D : e Clan(t, v, k) — Clan(t’, v’ ¥'), {18)
Dt-(v k- Ao k))) = £-(v' K - AME 2 K'Y
for all noturad numbers e with 1 < m < %‘_‘é_"ﬁﬂ—"‘ﬂ ts surjeckive, hence Mjechve, In ofher

words, the operator D induces o bjection between the subclan o- Clan({t, v, k) and the full clan
Clan(t,v', k). On the other hand, if ¢ is an integer such that

D(t-(v, koo AAE v, &))) = E-(00", KL AMY, VLK)

then ¢ is minimal, i e D{t-(v, k,d - ANt 0, k))) is defined for no integer d less than
Moreoner
Al k) AME VLK) AME, LK)

O Aot ) AL k) AME v K) [ )

wHth f!ﬂ'.# as in ().

Proof:

(i)

(i)

Follows from Propesition 3.4. Note that Corollary 3.5 implies ¢ | 2pa=lb=fl honce
o Clan(f, v, k) is defined.

In arder to avoid confusion, write 1" for the chosen operator of the set {red = der™!, res~'},
We abbreviate A = AA(tL v, k), &) = AMY, Y K), Adpay = Apaell k) and A, =
Amax(t, v, &) Let D" t-[w k,c - AX) = ¢-(v", K, }) with ¢ minimal, i. e. ¢ = c:':::,I#. We
are going to prove that X' = A)N ; If there oxists

t'-(v', K, u') € Gla.nl{t’,ur,k",ﬂ.&’] ol ['Cla.nlzi—[-u,k,n - AA))

then D ¢'-(v', k', ') = t-[v, k, u) € Clan(t, v, k, A)) implies A) | g Moreover, the operator
D1 is defined for {-(v, k, 1) and therefore by (i), ¢ ﬂLA which implics

¢ K e D '[:Clau[t-[u,k,c-ﬂ.l}]),
a contradiction. Hence D! induces a bijection of the subelan ¢ - Clan(t, v, k) onto the full
clan Clan(t',+', k'), namely the map described in (18). We conclude using (6)

Mowe  Amax A A AN
AN T e AN T T AN Mo T AN,
.

|Clan(t', v, K')| = |¢ Clan(t, v.k)| =

19



More informally, the provious result tells us that immediate relations in the poset of admissible
design parameter sets always come as bijections between a subelan o - Clan(f, v, k) and a full clan
Clan{t", ", k). Consider our standard example once again:

Example 4.3 (cf. Examples 3.3, 3.6) Having the corresponding values of A at hand, the compu-
tations of Example 3.6 can be simplified using Proposition 4.2:

. -1 A6 48] -1&
(1) ciffu = ansous) o - 1—3_% = 19, Henee red ™! 5-(24, 8, m - 19) = 6-(24,8,m - 3) for all m
with 1 < m < 61 induces a bijection between 19 - Clan{3, 24, 8) and Clan(6, 24, 8).

(i) g = ﬁﬁ‘; = A — 3, Hence der™" 5-(24,8, m - 3) = 6-(25,9,m - 3) for all m with
Eaaal i T W]

1< m < 323 induces a bijection between 3 - Clan(d, 24, 8] and Clan(6, 25, 9.

i) eree . — SAB2RE) 3 _ g7 15 (o4 1T = B (95 Y for all
(i) 2 g as AT T R 7. Hence res™ ' 5-(24, 8, m - 17) = 6-(25,8, m - 3) for all m

with 1 < m < 57 induces a bijection between 17 - Clan(5, 24, 8) and Clan(f, 25, &).

In Figure 4, we ghow the parameters seta which extend once again. Note that the m in that figure
is not the m in the previous calculations, o

6-24,8, 2 . Bjmes 625,09, 3= cam 6-(25,8, 1 - 3)m car

5"[2“| E'| T - ljmiﬂﬁl
Figure 4: The immediate relations above 5-(24, 8, A)

Our adm is to describe the relations between admissible parameter sets in terms of the parameters
£, vand k only, So far, we bave seen that this works for immediate relations, IE will furn out shortly
that this is true in general. We introduce another relation defined on the set of clans as follows:

