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The topic of this paper is o determine the isomorphism bypes of designs which
are imarianl under a J_ii'w.'n Eroup A an |:¢um|:l|1.'._ we consider S5 20) invariant
under a .-:.l.ll'lgl'-::-url al the .-:ymrm.'lr-ll.' Zroup S-Ju -I»::-rn-::-rph-ll.' o the '.||I|:rnu.l-lnb" group
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1 Introduction

[n crder 1o construct o f-design, one can prezcribe an aviomorphism growp A for
the design; then the incidence mairix between the orbits on {-subscts of the point
sel (as rows) and the orbits on E-subsets (as columns) Mtf‘k is caleulated. The
entry in row & and column § indicates the number of k-subsets in orbit § contain-
ing the representative of the é-th orbil on E-suhsets, We receve designs omitting
the prescribed growp as an aulomorphizm group as solutions for the diophantine
system of equations

M z= (A A



according to the lemma of Kramer and Mesner [10]. The matrix Ml:l.tk iz called
Krvmer-Memer prarrix, More information on this method is collectedin [1]. [15]
and [14].

Adfter the construction of designs with certuin fixed parameters § [u, k, Al
lhere arizes vy n:ulu:'u]l_',.' Lhe I.'ull-::-u.'ing.ql.l.ﬂli-::-n:

Which designs heave an idensical strociare, Le. which are isomorphic?

Thiz problem will ke the main wpic of this paper. A method wsing some
group lheory is developed in section 3. As an example, we consider the case
of Sleiner quadmiple systems 3-020, 4, 1) on 20 points with different prescribed
automarphism groups. These quadniple syslems ane inleresliing as a step towards
the search For 5-022, 6, 1) designs. Since all known Steiner 4-designs are derived
from Steiner 5-designs, it makes sense nol o iry o constrict the Steiner 4-designs
4-(21. 5. 11 in the direct way.

Besides the package DISCRETA  [2] for the construction of {-designs with
prescribed automerphism group we al=o use the package GAP [1T] for the group
theoretical compuiations. Blons exactly, we wmole an interface bebween DS
RETA and GAT,

2 Notation and basic definitions
The problem of Anding isomorphisms between designs and deciding whether two

d.r_'sig.n 5 ure ]n::-m-::-rl:!hi.-: or not, cun ke mgu:dcd with the I:H:JF u]'gmup mebions, Lel
{7 be o Anibe group acli.ng' on a fnibe ==t -

G o = 0 () ¥

For group actions the following potations turn oul 10 be relewant:

Gw = [u¥ 1 g € &} orbit oof 4 under the acticn of (§
Fl'-lnl:lr,l] H 3 {p.l El:uwd= '...l]- set of hxed |:l-::-inl_-r.-::-|'!;|I in {1
Filg;l:ﬂ} H {'.-.l efl:w¥ = .:._."l;l'g '3 G} set of hxed Fl-::-inl:: af [F < {Fin §}
Slabg{w) o= {g € G : w¥ = w} stubilizer of w in (7

Return o the -'_’Iusigns: LY {u,.k, _.5|_} desipn is acollection of k-subsels {colled
Blocks) ol a u-]:-::-inl w=t 17, =uch that ey {-subest of WV is conmined in exoc IJ!.l X
blocks, 11 i called :!:i.r.rl.]:!ll:I il'uﬂ.n:r_:,l block occurs -::-nl}l once, In this puper, we -::-nl:,r
consider simple designs. We usually identify the point set of a design without loss
of generality with ¥ = {1,..., v}, Every design is uniquely caracterized by il
block set & and therelore idenlified with 8.



21 Defimition Twe & — (v, k, A) designs B and B' are Dsomorplic, I there exisis
T E &y, sk that

B =F
wliere o i applied to the elemenis of pach Bleck of B.

