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Absiract

A program is outlined for the enumeration of unital 2-(28,4,1) designs that uses
tactical decompositions defined by vectors of certain weight in the dual binary code
of a design. A class of designs with a spread that covers a codeword of weight 12 s
atudied in detail. A total of 909 nonisomorphic designs are constructed that include
the classical bermitian and Hee unitals, as well as many other of the 145 previously
known 2-(28,4.1) designs.



1 Introduction

We assume familiarity with the basics of combinatorial designs and linear codes (ol e.g.
121).

[ ]}1 unital in a projective plane of order e = ig® is a set U7 of o* + 1 points that meets CVETY
line in either one or g+ 1 points. A classical example is the hermitian wnital H(g) defined by
the absolute points of a unitary polarity in the desarguesian plane of order ¢%, PG(2,9%).
The points of I7 together with the line intersections of size g + 1 form a 2-(g? + 1, + 1,1)
design, called a unital design associated with [7. More generally, any 2-(¢*+1, g+1, 1) design
i called a unital design, or a unital, regardless whether it is associated with any plane or
naot.

The Ree unital R{g) is a design on g* + 1 points, g = 3*™F > 0, invariant under the
Ree group [7).

Unital designs for ¢ = 3, namely, 2-(28.4,1) designs, were studied by Brouwer [3] in
connection with their embeddability in projective planes of order 9. Brouwer found 138
nonisomorphic unital 2-{28 4,1) designs, 12 of those being unitals in planes of order 9 [3].
Penttila and Rovle [10] showed that up to isomorphism there are exactly 18 unitals in the
projective planes of order 9. Seven more 2-(28,4,1) designs appear to have been found more
recently, setting the record of known nonisomorphic 2-(28,4,1) designs to 145 [8]. Unitals
were found in all known projective planes of order 16 by Stoichev and Tonchev [11].

The binary code of a design is the binary linear space spanned by the incidence vectors
of the blocks. Brouwer [5| computed the binary codes of the 2-(28,4,1) designs he found,
and made the conjecture that the Ree unital R[3) is the only 2-(28.4.1) design with code
of dimension 19, that is, with incidence matrix of 2-rank 19, Brouwer also noticed that the
2-rank of any other known 2-(28 4,1} design, including the hermitian unital H(3), was 21 or
larger.

Brouwer's conjecture was proved recently by MeGuire, Tonchev and Ward (9], More
precisely, the 2Z-rank of the incidence matrix of any unital on 28 points is greater or equal
to 19, and the Ree unital R{3) is the only {up to isomorphism) example of rank 19 (9. In
addition, the 2-rank of any unital on 28 points without ovels (sets of 10 points that meet
each block in at most 2 points) is greater or equal to 21, with equality if and only if the
design is isomorphic to the hermitian unital H(3) [9].

A computer search carried out by Jaffe and Tonchev [6] showed that there are no 2-
(28.4,1) designs of 2-rank 20, and there are exactly 4 nonisomorphic 2-(28 4.1) designs of
2-rank 21: the hermitian unital H(3) plus three other designs.

2 Binary codes and tactical decompositions

Binary codes were instrumental in the proof of Brouwer's conjecture [9], and for the emu-
meration of all 2-(28,4.1) designs of 2-rank 21 [6].

The code O of a 2-(28,4,1) design is the row space of the 63 by 28 block by point incidence
matrix M. The row sums of M are even (equal to 4), and the column sums are odd {equal



to 9). This implies that all vectors in C' are of even [Hamming) weight, the all-one vector
1is in €7 as well as in the dual code O, and all weights in € are also even. Any vector
of weight @ in €% corresponds to w linearly dependent columns of M. A simple counting
argument, shows that if w > 0 then w > 10, hence the possible nonzero weights in O are
10, 12, 14, 16, 18 and 28. The sum of all columns of M is the zero column. Thus, the 2-rank
of M [ranky(M) is at most 27, and by the resules of [9], at least 19:

19 < ranky (M) < 27,

If the 2-rank of M is 27 then € is the 27-dimensional vector subspace consisting of all even-
weight vectors of length 28, and O+ consists of the zero vector and the all-one vector only.
Thus, the code does not provide any useful information about the structure of the design in
this case.

The 2-rank of M is smaller than 27 if and only if C* contains a vector x of weight w,
such that 0 < w < 28. The complementary veetor x + 1 is also in O and is of weight
28 — w, The support of r corresponds to a set of w columns of M with even row sums, and
the complementary set of 28 — w columns also has even row sums. Thus, every vector in
O+ of weight w, 0 < w < 28, defines a tactical decomposition of M into submatrices with
CONStant row sums.

There are three possible decompositions according to the value of w, listed in Table 1.
Here n; denotes the number of rows of the incidence matrix M that have row sum ¢ (i = 0,

Case || w |ng [T | Mg || 28 —w |7y |72 | My
A I0 |18 | 45| 0 18 0|45 | 18
B 12112 |48 | 3 16 Jd |45 | 12
C 14| 7 |49 T 14 T |49 7

Table 1: Tactical decompositions defined by vectors in O

2, or 4) in the columns indexed by the w nonzero positions of z, and 7 denotes the the
number of rows of M with row sum 1 in the complementary 28 — w columns. Note that
=Ty —q-

This paper reports some computational results on the enumeration of certain 2-(28.4,1)
designs with a decomposition of type B, that is, designs whose dual code 4 contains a
vector of weight 12, Tt was noticed by Brouwer [3] that the set of nonzero positions of any
vector of weight 12 in €% is the union of three disjoint blocks.