Definition 4.4 For integers £ < & < v and ¢ < B < o, put
Clan(f, v, k) < Clan(t', o', k"] = 3N v,k A) < &' &' N, {0}

where A = ald € Apg,, A" = 2'AN < A for some positive integers @ and o' and for AX =
AME v, k), AN = AAME .0 K), Amax = Amax(t, 0, K), Alax = Amax(t, v, K.
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Mote that the numbers A and X' in the previous definition mutually determine each other. Henee
we can speak about the minimal A satisfying (20). The corresponding A" will then also be minimal.,

In case of immediate relations, Proposition 4.2 gives us the mumber Efv.#‘ which determines the
smallest solution and at the same time the subclan of all solutions of (20). We call that number
the associated subclan gemerafor. We may put it as a subscript to the relation symbal as in the
following example;

Example 4.5 (cf. Examples 3.1, 4.3) Proposition 4.2 yields the following inclusions for the
clan of 5-(24,8, A) designs: Clan{h, 24, 8) <9 Clan{6, 24, 8), Clan(h, 24,8) <3 Clan{6,25,9) and
Clan(3, 24, B) =7 Clan(6, 25, 8). o

The general case of relations between admissible parameter sets is dealt with in the following
proposition:

Proposition 4.6 Assume Clan(t,v, &) = Clan(t’, o', '), . e, there enis! nonnegative inlegers b, 1,
g and A, A such that

red ~* der ™ res ™ (t-(u, &k, A)) = £'-(v' K, A (21}

for admissible paramefer sefs. Abbreviate AA = AME v, &), Amax = Amuelt, v, &) and similorly
AN = AAME LK) AL T Amaxl(E U E) Write A = - A

(i) If A and X' are minimal with respect to (21) then ¢ | 2895 and X' = AN, Henee ved b dor = vog~i
induces a bjection between the subelan o - Clan{t, v, k) and the full clan Clan{t', ' k') :
red " der *res™ ; ¢ Clan(t, v, k) — Clan(t', o', ¥'), (22)
red ™" der ™ res ™ (v, k,m - e - AX)) = -0 K m - AX)
for all notural numbers m weth 1 < m < %—mﬁ Moreover,

A AN
o= —hax 7 {23)
Apax DA

O the other hand, if ¢ i3 an infeger such that
red ™" der ™ res™ (L, ke AA)) = £, K, AN

then ¢ is minimal, i. e red ™ der ™ resf {1-{1.:', k.d - &A]IJ iz defined for ne integer d less
hi
than ¢. We wrife Clan(t, v, k) : -{f] Clan(t', o', ') and call (h,4,j) the path information of the

refation,
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(i3] The sef of clang is ordered with respect fo the relafion “<7. The path information is additive
ared the subclan generator mulliplicalive with respect to transitivily of that redation,

Ry
(i) For Clan(t,v, k) <. Clan(t',v",&') where Clan(t, v, &) is considered fized, the associated

subclan generator together with the path information and Clan(t',+', k') mutually delermine

each ofther:

faf (1) F=t+h+i+7,

f28) v =v+i+j,
{.!I'_,J k'_k | 'i:

(. ﬁl*_‘ iy = AN
{".} "l:'""l =e- ':‘J.,E} |:"+$—|'] =c A

(b i1) i=kK —k,
{2 =o' —u—1,
(3 h=t —f—i-3,
“‘;E=.¢.EE:._'1'_'3_*1_.5.1:

ol 0 i B

i1

Proof:

(i) Let us apply the operators red "der ‘res~7 one by one in succession, thereby reducing to
the case of immediate relations and using Proposition 4.2 for each of the individual steps.
Moreover, we assume that minimality forces A" = AX (this will be justified later). Consider
the operators

red lo-ccored™) oder o ccoder ! o s o omes!

g e e
hiimes Ko F imes

which we are applying one after another from right to left to the parameter set &(v, &, - AX).
For convenience, put
res™! if 0< £ <,
Dy=¢ der™' if j<f<ity,
red™! fi+j<E<h+i+]
Applying Do, D4, - - -, Dhgigg-1 b0 #={2 k e-A)X) we obtain a sequence of admissible parameter
S0LE
Feopd i

(telvekeee-ax)) (24)

F=i
with
tg-(vg, kg, cp "':"'-'5'{!} = &-(v, ke "'—"'-'1":'
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(ii)

and
Lael g, Fay 0 - B2 ) = 80" K, 1 - AN o )

for s =k + i+ 7 and Ady = AMty, vy, k). The parameter sets are connected by
Dy (te-(vg, ke, cptdh)) = teeg-(vppr, Resy copr Bdgpy)  for £=0,1,..  h+i+j—1 (25)
We solve these equations for the unknowns ¢ backwards, i. e. by solving
Dy [t y=lwpy ke, ce—r - Bh_1)) = te={vg, ke, e - AN

for £ = h+1+3,...,2, 1, Our initial choiee is cp454 5 = 1. Using Proposition 4.2 (i}, we got