The somorphism iypes of the @ — [k, A) designs arise as the orbits of the

following action of &y on the et of designs for fixed poameters £, @, & and
Dy ka) = {t —I:u,j:.,..:'-:ld.n:xi.lg,ns}:

Sy ¥ Iy je k) = Tho(ei a0, 8) = 57

The full sutomerphism group of o design is exactly the stabilizer of its block set B
in the symmetric group 5, on v points, That means: Aut(B] = Siabg, (B]. The
designs with automorphism group A thus are the fixed points Fien, | o (A) of
A of this action,

3 Group theoretical background

Let us recall basic Facts about group actions. In this section let a group & act
on a set 8 [ the theory of group actions, we have a basic Lemma, which in
combinatorics is mostly called Burnside's Lemma. But according to Meumann
[13] ¢=ee also [9]), it was already known o Cauchy [5] and Frobenius [6]. Thus,

we call this fundamenial lemmea

3.1 Lemma of Cavuchy-Frobenivs Let & aot on g ser S8 Then

1 ,
Forbis ez on {1 = ﬁ ' E | Fiza(g]|
FEG

The lemma _-,.'ir_'l.ds @ connection between orbils and Oxed ]:I-::-inl.':. ISt it 15 et
constructve and in cose ol Ju:gc Eroups {7 nol feasible, In case of dusigna thi=
wiortld mean that for eyery permu lalion 7 & S_ mll -'jl:::]gns fimed I:-:,r m wonld have
o ke determined, 5o better methods o fnd the orbits shoold e -:I.-:'.'cl-::-FILﬂ It
turns out, thal the immediale equation

Stabw?) = Stabw)? (13

is very helpful: orbils can be caracterized by stabilizer class, Therefore, for a
given representative w of an orbit with stabilizer U := Slablw], the obit of w is
cilled an erfir of tvpe L

Then cne question arises very natually:

il



How piany orbits of each fype do exin?

[13 this paper we wanl o give some partial answers o this fairly complex problem.
The method is developad in two saquel steps:

Step L Burngide s Lemuma

atep 2: ferdan s Theosem

A1 Burnside’s Lenuna

Consider the lattice S(G) of subgroups of . [n particular, 067 is a poset with
respect to inclusion, denoted as <. The zeta-fiwcion of (G is defined as

¢, V) = {] i (2)

Fotherwise

forall N,V € L)), The inclusion relations of the elements of Z({F) ane collected
in the =0 called zeta-naairis

(G = Ef':'-"ruf}']i.j .

Aszume that the subgroups U of & are numbered in such a way that

U < U = i < (3

Then the weto-matrix is upper riangular with 1°s on the disgonal, 5o it is in-
vertible over the ring of integers, Its inverse is called the Moebips-malric .l_:{ﬂ':l of
{7 [14]. In order to calculate the orbits of type [ on the set 0 {for L7 < 67, consider
the set of fixed points Fieg (D7) of I on {1, The order | Fileg (17| was called the
mark of [T on {1 by Bumside in [4]. Similar o the Lemma of Canchy-Frobenins,
cne has

Fizg(U)| = % (U VIING(V)/V| - #arbits of type V.
VISV EGE

By Mochius-imversion, this equation is equivalent 1o:

. 1 .
Forbits ol type N = ————— Z B V) - | Figp(V)]. &
IN(UWU| S e



Expression (4) can be simplified by considering the =t of conjugacy classes
L(E) = {0, ULy of & instead of the lattice £(G), where cach Lf is a
represeniative of conjugacy class ﬁ'i_- It can ke reformulaied with the help of the
matriz B of (¢ defined by

1

£|.|_ ] TTETTEY T ‘J[{.-r‘.l-'r]. [5:|
P NG ()T E :

Ve,

Burnzside [4] intreduced the table of marks and remarked that this matrix is

invertible matrix. The inverted matrix now is called Bermside marriv B0, So
redormulake equation (4] as

3.2 Burnside’s Lemung Lot 7 act on 0, C(G) o= [I7y,... 0.} the set of
conjugacy clases of subgroups af G: let B{G) be the Burnside matrix of G wrt
the ordering in L. Then

B(@) - | (Fiza(@)] | = | sorbitof npe U;

Simce B{7} is uvpper tdangular, the evaluation can ke resiricted o =ome bot-
tom rows. This lemma can ke belpful for the clussification of f-designs with pre-
zcribed outomerphism group, when the prescribed groups are quite large. “Large™
means that the partial subgroup lattice between the prescribed group A and & is
knoown. In the latiice, only the overgroups of A in &y have b be considered and
therefore, the relevant Burnside matrix iz cnly a part of the full Bumside malrix
(&) As an example take PSS L [27) with degree 28, and consider the parame-
ler quadmiple 4 — {28, 6, 456):

A3 Example

Fig. I shows a parrial subgroup latiice of Sx with several awtomorphism
gropps af £-(28 6, 5] designs, The isemorphism preblem can be selved with the
equation according fo Burmside's Lemma 3.2

g—% -1 % 13, 07&, 960 2,179, 701
0o 3 0 -1 1. ™ | 232
o o i - L 25
o0 01 a &

wihere we feft owt the gronps Ay and 8, because mo nontrivial desigr exises
with these awtomorphivm growps. Theeefore we ebiain the informations of Tak, 1.