A spread [or parallel class) in a 2-(28,4.1) design is a set of 7 pairwise disjoint blocks that
partition the point set, A resolution i8 a partition of the 63 blocks into 9 disjoint spreads.

We call a spread special if it containg three blocks whose union 18 the set of nonzero
positions of a vector of weight 12 in €. It is seen by some of the computations in [3] that
there are designs that contain spreads but do not have any special spread. Therefore, the



desgigns with a decomposition of type B and a special spread that containg the three digjoint
blocks defining the decomposition, is a proper subclass of case I, We refer to this subclass
as BP.

An algorithm developed by the first two authors ([2], (3], [4]) was used for finding refined
decompositions of type BF and constructing designs from them. A set of 909 pairwise
nonisomorphic 2-{28.4,1) designs were found by completing the search in some of these cases.
Incidence matrices of these designs are available upon request from the anthors electronically.
Some statistics of these designs, such as 2-rank, automorphism group order, number of
spreads and resolutions, are listed in the last section of the paper. The 99 designs include
the hermitian unital, the Ree unital, as well as many other (but not all) of the 145 previously
knewn 2-(28.4.1) designs.

The tactical decompaositions A, B, C' [Table 1) can be used as a starting point for the
enumeration of all 2-(28.4.1) designs of 2-rank smaller than 27. The cases A, B, ' are not
digjoint in general. For example, the Ree unital B(3) admits decompositions of type 4, B
and . However, if the Z-rank of the incidence matrix is exactly 26, O is of dimension 2
and consists of the zero vector, 1, a vector x of weight 0 < w < 28, and the complementary
vector & + 1 of weight 28 — w, that yield exactly one of the decompositions A, B, or .

3 Construction of Unital designs with a special spread

The unitals in cases A, B and C can be described by the following tactical decompositions
(in the notation of [2]). Here the first column and the first line describe the partition of point
set and the block set, and the entries in the matrix are the (constant) numbers of horizontal
flags in the respective subrectangle:

A |45 18 B |12 3 48 Cl7 49 7
Wm[e 0, 16|33 0 6, 142 7 0
185 4 12(0 1 8 M0 7 2

Casce B with a special parallel class has the following TD:

BP |4 3 8 48
16 (1 0 2 6
1201 0 4

We will concentrate in the following on the special case BP only. For the construetion
of the designs we use the same methods as in (2], [3], (4], and the reader is referred to these
papers. Houghly, we proceed as follows: we start with some parameters or a parameter
set, for instance with the scheme of & point tactical decomposition. Then we refine these
parameters step by step. After having chosen a suitable step, we switch to the generator,
ie. we use a computer program which generates the designs from the parameters. Finally,
we use a program to determine the isomorphism types of the constructed geometries. If



the parameters are too coarse, then the generating process will not work. If the parameters
are too fine (the chosen step is too high), then the generator works well but we get too
many cases. Somewhere in between is the best starting position, and we have to carry out

experiments to find good approaches. We illustrate our method by two examples that we
call Approach 5% and Approach 80,

3.1 Approach 53

Since the scheme BP is too coarse for generation, we try to refine it. Note that in the set of
lower 12 points there are three disjoint 4-blocks. Each pair of them is joined by 16 blocks.
Isolating these blocks we get the left scheme of Figure 1, which in fact shows the transposed
decomposition. From this situation we calculate the next parameter step which is a point

4 4 4 16
4 (0 0 0O 4
1 {4 0 0 0 4 1 1 1 8 16 16 16
(o4 0 0 1 000 2 2 2 2
1 (00 4 0 - 401 000> 4 4 0
S0 00 4 4 (001 00 4 0 4
161 1 0 2 4 10 00 1 0 0 4 4
16(1 o0 1 2
a0 1 1 2

Figure 1: Refinement of the Scheme BP

tactical decomposition scheme. It turns out that it is even a decomposition scheme (Le. it
is point tactical and row tactical), see figure right.