Dy

Ci-1 = Cpp iy T
hence o
h+itj—1
- Dy
e=a = H El-.r.'l-':.k:'
=0

We have proved that
red ™ Pder fres [t-{v, k,c- AX)) = t"-(o" k' AX)

holds for that c. As AX is the smallest solution for A' we can have, this justifies the assumption
made initially. The bijection {22) results from this. Therefore, using (),

X Amps
(Clane', o/, )| = e Clan(t, )| o= 2 = Jmae
Amax AM AN
= c= = — . {26)
AN My AN gD
[y i g1 ) {hayig.da)

We only verify transitivity of “«": Assume Clan(t). v, ki) =, Clan(ts, va, ko) =l
Clan(ty, vy, kz). We then have two bijections of the form (22), induced by
red ™™ der ™ res™ (by-vy, Ky, my coep o A, v,k ))) = tae(og, oyt - AL, v, ka)),
l'Dl:I._h:‘ d.l'_‘r_i:‘ r"-"ﬁ‘_ju {ii' [ﬂE: ‘I:i:mz Lo "':""""l::tﬂ T, ‘I:E]}II - i’-.'!'{“& ‘I:\-a: My - "ﬁ--}'{iﬂ--i'ﬂ:kﬂ-}]l:
where 1 = my < ﬁ%ﬁ% for £ = 1,2. Putting my = oy and my = 1 we can combine the
equations arriving at
T'-l}lj._l-'h"-l-h:‘] dm.—[l"_ ial I‘I',!E_':j" +aal {gl_[ﬂ.l .oy - ri'.,ﬁ.{tl,'i.u ,kl}:l] = ﬁ;r[t-'j. k3. ﬁ.:!'.{t,q., Uy, k‘!]]
By (i), e1cs is minimal in establishing a relation between Clan(fy, vi, k) and Clan(ts, s, k3).

[fo1 +Fem dy +ix gy ) R e
Henee Clan(ty, vy, k) S . Clan(ts, vs, ks), thereby also proving additivity of the

path information and multiplicativity of the subelan generator.
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(1ii) This follows from (26) in the proof of {i). The middle term with the binomial coefficients

comes from evaluating the product of the f:::-,,k.-

d

Example 4.7 (¢f. Example 3.1) Proposition 4.6 yields the following inclusion for parameter sets
of the form 5-(24, 8, A) with 323 | A :

5-(24, 8,7 - 323) < 7-(25.B,m - 6) = red ™" res—" 5-{24, B, - 323
for 1 < m < 3. We express this as
(10,1}
Clan(5, 24, 8) =~z Clan(7, 25,8).

00 0,0, {0.0,1]
Mote that wc ham Clan(5, 24, &) '-C|_a Clan(G, 24, 8) -c.r Clan(T,25,8) and Clan(5,24,8) =7

Clan(6,25,8) 'y, Clan(7,25,8) (cf. Fig, 5). ¢
T-[25.8, 55 -6 2 s
LR N
o=l T o
323:!___.-"'-. . 32
6-(25.8, 3 - E} sy G248, fy - Hy<mn
I'IH--?M"' .-"----:;J'-L
17|m T = 1H]em
.. -

B-(24, 8, m  1)ma0n
Figure 5: Some clans above 5-(24, 8, A)

Example 4.8 The numhbers .r.';_‘::J.|l|= necd not be prime:

10,0 -1
Clan(§, 32, 8) l-‘qgl Clan(6,32,8) (i e % =19,

{0.0,1] -
Clan(8,41,10) <y Clan(9,42,10) (i, e €f%5; 10 = 4)-
They even nesd not be relatively prime:
1]

c]ﬂﬂiﬁ JE H} —'ﬁ:g 'F].-HII{“ .H H::l {] [ =N 'I".!' 31.3 = !":l

I I i ]
Clan(5,32,8) ~3 Clan(6,33,9) (i e &%, =3).
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Another result about the clans above a given clan is the following:

Proposition 4.9 [f

Chy e {ha sl

Clan(t, v, k) = Clan{t), vy, k) and Clan(t,v, k) =z Clanls, vs, ke)

and lemicy, e2) # A'—E“f—'—ﬁﬁ then there s a clan Clanits, vy, ky) such that

[rnas g fa )iy de ) mac] §1, 9]
G].-HII.{:I., , .k_] _":'I::I'll-:'cl ) 'ELE.D{:I;]_, Uy, Jr.!;]_}l.