Priz{27)

P Lai2T)

Figure |: Relewant Partial Subgroup Lattice Above PSE(27) and Isomorphism
Types of 4-(28, 6,45} The Mumbers Belween two Subgroups Denote the Indices.

Group Grouporder | $2 solutions | #F bsom. Lypes
PELai2T) b EZE 13,078,500 2179301
PG L (27 19 iB5ikh g 232
FPELL(27) 20484 53 25
FT Ly(27) 38,968 2 ]
in total: 13,0709, T 2,179 966

Takle 1: Isomorphism Types of 4-(28, 6, 45 with Cerlain Automorphism Croups

In general cases, the relevant partial subgroup lattice is oot known, A good
example is a guesticn, which was posed by Earl 8, Kramer and Dale M, Mesner
in L%76 in the seminal paper [10]:

“Mo systematic allempl was made b determine the isomorphism
types of our designs. For example, In searching for (45; 2, 5, 137's
lie. 2-(13, 5, 45) designz in our notation], using a 2 by 19 matrix,
we [ailed 10 specify an upper bound on the mumber of solulionz and
the computer nun was cut short only because it has printed a speci-
fied queta of lines but had in the meantime produced 324 solutions
feach using column 17 and would likely have found many more. How
many of these are poniscmorphic is a question we might be afmid o
consider”

f



Kramer and Mezner had vsed a subgroup of Hal [C3) of order T8, which is
isomorphic o Ly 1= Oy w Oy, We show that we need not knew the whole partial
subgroup lattice of S5 with respect o Ly w0 solve the isomorphism problem with
the help ol a lemma due o C, Jordan [E], see also [7] and [18]:

A4 Jordan's Lemmay  Lef P be o gesabgroup of (3 for fived prinee p, A < (7 and
A = FizplA). Ler A' be a subset af A such that P € Syl (Stab(§)) for all
de A

iffor dy, 6z € A' there existy some g € & with 8 = fa, then

34 ne NaglP: Ay =

A5 Exgmple

This method applies io all subgroups A, suchithal P = Oy < A < Hol(Cya),
iR parficylar e case considered .'Z'-'_l.' Kramer and Mesner, We bave a gropp Lr|
Eomorphic fo Cyg w0 O with 13-5vlow spbgmoup P = O According o 3.4,
W can rediee e seanch for isomorphisms bebaeen e 136,076 800 dexpns with
:r.lr]'n.uasrpfu':m.qmup [.r-| fie ."f_q_;"{i':'] = H(,III:C-.-HJ

S o

Haoliha) a

Figure 2: Partial Subgroup Lattice of 83 Relevant for 2-13, 5, 72), The Mumbers
Between two Subgroups Denote the Indices,

Formally the computation for the partiol sabgreup latlice Fig. 2 of 85 be-
tween A and Hol(Cz) is as in Burnsides Lemma 3,2, Bad aot all overgroups need
fo b e onsidered,



L _% -1 % 1345, 576, 801 22,825, 216
(IR ST - 24,643 | _ 8, 205
0 0 % - 290 | 431
a o 0 1 28 28

Therefore v receive the informatiers collecied in Tak, 2,

Giroup Croup order | # solutions | $# isom, types
L 26 | 136876801 22825216
7y 52 24643 B,205
i TR Bl 431
Hal(Cha) 156 2E 2%
in Lolal: L 36,5002 362 EEEEELLT

Table 2; Isomorphism Types of Certain 2-013, 5, 723

Recall thay the grovip considered by Kramer ana Memer iv group Us, In cack
case we Aeed mef knew whether the prescribed grogp is e fill anfomorphism
grogp of the desigrs copnied,

MAlzn in ecases, whene it can ke shown that no d.-::ig.n exists [or any p-group
£, P < ), thiz lemma is applicable, Mevertheless, the approach is problematic,
when A £ Ngi(P): then Fizg(A) in general is not closed under the action of
N (P) and it is not appropriate 10 just form the orbits of Ng(P). But the follow-
ing remark gives us a hint o the solution:

A6 Remark Let A < G, P € Syl (A) and §;,d; € Fizn(A) =2 & §f there
exisis some § € Ng(P), 8 & Nyggp(A) seech shar 87 = 8y, then

A < (A, AY) < Stab{dy).

