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Abstract

Let ¢f be a finite primitive permutation group with a non-trivial,
non-regular normal subgroup &, and let T' be an orbit of a point sta-
biliser &,. Then each composition factor § of N, oocurs a5 & section
of the permutation group induced by NV, on ', The case N =G isa
theorem of Wielandt. The general result and some of its corollaries are
useful for studying awtomorphism groups of combinatorial stroctures,

1 Introduction

In his book on finite permutation groups Helmut Wielandt proved [6, Theo-
rem 18.2] that each composition factor of a point stabiliser in a finite primitive
permutation group is involved in the action on each of the non-trivial orbits
of the stabiliser. The purpose of this paper is to generalise this result and
several of its corollaries, Our investigations were motivated by a geometric
application to finite linear spaces (see [3, Proposition 5.2]).

Firat we review some of the basic theory about transitive permutation
groups. The proofs of these assertions may be found in [6. Let & be a
transitive permutation group on a finite set 1 and let o € 0. If H is a sub-
group containing the stabiliser 7 of @, then the H-orbit B = {n:r" |l e H}
containing o is a block of imprimitivity for s, that is, for all g € &, either
B = Bf or B B = §. Moreover all blocks of imprimitivity containing
are of this form. The group & 8 primifsve if the only blocks of imprimitiv-
ity containing « are the trivial blocks {o} and ), or equivalently, if G, is
maximal in . For a block of imprimitivity B, the set of images of B under
elements of ¢ forms a partition 7 of {1 that is (-invariant in the sense that
for each C € P and g € (7 the image 7 € P. If N is a normal subgroup of
{7 then the N-orbits are blocks of imprimitivity permuted transitively by &,
with the N-orbit containing o being the orbit of the subgroup H = G N.
Thus if & is primitive, then & non-trivial normal subgroup is transitive,

A transitive permutation group & is called regular if G, = 1, and other-
wise i8 said to be non-regular. If 7 < O and U7 fixes setwise a subset ' C 0}
then I/ induces a permutation group on [, denoted U, and 07" = U/,
where L' denotes the pointwise stabiliser of [in [J.



2 A generalisation of a result of Wielandt

Wielandt’s theorem [6, Theorem 18.2] can be generalized as follows (his result
is the case where N = G7):

Theorem 2.1 Lel & be a primitive permulalion group on o finite set 0, with
a non-trivial, non-regular normal subgroup N. Let o € 52, and left T be an
orbit aof N, in Q% {a}. If 5 is a composition factor of N, then there erists
[/ < N, such that § is a composition foctor of the permutation group UT
induced by U on T,

Proof. Suppose that (7 is a primitive permutation group on a fnite set £,
with a non-trivial, non-regular normal subgroup N. Let o € £, let [ be an
orbit of Ny in 01 {a}, and let A be the G-orbit containing I

Let 5 be a composition factor of N, and let ¥V < N, be chosen minimally
with respect to inclusion such that S is a composition factor of V. By |6,
Proposition 18.1], there exists g € & such that Iy = g7'Vyg < &, and
& # 1. Sinee N is normal in @ it follows that [y, < NN G, = N,, and
since Ug* # 1 we must have UI” # 1 for some Ny-orbit T contained in A. Now
N, 18 normal in 7, and therefore 7, acts transitively on the set of V,-orbits
in A Thus there is some x € G, such that ([")* =", Then [J := UF < N,
and the permutation group induced by 7 on T is U7 = (I])* # 1. Thus
the pointwise stabiliser L of ['in U/ is a proper normal subgroup of {7 and
U7 = UfUiry, We will prove that S is a composition factor of U7, Since
[7 i3 conjugate to V', & i8 a composition factor of I7, but if 5 were also
a composition factor of Uiy, then 5 would be a composition factor of the
proper normal subgroup g.i:ﬂ,;r:,.i:_1g_l of V', contradicting the minimality
of V. Therefore 5 is not a composition factor of Uiy, and hence 5 is a
compaosition factor of UY 2 UfUir,.

A series of corollaries follow immediately which are analogous to [6, The-
orems 18.3, 18.4, 18.5]. By NE we mean the permutation group on I' induced
by V-



Corollary 2.2 Let G, N, 0, o, be as in Theorem 2.1, Then the following
hold,

fa) The ondy fired point of Ny in L is o
b)) If NI is soluble then N, is soluble.
fe) If a prime p divides |N,|, then p also ditndes |N§, .

fd) If NT is a p-group then also N, is a p-group.