The parameters of the clan Clan(ts, vq, k3) are determined by Propogition 4.6 (iv){a].

Proof: Put AM =AMt v, k) and Apax = Apax(t, v, k). Then t-(v, k, lem{e), e2)AX) € cp-Clan(t, v, k)
since ¢z | lem{ec), o2) for £ = 1,2, Hence

red”™der *res— (v, k, lem{e, c2) AN} is admissible for £ = 1,2,
By assumption, #-{v, k, lem(cy, c2)AM) 18 not complete, henee by Lemma 2.13,
rod — 8l el g — Wty da] pag - manlindaly_(y k lemie), o) AN} it admissible.

It remains o prove that lemicg, es) i the smallest integer d < E"E;'- with respect to the property
Lhat
pad— max(f bl g o — masiiy daly - maxtiidelg (. k, dAX)

ig defined. Consider such a number d and fix £ € {1,2}. Then b < max{hy, he), §¢ < max(i;.iz),
j¢ = max(jy,jz) imply that red ™ der ¥t res it (v, k,dAd) ie defined (using Lemma 2.11). By
minimality of ¢p, this implies cp | d. Thus lem(ey, eq) | f and the statement 8 proved, a

5 The families of a clan

A clan gives rise (o a seb of families, geperated by the elements of the clan;
Definition 5.1 The parameterized sel of fomilies of Clan(f, v, k) s the set
Amax(t, v, k)
W)= k)1 Em S ————— 2
Fityo,k) = {Faltr, ) [ 1< m ANt v, k) } (27)
where Fp, (¢, v, k) = Family(#-(o, k, m - AX). For (ki j) £ M satisfying the conditions h+i+j <t
and 7 =< v — &, the elements

Amax(t, v, k)

fu .
{m:l der’ res’ t-(v, k,m - AA) | lem< Akt v, k)

{28)



are correapending members of F(f, v, k). The family
-:Fi'nmuJ.Lﬂd.l '-r.ﬁ! thy k::'
TNy

ig called complefe. It consiste only of complete parameter sots.
Corregponding members of a parameterized set of families form subelans:

Theorem 5.2 The corresponding members of the set of fomilies Flt, v, k) form subclons o -
Clan(t', v, &), characterized by the following conditions:

(i) 0 <t <t,
fi) B <v' <o,
i) ¥ < K <k,

fiv) k— k' <o—n' <t -+,

AXiLy

J'I
(1) €= Z57 0T T
The parameter sefs of ¢« Clan(t', o', k") correspond bijectively to the families Fit, v, &) :

Ama [, v, k)

AN v k) (29)

ol K omoe AME, UL KN € Frlt, v k) for 1<m <

Proof: We proceed as in the proof of Theorem 2.6. Let t, o', &' and ¢ be integers satisfying (i)-(v).
Theni:=k—Fandj:=v—o' —(k—k)and h:=t—t'—i - j =& — t' — (v — v') are nonnegative
integers with h+i+j=¢—t' <tand j =v—k— (2 — k') < v — k. Hence red” der’ res? is defined
for &-(v, k, AA(t. v, k)). The equation

red” der’ res! (v, k, mAME, v, k) = -[v" K, mM) {30}

helds for all positive integers m < 2Pl and some (fixed) A By Propesition 4.6, A =

cAME, o', k") for the ¢ given in (v). Hence we have a pairing between Clan(f, v, k) and mem-
bers of the subclan ¢ - Clan(t’, v, k). By (30). those members are eorresponding members in the
parameterized set of families F(¢, v, &), with inclusion as in (29).