Prool: A < Stabld, ] and sivce g & N [A), welave 4 # A7 < (Stabf; 1) =
Llab|d: ). Ax A ix alve sabgreip of Stabdy ), this vields the claim.

Thiz is a slightly more general version of [3]. The higger automorphism
groups that herve 1o be tested mow can be directly constructed and need not o be
knoown [rom some catalogue. 5o the following algorithm can be applied:

3.7 Algorithm  Given a goup A < G and A = Fizg(A)
i} Fix a prime p dividing |A| and compute a P € Syl (A).
it Compute Ng(P) Na(FP) and I := N_I-.r,:_'“ljl:..-'i]



i) Consider a transversal T of T in Ngi P
Forall B = {4, A", where g € T, remove Fizg(B) from A

vy If far the remaining part of & iy krown fo be a Svlow suborowp of the
stabilizers of the eleweris in &, ek defermine the orbits of T or thiv sen,

Vi Determine and oglpat the orbits o Ng(A) on this set
vii Apply il - vion the grogps copstrcied i @i and their ived poings,

A8 Remgrk  Becall that step §ii) can by fmproved by qolicing, that A, and S,
CAR arise @Ry ay aplemerphiom groups of trivial desigrs,

4 Isomorphism classification of 3-(20, 4, 1) designs

There exists exactly one § — (22, {6, 7, 8}, 1) design with My as automorphism
group, This tHID is “decived” from the famous § — (24,8, 1) Witt-design with
automorphism group Myy in the following way: ficst skip the point 24 and con-
sider its stabilizer (which is Myg) and then once again skip point 23 and take i=
stabilizer Myy @ avtomorphism group with generaiors

(1,228, 19, 14)(2, 16,5, 13, 3)(4, 11, 20, 21, 17)(6, 18, 7. 12, 15]
(1, 14)(2. 5, 17, 8)(4, 15,7, 9, 18, 6, 20, 19)(8, 21, 16, 13, 22, 10, 11, 12)

The blocks of the Witk design form one orbit wnder My, During this procedure,
thee blocks containing the points 23 andfor 24 are shorlened from 8-subsets o G-
resp T-subsets of the point set.

Thiz -'jnsi.g,n cun ke construcled with the Kramer-Mesoer method:  collect
the three KM-matrices of 4 = My between § l,I'!i- subsets resp. §
.Il"‘?' mibzels and § f.!. subsels ink one big Kamer-Mesner mairix MY =
i‘“ﬂfﬂ-lMﬁ"?‘J‘lMi'?H} showen in 1ab, 3,

The arrowws indicale, that every element of the first orkit on S-subseis (canon-
ical representative: {1,2, 3,4, 5} is contained in exactly one element of the last
arbit £ on B-subsets, every element of the zecond orbit on 5-subsets (canoni-
cul representative: {1, 2,3, 4,6}) in exactly one element of the seventh ocbit £y
on T-subsels, every element of the third orbit on 5-zubselz (cancnical reprosen-
tative: {1,2,3.4, T} in exactly one element of the last crbit & on T-subsets
and fAnally every element of the last orbit on 3-subsels (canonical representative:
{l, 23,5, H.]-] in exactly one element of the last arbit £ on G-2ubsels. 5o, the
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| Crhit | k& | canomical representative | orbit length | stabilizer order
&y |8 {1,2,3,4,58,11,13} 330 [,344
Oy | 71,234,615 18} 17 2,520
Oy |7 [{1,2,3,4.7, 10,12} 17 2,520
&y | 6] 4{1,2.3,5, 14,17} 77 5,760

Tuble 42 Crbits of _i'l-i';” o A-, 7- and B-Subsots

collection of these four crbits in facl gives a 5-design with A = 1. Detailed in-
formation gives Tab. 4. Thiz recipe can genemlly be v=ed 1o obiain tB11s from
{-clesigns.