Wielandt proves an additional theorem [6, Theorem 18.7] on this theme,
namely that if N = & in Theorem 2.1, and [['] = 2, then & is a Frobe-
nius group; and he mentions [6, Exercise 18.8] that application of a result
of Miller (1899) implies further that & is a dihedral group of twice prime
order. Although this is no longer true when N £ &, we can determine all
possibilities for this situation. However the proof of this more general result
depends on the finite simple group classification. We denote by Soc() the
socle of a group G that 18, the product of its minimal normal subgroups.

Theorem 2.3 Let & be a primitive permutation group on a finite set 0} of
gize v, and suppose that a normal subgroup N of G is such that, for o« € 1),
N, has an orbit of length 2 in 01, Then one of the following holds.

fu) Soc(ld) = Soc(N) = 3; and n = p*, for some odd prime p and positive
integer £, Moreover N, 13 an elementary abelion 2-group.

(b)) Soe(F) = Soc(N} = Lg[q]f and [n,q) = [El!, T} or {45‘!, 9) for some
positive integer £. Moreover G < H 1 5;, in product action on {} = Af
and if g = 7 then H = PGL,(7) while if g = 9 then H = PGL4(9), My,
or PT'Ly(9).

Proof. Suppose that ¢ is a primitive permutation group on a finite set £3,
with a normal subgroup N such that, for o € £, N, has an orbit I of length
2. Let A be the 7 -orbit containing [. By Corollary 2.2, N, is a 2-group, and
fixes only the point . Thus each N -orbit I in 22 {o} has length greater
than 1 and the group induced by N, on ['' is therefore a non-trivial 2-group,
whence [ is even. It follows that |92| is odd and N, is a Sylow 2-subgroup
of N. Tt follows from the O'Nan Scott Theorem [2, Theorem 4.1A] that a
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finite primitive permutation group & having a non-regular normal subgroup
N with N, a Sylow 2-subgroup is either of afine type, or almost simple or
of product action tvpe.

In the first case |02 = pf for some odd prime p and positive integer £,
and { = K Gy where K = Soc(Z) = Soc[N) = 3; and (7 i8 an irreducible
subgroup of GLg(p). We may identify ¥ with an {~dimensional vector space
over GF(p), and o with the zero vector so that &, = Gy, Now, since &G, = &y
is irreducible, the Ga-orbit A containing [" spans 0 and so G, acts faithfully
on A Bince N, is normal in 7., each of the Ny-orbits in A has length 2,
and it follows that N, acts faichfully on A as an elementary abelian 2-group.

If & is primitive in product action then & < H ] 5 in product action
on {1 = ﬂﬁ where £ > 2, H is almost simple and primitive on %, and
Soc((7) = Soc(N) = Soc{ H)®. If 7 is almost simple then set H = @, () = 1},
and £ = 1. The possibilities for (H, () primitive and of odd degree were
classified independently in [3] and [4]. We deduce from these classifications
that the only possibilities, such that a point stabiliser in a normal subgroup
is a 2-group, are Soc[H) = La(g) where g = 2% £ 1 for some a. In this latter
case, Na = Dby, = DF, say, and we may take o as an £-tuple (6,... 4) € 0.
A point 3 in the N,-orbit [ of length 2 is of the form 8 = (§;,...,4,) € {2,
and since Soc{H)? is transitive on 0, & = & for some z; € Ly(g), and
Nog = I[L][DF‘ D#), Sinee N,z is a proper subgroup of N,, there exists ¢
such that D® # [, and for such an @ we have that DO D= < 2, = &, of
index at least 2°* in . It follows that a < 3, and so ¢ = 5, 7 or 9. However
if g = 5 then H 2= Ay or Sg and there i3 no maximal subgroup of H which
intersects Ay in a Svlow 2-subgroup. Similar considerations for g = 7, 9 yield
that either g = 7, H = PGLy(7) and |Q2| = 21%, or g = 9, H = PGLy(9), My,
or PTI'Ly(9) and |Q] = 45,

It i easv to construct examples of groups (7 satisfying the hypotheses of
Theorem 2.3 with Soc{N} elementary abelian, In the next section we provide
some information about the groups in Theorem 2.3 (b).