Conversely, a pairing between ¢ - Clan(t',v",%') and Clan(t, v, k) is equivalent to
Clan{t', ", k') lh—';f:l Clan(t, v, k) for pome nonnegative integers (h, 1, 9). By Proposition 4.6 (with
reversed roles of variables), i = k—K', j=v—v' —i, h=1t —t' — i — j and ¢ = il Jma,
Henee t = "+ h+i+j > t"and v = v +i+j = o', Moreover, & = &' +1i > &' Finally

k=K =i<v=v'=itjCt=t'=htistj. 0
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Example 5.3 Consider the family of 7-(25, 8, 6), a member of F(7, 25, 8). The other families are
Family(7-(25,8, 12)) and Family(7-(25, 8, 18)). We draw the set of families as in Table 1, restricting
to the layers of f-design parameter sets with ¢ > 6. The index is written as a product m - - A
where ¢ 15 as in Theorem 5.2, If ¢ is one, the middle factor 15 omitbed, The upper bound for

i, & the number A=ax{tvEl

AL is indicated as a subscript of the topmost clan. o

T-(25,8, m - Gy
6-(25,8,m -+ 19-3)6-(24,8,m - 17 3)
(24,7, m - 6)
5-(25, 8, m « 19 - 20) 5-(24, 8,m - 323 + 1) 5-(23, 8, m - 34 )
(24,T,m . 19.3) 5-(23,7,m-17.3)
5-(23,6,m - 6)

Table 1: The parameterized set of families F(7, 25, B)

6 Ancestor clans

It may happen that a relation between clans is friviel is the sense that the associated subclan

generator is one, for instance
fed il
Clanit, v, k) "5 Clanit’, o/, k')

and i +1 4 3 > 0, Henoe the parameter sets of the two clans correspond bijectively under the
operation der ™ res ! red 7. It turns out that trivial relations are quite frequent, for example all
but the first of the chain

Clan(b, 24, 8) -4511“1;.::{“ 25, EIJ ia":’.uj Clan(7, 24, 1u]| = II:‘leu:[l:l 27, 11)

II II I I i I
Clan(9,28,12) "%, Clan(10,29,13) <, Clan{11,30, 14)

il 1
e Clanf12,31, 15) -<,]F1u{1i 32, 16).

I
'-Cl

Why does this happen? OF course, the first parameter set of Clan(t, v, k), i. . the parameter set
t-{w, k., AME v, k) must extend for this to be possible. The other way round, if t-{v, &, AME, v, k)

is ancestor then no trivial relation can exist above Clan{f, v, k). Hence we define:

Definition 6.1 A clan Clan(t, v, k) is called ancestor clan if neither ved ™" nor der ™! nor res™! can
be applied to the parameter set (v, &, AME v K] ).
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In particular, ancestor clans are always full and never trivial. Ancestor clans are essy to obtain:

Proposition 6.2 If Ancestor (t-{v, k, A)) = ¢'-(v", K, X') for some admissible incomplete parameter
set t-{u, k. A) then Clan(t',»', k') is ancestor clan.

Proof: Assume the contrary. Then there are nonnegative integers fi, ¢ and 3, not all 2ero, such that
red ™" der i res—d #-(v', K, AX') is defined, where AN = AME, ', k). Hence with A" =m - AN,

red " der ™ res ! ¥-{v', K, mAXN) = m - red ¥ der ™ res™ (0, B AN
ig admisgible contrary to the assumption that #-(' &', A') is ancestor parameter set. u|
We already have proved most of the following Lemma:

Lemma 6.3 Lel L < k< v be inlegers, The following are eguivalend:

i} Clan(f,v. k) i3 ancestor clan.

(i) The porameter sef £-{u, &, AME v, K]} 15 ancesfor parameter sef,

i) Clan(t,v.k) containg an ancestor parameter sef.

fir] For every relation Clan(f, v, k) [h-:v:f] Clan{ v, k') with h +4i + 7 > 0, or eguivalently

Clan{f',v', k") # Clan(t, v, k), the number ¢ 18 different from 1.

Putting A := AM{, v, k) in Propogition 6.2 we obtain:

Corollary 6.4 Every non frinmal clon 18 confained in an unigue ancestor clon weih associsied
subclan generator 1.

Az the set of ancestor clans is a subset of the set of all clans, it still forms a poset with respect
to the ordering of Definition 4.4, The next property could be called “factorization property™:

Proposition 6.5 Assume Clan(t, v, &) <., Clan(t;, v, &) oand Clan(t, v, &) <, Clan(te, v, &)
where Clan(y, vy, ky) t5 ancestor clan. If ¢, divides cg then Clan(t),m, k) =er e Clan(tz, vy, k).