The main challenge is to find 5 — (22, k. 1) designs with only one value &, for
crample & = 6. A 3020, 4, 11 design sill is the best known approximation of a
b5 — (22, k, 1) design. 3 — (20,4, 1) designs with variows aubomorphism groups
can be considered, even with Faicly small automorphism groups as for example
e symmetry group of the dodecahedron of order 60, which is i.s-::-rnurphic L _.4#
But teoy small groups lead to isomorphism problems that s6ll are insccessible by
ot methods, IF the I'.r::-l.-::-m-::-:rph ol the I:}IE“E Eroup Eg. mduced on the d-subsets of
& points is prescribed (1his group has order 12), we receive 704, 976 designs, Foar-
thermone: we know [rom [ 12], that thers exist all.-::-g,clhcr ot leust 'I_I:I'IT isurr.r::-rpl'l]sm
iypes of 5035 on 20 points,

4.1 The symmetry group of the dodecahedron
When quk]ng ul the dodecuhedron ol lﬁ.g,. 1, notice that ks symmelry group A
e

]
P

Figure 3: Labeled Dedecabedmon

can be generled by the 5-cycles



1.2, % 4}bsa Ogg =41, 2,4,1T}ea Dhe = {1, 5, %, 20}
iy (1,3, X, 68hag Ohgr = 41,2, 4,18}z Oy = {1, 2, 10,11 bza
Oy : |1, 8, % Thaa ey =41, 2,4, 10 }es Chw = {1, 3,10, 13 g
L5:11,2,%3m gy =41, 2,4, 20 }ea Cho = {1, 3, 10, 14 s
e i 1,3, X, %ag Chag = 'I.E.!-.ﬂ}m Chap =41, %, 10,15}z
g ¢ |1,8, % 10}ag gy =41, 2,8, 10} g =41, %, 10, 18 }gg
O 1,2, %11 basg Chpg =41, 2,8, 11 e Chen = {1, 3, 10, 10 sy
Oy 141,32, 3,12} Opy 041, 2,8, 105 O 141, 3,10, 13 g
O 11,2, 3,13} e Opgn {1, 2, 8,10} g Oy 1 {1, 3,10, 14 } g
g 1 {1, E 3, 11 en O 0 {1, 2,8, 14} e O 0 {1, 3,10, 17} o
Oy 141, 3, 1dfan Opg 041, 2,8, 15} ea O 1 {1, 3,10, 18}z
g 1 1, 3, 16 ban Oy o {1, 3,8, 18} e Oy o {1, 3, 1%, 14} ga
a1 0, E 3,17 tan O 0 {1, 2,5, 1T kea gm0 {1, 3, 1%, 15} za
O 101, 3, 18 an a0 {1, 2,5, 18} e 0 {1, 3, 1%, 10} ma
Gy s 4L E 3 18 g Chg = {1, 2,9, 10} g g = {1, 5,15, 15 g
a1 1, 3, B0 an hy 1,3, %11 ma O 1, %1317 =
Oz i 41,2 4, Ban sy = {1, 2,%,12} s g = 1,514,181}
Cha s {1, E 4, Phan Dha = {1, 2,9, 1} g s = 1. %,14,17} 30
Chg {1, R 4 10 an Qg = {1, 2,9, 14} e gy = 1,3, 18,17}
g : 41,2 4, 11740 s = {1, 2, %18} 8 Chpa = {1, 8,714,171
Oy ¢ 40,2 4, 12]4n e = 1,2, %, 10} se ] Chps = 1,8, 18, 20013
LECTIER I T 4 T Chip = 1,2, 9,17 e ez s £0,3, 0, 14 o

Clag : {1, 4, 14 Fan w5 {1, 2,8, 80} 59 Grrg s 1,0 B 15 an

Doy o 0,2 & 1E o Dy = 1,2, 00, 11 } g g = 0,00, 18 fyp

Qg s {0,E 4, 16 a0 Orga = {1, 2,00, 12} e O s £0,0, 0, 19 0

Table 5: Orbits of the Symmetry Grouwp of the Dodecahedron on 4-Subsets of the

Werlices

(1,234, 56,7, 89, 10011, 12, 13, 14, 15)( 16, 17, 18, 19, 20).
(1,2,7,19,G}(%,20, 14, 18, 5)[4, 8, 15, 13, 10) (9, 16, 11,12, 17).

Thus, a group of order 60 and degree 2015 obtained, which 15 isomorphic 1o the
allemating group Ay, embedded into & 1= Sy, This group acts on the 4-subscts
af the vertices of the dodecabedron. They lall into the 96 orbits shown in Tah. 5
wilh their canonical representatives (the index shows the orbit length).

