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Abstract
A perw simnple 8- 14.7.4) design is presented with autunorphism group isomarphic to Ay, Combining
the derived and the residual designs of the 8-(14,74) designs, which were known by now, in the
exctension method of van Leijenhorst and Tran van Trung resmlis in a large onmber of simple 5
[14.7.18] designs with trivial antoorphism groop. This parameter set results from interpreting a
814,74} design as a F-design,

keywords:  (-design, somorphism problem, doable cosed,

1 Introduction

For almost. two decades, only two somorphism types of 6-{14, 7, 4) designs have been known, both
with awtomorphism group Oy acting with an additional fived point. They were found by Kreher and
Radzizzowski [4] using a lattice basis reduciion in Kramer and Mesner's approach [3] of combining
orbits of a prescribed avtomorphism group. This parameter e deserves special inberest as 6 15 the
smallest admissible pararmeter set of & G=design. Each such design conssts of half of all possible Gesets
om 14 points. Thus, together with its complement 3 forms a lacge set and = a starting point for various
recursive constructions of infinite series of (-designs. Recently, Eslami and Khosrovshahi [2] constructed
4 Turther 6-(14, 7, 4) designg using trandes and determined the possible derived designg of the desirel
smallest G-deslgns. These new f-designs only admit Oy as full avtomorphism group.

In this mote, we present a simple 6-(14, 7. 4) design with awtomorphism group O somorphic o Ay
In order to obtain & permutation representation of 4y on a sed of 14 points, we consider the action of
Ay on the set of vertices of & solid that is derived from the tetrahedron. The solid is constructed in two
extension steps. In the first step the dual tetrabedron is inscribed by taking the centers of the faces as
new vertices. In the second step, an octahedron is inscribed by taking the midpoints of the edges of
the first tetrahedron, see Fig. 1 below. No automorphism is admitied that would interchange the two
totrahedra, sinoe the two have different sizes.

Theorem 1 There cpsls cmctly one isomorphism bype of amgple 80047 4) destgns wilh full awtomor-
phiearmn group (7.

Proof Prescribing this permutation group our softwame package DISCRETA yields 8 solutlons to the
Kramer-Mesner system of diophantine equations. The 8 designs are isomorphic, since thoy are already
in only one orbic under the action of the normalizer of &7 in 5,4 which has order 86, We will also deduce
that & is the full automorphism group of each of these & designz, So. we fx one of these desigpns .
From the discussion in [2] it is clear that non-trivial automorphisms of T have order 3 or some power of
2 If & group of awtomorphisms of order 9 would exist then this gronp would have two orbits of lengih
1. The design derived at the two fixed points then also would admit this group. From [2] we know
that each non-identity automorphism of & simple 4-{12, 5, 4) design has no fixed points. But then each
orbit would have length 9 which is impossible on 12 points. So the index of & in the full automorphism
group is some power of 2 and by Burnside's Theorem on p*g”-groups Aut(T) is soluble. Suppose & is



Eigure 1:

not the full antomorphism group. From &G = Ng, () N Awd(D) we obtain that Ny, (G = &, So,
if & is o maximal subgroup of a subgroup H of Awl{T) then the index of & in H most be at least 4.
Then we consider a subgroup @ of order 3 of &, This subgroup is nob normal in & and also not in
H, Therefore the Fitting subgroup of FIH} is a 2-group not containing &. Thas, H = F{H}& and
FHYNG = F{G} = Vy. The factor F{H)/F{G} s a chief factor of H on which @ acts icreducibly
and therefore s elementary abelian of order 4. 5o we koow some structure of B, The subgroup 4 is a
Svlow-3 subgroup which 15 a complement of FLH) in B, T Q < N (0 then Ng(Q) has order 12 and
O acts Erivially on N (G0 F{H). Nether FIG) nor FUT ) FG) allow any non-trivial fxel points of
£ umder mnjug.a.l.iml.. Thereor: = NH[_GJ