Proaf: Write ¢a = ¢+ ¢y, The assumptions imply

i-(u, ey - AME v, k)] < ti-(wy, ky, AA(E, L, ), {31)
Ancestor (t-(v, k, o2 - AME, v, K))) = ta=(va, ks, AA(ta, v2, ko). {32)
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“Multiplying” (31) by ¢, we get (v, k, cp AMt, v, &) < 8-(v1, kL e AAE, v, &) ). But the ancestor
is the largest admissible parameter set above a given one, containing all other with that property,
hence together with (32) this implies

E:.l-{ll':l] H ‘I:.l gt ﬂ"'!'":t.h 14 ‘E.l,]] 'E tﬂ-l:::‘131 'EE: 1':"--’1“;'2 s k:]}'
Thus Clan(ty,m, k) e e Clan(tg, vy, ). |

The assumption that Clan{fy, vy, ky) i ancestor clan s nocessary as the following coun-
terexample shows: Clan(5,24,8) =<3 Clan(13,32,16) and Clan(5,24,8) =s¢ Clan(7,24,8), but
Clan{13,32, 16) # Clan(7, 24, §).

For ancestor clans, the associated subclan generator determines the successor. The point 15 that
we do not need the path information as in Proposition 4.6 (iii).

Proposition 6.6 If Clan(f, v, k) <. Oy for ¢ # %“éﬁﬂ and some ancestor clan Cy, then ) iz
umguely determined by o

Proof: Assume

(b i i ) oo i
Clan(t, v, k) 52" ¢, and  Clan(t,u,k) s Ca.

for another ancestor elan Cy. Then by Proposition 4.9,
(Enazif ez ) sl e ) ms §1 93] )
Clan(t, v, k) e e
for gome clan Cy. Henee
[ i) {manx |l ha] =k  mmso{i) ) —d) maxliy dei—=H1 )

Clan{t, v, k) =¢ C - Ca.
But C; is ancestor clan. Thus Lemma 6.3, (iii), implies Uz = C,. Starting with exchanged roles of
Cy and Oy, we get Oy = O3 = C). In other words, the clan O 1% unigquely determined by e |
We conelude

Proposition 8.7 The poset of ancesfor clans above o grven clan i5 finite.

Proaf: Consider an arbitrary clan Clan(t, v, k). If Clan{{, », k) is trivial, no ancestor clan lies above.
Hence assume Clan{f, v, k) is non-trivial. By Corollary 6.4, there is an ancestor clan Clan{t, vy, &)
with Clan(t, v, k) =¢; Clan{t;.v.k;). By the factorization property (Proposition 6.5}, all ancestor
clans above Clan(t, v, k) also lie above Clanity, v, k). Every ancestor clan Clan(t;, vy, k) above
Clan(t;, v,k ) satisfies Clan{t, v, k) <., Clan(t;, v;, ki) for some ¢ | Apslivgkl) i&u[g%ﬂ

Iy ik

Since ancestor clans are never trivial, o < %ﬁf—'l':"—:f—']l for all 2. By Proposition 6.6, the subelan
generator ¢ determines the ancestor clan Clan(fy, v, &) uniquely. As there are only finitely many
possibilities for of, the statement 15 proved. |
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We are able to state the main result about ancestor parameter sets:

Theorem 6.8 [Klassifikationssatz] The oncestors of incomplete parameter sets of Clan(t, v, k)
fie in ancesfor clans above thal clan, Hence we con classify the sel of admissible incomplele -
design paramefer sets by the clans confaining their ancestors. More precisely, thaf clossification
establishes a surjective mapping from the set of admissible incomplefe f-design paorameter sels to
the set of ancestor clans;

(riven an admizsible incomplefe £-(v, k. A), there is o lorgest natural number ¢ dividing Eﬂi:T.E]
such that Clan(f, v, k) =, Clan{t', v, k") for some ancestor clan Clan(¥',v',k'). Then

An:mtnr{i-{::,k: JL]]I £ Clan{t', ", k"),

henee t-(w, k, A) iz mapped onto Clan(t', o', &').
Conversely, o given ancestor clan Clan{f',v', k") s the clan of the ancestors of exactly the

mcomplete design parameter sels conbaimed in fomilies Fo (o', K'Y where mots not divisible by ang
e > 1 auch that Clan(¥', v', ¥') =, Clan{t" +", k).