The Kramer-Mesner-malirix Hj‘i‘ 15 of mire 21 ¥ W, The (V] -veciors sul.'.'ing. the
d.iupha.nli ne system u]'l:quali-::-ns

M z=01,...,07"

represent 3 — (200 4, 1) designs, We obtain the 152 solutions of Tab, 6 and Tab, 7.

In this notation, the numbers represent the chosen 4-orbils of Tab, 5.



B3, 3, AT, 44
By o (3,35, 7,47, 48,
Hyp o (4,39, 49, 54, 48,
g o (4,39, 40, 85, 41,
Hpg o (4,39, 40,57, 58,
Hp o+ [F.39, =, 40 48,
Hpp v [F 39, w8 84,
Hpg o+ [F.39, 7, 44, 41,
Hpy 0 (3,39, 3, 45
Hpg o &

Hpy o {8

Hpg o X, 58,

Hpr o &

Hpy o {8

Hap o &

Table &: Designs Invariant Under the Symmetry Group of the Dodecahedron (Part

I

Wi discuss how our methods can be used o solve the immn:-rphi:m Fn:h'l:-l.em
for these designs considering a 5-Sylow subgroup P of A, [t can be verified that
no overgroup of [* ol order 23 iz sdmitted as an automorphism group of a 3-(20,
4, 13, So apply the algorithm: Compuote the tansversal T of H = NN-:-I:A}{P]
in Neg(P) of length 1,500, From T, the groups {4, A%} with g € T can be
constructed, There are 13 groups with P as Sylow subgroup (which are ool dsg
or Szg = 47 ) falling inio 7 conjugacy classes under the action of Ng (FP]. Actually,
two of the cvergroups (and of course their conjugates) toen out ko ke automorphism

EB
2
EE
EE
z2358

fraasin

AN, BB B, B, AT, TR, B, 4]

BT, &6, T,
¥, B, T8,
¥, B, 71,
T, B, T4,
| B, B0, 4
| 5, B0, 4
E,
E,
, B4, 5L, 4
B, 4
ay, &1, BB,
L B, 51, &
\ 5, BE, 4
3, 88, 7
: , B3, BE, 4
- {13, 14, BE, BT,
- {13, 14, B, ET,
- {13, 14, B, ET,
: (B, B9, B4, 40, 3
- {10, 74, 38, B4,
- (B, I, B0, BT, 35, B4, 99,
Hog o

-“,
23z77R
==

-..-
iR
23

AR AR AT, TS, 22,08,
a3, e, 40, B, 41, &, &R,

.
L, BT, A4, BB, 48, 84, BE, i, 0F, 6T
L, f, A4, BB, 40, 07, dE, i, 0F, ]
R, AL, A4, BB, 4, 0, B,

L, AL, 44, BB, 42, TE, B, i

LA, dL, A4, B, 00, 08, 85, B, ]

13, 20, 44, 44, 65, @7, 40, #5, o

i {18, 28, B, 44, 65, 47, 75, 55, D4
i [18, 28, §1, 44, 5, 87, 48, B4, D5, 96}
i [ 4, 1, 47, 51, &6, €7, 74, 68, §5, 04 ]

i [B, 38, B9, 51, 55, 64, &0, 6T,
i[5, 55, B9, 4, 55, £7, 85, 9

B, 4, 54, b5, 65, @
, &4, BB, B0, A7, 8
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T, AT, S, A1 8T, TH, BT, B
0,47, 59, AT, T, R, 03, B

A, B, A4, BE, BT, TH, A4, B0, 4]
B, B, M, A4 B, T, B, B

0, T, 47, A1, T, BT, B B

1B, BT, AN, THEL, B AT, B

30, 73, 8, 43, T8, BT, GH, B

T, B, D, TR EL EE, AT, B

W, T, W, AD, T, B, 00, B

W, B, M, ATET, T, TR, n.w}
IR, e, B4 BT, T, T OBR, DS
55, S, 5, 41, 47, T, 01, B

IR, B R, BT 6L, T B, H.ﬂ;
IR, B GF, 40,4, T, B4, D, DS

B A O O O O O O S e e e ol KD R O N O = O DO = e e O e B

groups of some designs, as the partial subgroop lattice 4 shows,
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Figure 4: Partial Subgroup Lattice of Sz Relevant for Certain S08(230)