Congider a poing  fxed by . The stabilizer 5 of ¢ in B cannot be 3, as otherwise the orbit of
# would bave lengih 16 So @ < 5 < H and 5N F(H) Is normalized by . Like o the case of the
normallzer (F acts non-trivially on SNF{H ). The order of SNF{H) thus has o be &t least 4. IT SNF(H)
Is not normal in F{H) then 50 F(H) < Ny (SN FH)) < F(H) and § leaves N (S0 F{H))
Invariant. Then ¢ acts trivially on F{H)/Np g (50 F(H)) and on Np g (SOF(H))/50F(H) because
both are of grder 2. Thus, S0 F{H) s normal in FIH)} and ¢} acts non-irivially on F{H )50 F{H ).
A check with DISCRETA shows that the group of order 48 constructed as a subdieect product of two
coples of 4y with amalgamated factor group of order 3 actlog with two oebits of lengih 4 and one orbic
of lengih 6 s not a group of auntomorphisms of & 6-(14,7,4) design. The oiher potential group of oeder
16 admitiing an automorphizm group of order 3 acting in the deseribed way is an cxtension of 4 = Oy
by ©y. This group has mo faithful action on 14 points. This proves oor claim. O

We point out that the non-abelian group A4 has 3 orbiis, two of longih 4 and one of leagih 6. on
thwr ot of vertices in this action but no fixed points. This can be dedoced from our presentation as the
automorphism groop of nested solids. The vertioes of the tetrahedra form the two orbits of length 4



and the vertloes of the petabedron form the orblt of lengih 6. Thaes, theee peault 3 somorphism types
of derived designs with parameters 5-{13,6, 4), two with automorphizm group of order 3 and one with
automorphism group of order 2. Motice that each automorphism of a 5-{13, 6,4) design extends to an
automorphism of the 6-{14.7.4} design oblained by Alltop’s construction.

The approach presented in [5] implies that a large number of isvmorphism types of 5-{14, 7, 18)
designs exist, most of them with trivial automorphism group: We combine the different isomorphism
tvpes of 5-{13,6, 4) designs with the different isomorphism types of 5-{13, 7, 14) designs which appear
as derived and residual desigos of the by now koown simple 614, 7, 4} designs using the construction
of van Legjenborst |7] and Tran van Trung [6]. We wse the Bollowing notation. IF D s a (v, &, A) design
with point set {1,. .. v} then D& {r+ 1} denotes the set of blocks of D extended by an additional
p:_ﬁllt i+ 1. ."Lll:,r |_;||;:rr||u1.a1.i.-|,;|r.| T t.hl;: p-uirll,. e R HTE ™ ankda an im_l:llu;,:lrpl!lil:_: -lll_:g.iE:L T = {H':|.H' = D}
where BT denotes the image of I under . We have the Tollowing result |5):

Theorem 2 Let Ty be g [ — 1){o — 1,k — 1, A} design with culomnorphism group Ay and Ty be g
(f—=1){vr— 1,k Ao — k) Tk — 14+ 1)) design welth audemorphism growp Az, where e poind sel an each
cage 5 V' = {1, o — 1}, Then Ty &« {ov} UDE a5 a 8 — Upfir, &, Mo — 8+ 1)k — i+ 1)) design for
each permutation x on V' = {1,...,v—1}. There ensts an tomoerphism

#: Dim) + Dlma)
for permutabions wy, mx on V' osuch thet & fizes v if and only if
Ajmids = dyxads.

Taking as T ithe derived desipn of a 6-(14.7.4) design and as T the residual design of & 6-(14.7 4)
design then by the Theorem there result many different iscnorphism types of 5-(14, 7, 18] designs,

We consider a special case that is casy to analyse. Suppose Ty with parameters 5-(13,6, 4) and
Ty with parameters 513, 7, 14} are derived and residual designs, resp., of non-isomorphic 6-014,7,4)
designs, Then Allbop's construction in each case reconstructs the original 6-(14,7.4) designs. 5o, if the
reconstructed designs are non-isomorphic then the designs resulting from van Leijenhorst's and Tran
van Trung's construction are 5=(14, 7, 18] designs but oo 6-(14,7,4) desagns.