Proaf: We first check that the mapping described in the theorem is well defined and really maps onto
the clan of the ancestor. Firstly, by Corollary 6.4, the divisor ¢ = 1 of mfm is always possible,
as there always is an ancestor clan Clan(t', o', k') with Clan(f, v, k) =, Clan(¢',v", &) {for this, note
that Clan(t, v, k) is non trivial as it contains an incomplete parameter set). In addition, by Proposi-
tion 6.6 that ancestor clan is unigquely determined. Last but not least, Proposition 4.9 implies that
the largest ¢ (in the sense of divisibility) really is unique. If Clan(t, v, k) <, Claniti, v, &) and
Clan{t, v, k) <., Clan{ty, vy, bz} for different divieors ¢; and oy and ancestor clans Clan(ty, », k;), 1 €
{1, 2} then there is another ancestor clan Clan(ts, vs, ks) with Clan(t, v, K] <iemje, eo) Clan(ts, va, k3).
(For this, note that lem(ey, o) # ‘%ﬁﬁﬁ—? a8 A < Amax(t, v, &) by assumption.)

In the other direction, we describe the set of parameter sets which are mapped onto a given
ancestor clan Clan(t, +, k). Note that Clan(t’, +', k") <. Clan(t",»", k"] implics that

ol K - AXME, LKD) < (", K % - AME A, ET),
for all m < *ﬁ{f{—}w divisible by ¢. Hence the parameter sets in F (t, v, &) for such m have
larger ancestors. o

A fow remarks are in order. The importance of Section 4 is that it gives a systematic way to
compute all clans including ancestor elans abowve a given clan, For a given §, v and k, one eomputes
via Proposition 4.2 the subclan generators €, . for each of the operations I3 € {red ™", der™" res™'},
if defined. As long as that number 15 not aif-, one repeats the process after replacing £, » and
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k by &, + and &' where D (t-(v, k,eAld)) = ¢-{v', k', AX'). The ancestor clans resulting from that
computation are stored. Theorem 6.8 allows to classily admissible parameter sets by mapping
them to the appropriate ancestor clan. In practice, it turns out that the oumber of ancestor clans
is reasonably small,

Lot us get back to the ancestors of the parameter setg 5-(24, 8, A) discussed previously in Ex-
ample 3.1;

Example 6.9 The relationships between ancestor clans above Clan(5, 24, 8) are the following. Note
that Clan(h, 24, 8) itself is ancestor clan.

0,80 02,3
Clan{5, 24, 8) =3 Clan(13, 32, 16) [~:17 Clan(17, 36, 18),

{0,0,1] (10,00
Clan(5,24,8) <7 Clan(6,25,8) <0 Clan{7.25,8),

{1,040] (1.50]
Clan(5,24,8) =<5 Clan(f,24,8) =3 Clan{15, 32, 16).

It is time to draw a picture, thereby discovering more relations between these ancestor clans (cf.

Fig. 6), ‘
17-(36,18, 7ty - 1) =, <a0 15-(32,16, 375 - 1) . <17 (25,8, s 6)
1 e 'P'i---ﬂ"# Té'ﬂ--..!,dar # -"'" &

der—Zrea—2 Vﬁ] T 3| . .

11.|1'=r| dﬁl"wrm."' ____I' =y 1_-” 111;

--_,.._-' .\-\'\-\.\_\_\-\jl -:1} ----._.. Inl H ..\-\-\-\-\-\-\-\-\-
13-(32,16, ™ - ) m <1510 6-(25,8, ™ - 3)m cq19 (24,8, 7 - 3y <o
dor ¥ red

res~ !
G|m \.\'\.\ 17|m / 18)m

5-(24,8,m - 1)m<z.17.10

Figure 6: The ancestor clans above Clan(5, 24, B)

7T Ancestor clans of t-designs with large ¢

Let us get back to the main goal of this paper, which is the classification of known ¢-designs with
t = b. We are referring to a list of around 7O parameter sets of such designs, each of which has
boen eonstructed explicitly (at the time of writing this article, which is Spring 2001). Most of

i1



these degigng have been constrocted by researchers in Bayreuth, Germany (we refer to [2]), but
the list includes also designs constructed elsewhers, In Table 2, we present the ancestor clans of
these t-designs. The ancestor clans are denoted in the form (v, k,m « AA(t, v, k)] where m varies
between 1 and g (f, o, &) AME v, k), as indicated in the subscript. We cannot show detailed
information about the families, except that we indicate the mumber of realizable families and the
number of realizable parameter sets for each clan {a family 15 realizable if it contains 15 at least one

realizable parameter set), Interestingly, we can classify the parameter sets by 80 ancestor clans,
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