Combining two of the 16-subsets of blocks to a 32-subset, we get a tactical decomposition,
which 15 a bit coarser:

|4 1 2 8 16 32
61 00 2 2 4
401 00 & 0
(0010 4 4

From this situation {our approach 53), we started the generation. Since it was difficult
to proceed up to line 16 we took subcases with respect to the 52 ranges (non-isomorphic
partial designs) on line 8. But these subcases mix, therefore we had to merge the resulting
packages afterwards. We did onlv some of the ranges, and the numbers of designs found are
in Table 2,



range no. | generated  merged
1-58 o237
17 G26 136
18-20 104 35
21 20 &
merge-all o932

Table 2: Some of the Subcases of Approach 53

3.2 Approach 80

We tried another approach by looking at the 4 disjoint 4-blocks in the 16 point subset. We
group them into 2 and 2 and get a partition of these 16 points into two 8-subsets. These
B-subsets are joined by 32 of the 48 4-blocks and we get the block-tactical decomposition of
Fig. 2 (left scheme). Refinement of the parameters yields 26 point tactical decomposition
schemes. The first of these is shown in the figure (right) From those 26 parameter sitnations
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Figure 2: Another Refinement of the Scheme BP

(our approch no. 80) we started again the generating process. Here it is easy to prooeed up
to line 16: all 26 cases have the same 16 first lines and there are 53 ranges at line 16, which
can be constructed quickly. But now it is in some cases much more difficult to go from line
16 to the end. Table 3 lists the numbers of designs constructed by this approach. The cases
are noted by 801, ... 80.26. A third number refers to the range at line 16, for instance
80.26.1. means the first range at line 16 of case 80,26,

4 Some resolvable designs

We are particularly interested in Steiner Systems on 28 points which admit a resolution (also
called a parallelism). This situation may be described by the following



Cae # designs
Bi.1. 442
8i01.2.-80.5. 0
Bi.6G. 63
80.7. G5
B8, 40
80.9. [
LN LR 4
80.11. 1)
8012, 188
8013, 42
80.14, 357
Ri0.14. 24
80,18, 73
RO.AT. 3
20261, 176
merged: B25

Table 3: Some of the Subcases of Approach 80

Story:

28 hale and hearty pensioners go for 9 days holiday using cars, 4 persons in each
car: it is required to arrange them daily, so that no two sit twice in the same car.

We can view such a resolution as a linear space, Take for each of the 9 parallel classes an
extra point which extends the 4-blocks Lo 5-blocks and define a new line at infinity containing

these 9 points. Then one gets a linear space on 37 points having 63 blocks of length 5 and
one block of length 9. In terms of tactical decomposition schemes this extension process may

be described by the schemes:

63
o 28| 9
7

=i

28] 9 4

=

If we concentrate on the class PB wich has some special parallel class, then it is ade-
quate to look for resolutions which extend this special parallel class. Extending the block
tactical decomposition we started with (approach 80), we get the following block tactical
decomposition scheme for the corresponding linear space on 37 points:



=
3

—| oo B2 oolon|ce|ra| na
== EET =] [ N
== = T
=IO E T A
I e =l = =
_—| o o | | e | | |

From this sitnation we calculate the parameters one step further and then start the
generator, We get the following

Result:

The Steiner Systems of tvpe BP admit exactly 5 pairwise non-isomorphic resolutions which
extend the special parallel class. The distribution of their automorphism group orders is
48 168" 432" 1512,

Hemark:

The Ree unital, i. e., the unique 2-{284,1) design with full antomorphism group of order
1512 has exactly 10 resolutions, one of them fixed under the automorphism group, the other
9 being an orbit under the antomorphism group. Hence, by distinguishing a rescolution one
gets an antomorphism group of order 1512 or 1512/9 = 168 respectively. The classical (her-
mitian) unital 2-(28,4,1) design has automorphism group of order 12095 and 28 resclutions,
all equivalent with respect to the automorphism group. Therefore, distinguishing one of
the resolutions, one gets a group of order 12006,/28 = 432, Thus, three of the constructed
resolutions belong to these two designs. The other two belong to designe with antomorphism
group order 48, The tactical decomposition defined by the orbits of the automorphism group
(TDA) for one of them is displayed in Figure 3. The other one looks quite similar, though
not being isomorphic to the first one.

5 Quotient structures

A 2-(28.4,1) design with a parallel class may described by the following tactical decomposition
sehene:

v oof
28|11 8

I we identily each of the seven 4-blocks of the parallel class 1o a point we get a quotient
structure on 7 points with the parameters v = 7,06 = 36, r = 32, k = 4, A = 16. The comple-
mentary design has the parameters v = 7,0 = 56,+ = 24, k = 3, A = 8. This is no. 357 of
the list in the handbook [8] with 5413 solutions.



Figure 3: A Resolvable 2-(28.4.1) Design
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Now let us carry out this process for the parallel class of the special sitnation BP. Here
we get the following TD-scheme:

4|8 M
Rl

This scheme generates exactly [up to isomorphisms) 30 designs with A = 16. This is only
a small portion of the 5431 quotient structures in the general case.

6 Some statistics

Table 4 displays some statistics of the designs. We show the distribution of the 2-rank, the
order of the antomorphism groups, the number of spreads and resolutions.

2-rank | # [Aut| | # # spreads | # || # resolutions | # |

19 1 1 187 1 217 1 2
21 4 2 401 2 135 14 1
22 12 3 i 3 319 28 1
23 74 4 231 4 65
24 238 G 16 o o
235 406 8 29 i 17
26 174 12 1 T o3

16 10 8 1

24 o 9 11

342 2 11 )

48 12 15 T

G4 1 27 1

1492 2 a1 1

1512 1 45 1

[ 12006 | 1 || 63 | 1 |

Table 4: Statistics of the Designs
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