This sibustion appears very often, I we stact with a 5-(13,6, 4) design and apply Alltop’s constrse-
tion wi obtain a 6-(14,7.4) design. Fach automorphism of the 5-(13, 6,4) design then also extends
b an autororphism of the 6014, 7. 4) design fixing the additional poeot. Thus, @ach automarphism
alao = an avtomorphism of the regidual design. The same holds froe, vice versa, if we start with the
residual design and transfer the automorphisms to the derived design, Therefore, if in a 5-(14, 7, 18)
design the derlved design amd che pealdual design with respect o some polnt are S-deslgns with differcme
auntomorphism groups, the 5=(14, 7, 18] design cannot be a 6-(14, 7, 4) design.

We obtain the following cases of 5-{13, 6, 4) designs:

1. The construction by Kreher and Radeissowski yields 2 isomorphism iypes with automorphism
group Cyz, and 2 isomorphism {ypes with trivial automorphism group,

2. The construction by Eslami amd Khosrovshahi vields 1 isomorphism type with automorphism
group Oz » Tdy+ and 8 somorphism types with trivial avtoeoorphism groop, seo [2).

3. The new construcibon of this paper ylelds 2 lsomorphism type with automorphism geoup Oy = Tdy+
and 1 Eomorphism (ype with astomosphism group O = Tdg+.

These designs from the different origing are not isomorphic because their Alliop extensions have
different automorphism groups. By [6]. Theorem 23, the new point 14 is anigue in all these designs and
the izomorphism types are in bijection to the double cosecs AVSis/Cia. The resuliing designs all have
trivial auiomorphism group because no non-irivial subgroup of 3 is conjugate to & subgroup of A,
Each double coset in A% S/ g consists of just 13 right cosets of A in §iz. This yields the following
resuli:



Corollary 1 Let T be g 5-(13,0,4) design with aulomorphism group A diffevend from O ond Ty a
5-{13, 7, 14} design with aulomorphism group Oy, Then there exisl 121/ A| different isomorphism lypes
of 5-{14,7.18) designs of the form T4 = {14} UDT where x € 53, Fach of these designs has a frivial
aufomorphism groug,

For Awit(T) = 5 we thus obtain 238,500,800 ispmorphism types and for Awd{T} = O we thes
obtain 159,667,200 isomorphism types of 5-{14,7,18) designs with trivial automorphism group.

We present the new 6-(14.7,4) design by a list of canonical representatives from the orbits of & on
the set of blucks,

2  The 6-(14,7.4) design

The avtomorphlsm group =

G = ((123)(667)(01011){121314),
(124)(568){91312){101411))

of order 12,

There are 1716 blocks, each point lies in half of the blocks,

The design D consists of 152 orbits of & on T-sets, We list orbit representatives of blocks,
with orbit length and stabilizer order appended.

11,210, 11,12, 15, 14}4 2 11,2,3,5,6,8 11}12,
11,2,3,4.5,6.11 2, {1,2,3,5,6,8, 132,
11,2,3,4.5,6,14}g2 §1,2,3,5,6,8 92,
11,2,3,4,5,6,% 52 {1.2,3.5,6. %12},
11,2.3,4.5,9. 10}, 11.2,8,5,6,9, 14}2,
11,2,3,4,5,9. 13}, {1,2,3,5,8,10, 13},
11,2,3,4,9,10, 12} 7 {1,2,3,5,8,.10, 14},
11,2,3,4,9,10, 1}4 {1,2,3,5,8.11, 13},
11,2,3,5,10,11, 12} 4 {1,2,3,5,8,12, 13},
11,2,3,5,10,12, 13} 4 {1,2,3,5,8,12, 14}y,
11,2,3,5,10,13, 1}y 4 {1,2,3,5,8,9, 11}3,
11,2,3,5,11,12, 1}y {1,2,3,5,8,9, 14},
11,2,3,5,11, 13, 1}y {1,2,3,5,9,10, 11}3,4
{1,2.3,5.12, 13, 14}y 4 {1.2,3.5,9.10,12},3,
11,2,3,5.6,10.11}4, [1.2,3.5,9.11,12},3,
11,2.9,5,6,10,12}12 {1.2,3.5,0.11,13},4 ,
11,2.3,5.6,10,13}a {1.2,3.5.9.13, 14}y3
11,2.3,5.6, 10, 14}4a 4 {1.2,3.8,12,13, 14} 5
{1,2,3,5,6, 11,12}, {1,2,3,8,9,10,11}; 5
{1,2,3,5,6,7. 12} {1,2,3,8,9,10,12}4
{1,2,3,5,6,7.8}4s {1,2,3,8,9,10,13}4