3 The groups in Theorem 2.3 (b)

We finish the paper with a brief discussion of the structure of the groups
satisfying part (b) of Theorem 2.3, including information about some of the
N,-orhits.
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Suppose that ¢ is a primitive permutation group on a finite set 2 of size
n, satisfying Theorem 2.3 (b), We showed in the proof that

Soc(N)=L'<=G < H 5

in product action on 2 = ( of degree n = nf, where L = Ly(g), ¢ = 1,
(ng, g} = [21,7) or (453,9), and H = PGLL(T) if g = 7, or La(9) < H <
PI'La(9), H £ Sg, if g = 9. Take e« = (d,...,8) € 0}, where d € £}, let A
be an Ny-orbit of length 2 in 2, and let D = {A% | g € 7}, First we give
some information about the L-action on £, that demonstrates in particular
that N, has orbits of length 2 in the case £ = 1. The assertions may be
casily checked by hand. Alternatively they may be checked using a group
theoretic computer package. [The check was conducted by the authors using
DISCRETA [1].)

Lemma 3.1 (a) The group Lg has orbit lengths in 0y as follows:
1,2,2,4,48ifg=7)or1,2,2,4,4,8 8,88 fifg=19).

(b} The union of § and an Ly-orbit of length 2 is a Mock of imprimitivity for
L in {Yy. The group Hy interchanges the two Lg-orbits of length 2, and
the two Li-orbits of length 4, and if g = 9 then H; also interchonges at
least two of the Ly-orkita of length 8.

{c) Al of the Ls-orbits of length 2 or of length 4, and also, in the case g = 9,
twe of the Lg-orkits of length 8 are unions of pairwise disjoind elements

af D,
Now we use this information to explore the general case £ > 1.

Lemma 3.2 (a) The group N lenves invariont exactly 2f parfitions of 0
with parts of size 3 and these are permuted transitively by G.

(b) The group N, has exacily 26 orbits of length 2 in O and these are per-
mufed transifively by .

(e) Moreover D] = 280, and {a, 8.~} is a block of imprimitivily for N if
and only if {3, v} € T and 15 an N,-orbit.

Proof. By Lemma 3.1, L = L;(q) leaves invariant exactly two partitions
of {1y with parts of size 3, and these partitions are interchanged by H. Also
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a pair p of points from £} is an Lg-orbit of length 2 if and only if pU {4} is
the part of one of these invaniant partitions containing &.

Let £ be the block containing o of an N-invariant partition with |£| = 3,
and let 8 € £\ {a}. Sinee 8 # o, for some ¢ < § the i"entry 8 of 3
differs from 4. Since ¥ contains o, the group N, fixes E setwisze, and hence
¥ containg all points of the Ny-orbit containing 2. Since [E| = 3 it follows
that 5 lies in an Ls-orbit of length 2 and 3; = & for all 7 # 1. Moreover, for
each ¢ and for each Lg-orbit p of length 2 in 0, the three points 2 such that
& e {8} Up, and 3 = 4 for § # 4, form a block of imprimitivity for N in
f}. Thus N leaves invariant exactly 2f partitions of ¥ with parts of size 3.
Since (7 is a primitive subgroup of Sym(8s) I Sg, it follows that @ permutes
transitively the ¥ entries of points of £ It then follows using Lemma 3.1 (b)
that these 2f partitions are permuted transitively by (. It also follows that
N, has exactly 2¢ orbits of length 2 in 12 and these are permuted transitively
by (74.

We claim that, for two parts £, 2’ belonging to (not necessarily the same
one of ) these partitions, the intersection XM Y cannot have size 2. Suppose
to the contrary that & = (ENEYU{F} and ' = (ENE")U{r} with 3, v € 1},
F # =, Then Ny fixes ¥ setwise, and hence Ny fixes ENE' setwise, Therefore
Ny also fixes X' setwise, so Ny fixes . Since Ny fixes a unique point in 02
this is a contradiction. Thus the claim is proved.

Finally we prove that [D| = 2¢n. Suppose that d € 00, that A’ is an
Ng-orbit of length 2, and that & = A'. By the argument in the second
paragraph of the proof, {a} UA and {3} U A" are both parts of N-invariant
partitions of £}, Since they have at least two common points it follows from
the previous paragraph that they must be equal, and hence o = 2. It follows
that, for distinct points o, § of {2, the N -orbits of length 2 in 0 are pairwise
distinet from the Ng-orbits of length 2 in £, and hence |D| = 28n. ged
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