9,13, 1dha,
10,12, 13044
10,13, 14} 4
W11, 12, 13 b
L1112, 14}y
(AL 13k
11, 14 }4a s
1,14, 14]'5.1

A0, 13,
AL, 13} 52
L 1d}ye,
10,1113} s 4
10,1213} 4
10,12, 14}y4 4
1,12, 13} 4
1,12, 14} 4
12,13 14}12 4
10,11},
10, 14},
11,12}
12,13 2,
13, 14}z,

!
!
.0,

—

10, 11}
0,10, 12}
9,11, 14 b,
9,12,13}2,
9,12, 14}s,
10,11, 14}
10,12, 13} 42 4
10,12, 14} 42 4
L10,13, 14}42 4

i

[1.2,5,9,12, 13, 14}y,
[1.2.7.10,11,12, 14},
{1.2.7.10,11. 13, 14 }y24
[1.2,7.8,10,11,12} 42,
[1.2,7.8,10,13, 14} 2,
[1.2.7.8,11.13. 14}5 1
[1,2,7.8,9,10, 18},
[1,2,7.8,9,10,14},2,
{1,2,7,8,9,11,13}s 2
[1,2,7.9,10,11,12} 124
[1,2,7.9,10,11, 13} 121
{1:21? g'1.“:|: 121""'}]?.1
{1:21? g'11'1': 13‘11'1}]?.1
{1.2,7, 912,13, 14}y,
11,2,9,10,11,12, 13} 4
11.2,9,10,11,13, 14}12,
[1.5,6,10,11,12, 14}12,
{156, 10,11, 13, 14}y
[1.5,6.10,12,13, 14},
[1.5,6.7,10. 11,12}, ,
[1.5,6.7, 10, 11, 13}, ,
[1.5,6.7,10, 12, 13}, ,
[1.5.6.7,11.12, 14}, ,
[1.5.6.7,11. 13, 14},3,,
[1.5.6.7. 8,10, 13},2,,
[1.5,6.7,8.9, 11}z,
[1.5,6.7.8.9, 14},
{1,5,6,7,9, 10,13}z,
{1,5,6,7,9,10, 14}z,
{1,5,6,7,9,12, 18},
{1,5,6,7,9,12, 14}z,
{1,5,6,9,10,11,12} 12,
[1,5,6,9,10,12, 13} 12,
[1,5,6,9,10,12, 14}z,
1,5,6,9,10,13, 14}12,
[1.5,6.9,11,12, 13},2,
[1.5,9,10,11,12,13}y2,
[1.6,10,11,12,13, 14}z,

[1.6.7.10, 11,12, 14},
[1.6.7.10,12,13, 14},
'[l: [;“1.I|I H"|g 1“112}]3|'|
'[l: [;“1.I|I H"|g 1“1 la}]?.'l
[1,6.7,8,9,13, 14},
[1.6.7.9,10. 11, 13},2,
[1.6.7.9,10. 11, 14}, ,
[1.6.7.9,10.12, 13},2,,
[1.6.7.9,11.12,13},3,,
[1.6.7.9,11.12, 14}, ,
[1.6.7.9.11. 13, 14}, ,
{1,6,9,10,11,13, 14} 2,
[1,6,9,11,12,13, 14} 2,
[5.6,7.8,9, 10,11}, 5



15,6,7,8.9, 10, 13}4 5 15.6,9. 10,11, 13, 14}12,
[5,6,7,9,10,11.12} 4, {5.9,10,11,12,13, 14}, 5
[5,6,7,9,10,12,14} 4,
[5,6,7,9,12,13,14}12
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