The nolation 4 = By (A2 @ 2 Indicales thal the conjugacy class of group By of
order 3,420 has length 4, and each of them is avlomorphizm group of 2 designs.
So let us have a look al the overgroups,

4.01.1  Group 7

Ciroup B is genembed by

(1,2,3,4,5)(6. 7,59, 10) (11, 12.13, 14, 15){16. 17, 18, 19. 20)
(1,2.7.19.6)(3,20, 14. 18, 5) (4, 8. 15, 13, 10){0. 16, 11, 12.17)
(1,2,13,19,17)(3. 4, 11. 14, 20) (5, 7.9, 8, 10){6. 18, 12, 1. 15)
(1,2, 15,4, 16)(3,17, 13. 11, §](5, 7. 20, 18, 14){6. 10, 9, 12. 19)

and is perfect of order 3.4, The arbits of A on 4-seis are used o orbils of 5.
Wi deserbe the fusion I‘.-_',' a mu]:!]:ling:

{1,368, 10, 15,24, 25, 30, 29, 33, 28,41, 43, 45,51, 53, 53,57, 61,
&3, 00, 66, 85, 7Y, T4, T, 84, 58 2% 4] 0
{3, 91, 34,47, 54, T6, 51, 05} — T
J4, 7,02, 08,05, 20, 30, 008, 43, 5 58 B3 6RO, TH, RE BT B0 — 3
{5, 28, 49, 80, 87, B2, 90,96} —+ 4

TR, V0,00, 03, 14, 18, 17, 20, F, 37, 296, 36, AT, 50,40, 44, 46, 48, 50, 58,
S5, 64, T1, T, 7T, TE D, B3, 86 9 03] &

A zolution admits an owvergroup as avlomorphism group, iF the solulion weclor
calculated above under the group A is constant (either O ar 1) on the preimage of
cach orbil of the overgroup under the fusion mapping.

Thiz condition is fulfilled for the =oluticns 53 and 1400 There exist 4 conjugale

groups under the acticn of Nz [(P): the other three groups are admilted by the
designs 51 and 139, designs “4 and 110 @l desizns 93 and |19 respectively.

4,12 Grouap I

Ciroup By is a perfiect group of crder 960 with the generators

(1,234, 5)(6,7,8 0, 10) (11, 1213, 14, 15){16, 17, 18, 19_30)
(1,2.7.19. 8){3.20, 14.18, 5) (4, 8. 15, 13, 10){9. 16, 11, 12.17)
(1,2 13,6, 11)(3.17, 18,5, 4) (7, 20, 10, &, 9){12. 19, 14, 15. 16)
(1,2.12,3.16){4. 11, 13,17, 9) (5, 14. 18, 20, 10){6. 19, 7, 8. 15)

The fusicm mapping is the following:

[¢]



11,8, 0, 12,16, 10, 20, 32, &0, 51, 53, 66, 64, T0, T1, 88} = 1
{2,087, B0 = 2

{3,564, B8]} wa 3

{4,811, 31, 5% 060, 80, 33,87, 01} =4 4

{5, 03,15, T8, B, 34, T, 40, 41, 48, 58 65, T3, 51, B2, 81} — D
{7, 00, 14, 17, 18, 0, I3, 43, 4B, 60, 81, 60, TF, 73, TH, 83} — 6
{20, 1% 2T, F2, 43, 46, &7, 81,68, T1} — T

{5, 50, B} — B

{4, 50, TE} — B

{30, 83, 84} — 10

£, A8, A8, 7T, B2 B3 e 10

£, 44, B8} — 12

£, 47, TR} — 13

J8at — 14

Twelve solutions are invariant under the aclion of By, namely 22, 23, 25, 26, 45,
46, TE, T9, 8L, B2, 95 and 9. The conjugate of By 15 outomerphism group of the
designs 27, 28, 20, 30, 31, 32, 141, 142, 145, 146, 147 and 150,

4. 1.3 Spmmgry

T summarize, in odal 32 designs hove bigger sutomorphism groups, When ap-
plying the game method to the cvergroups, no bigger groups are found. Therelome,
.."I'NE [A} [.F] acts on the dus]gnx of the=e resp. uulum-::-rph]xm Sroupe W cmphu-
ziwe that the immurphi:m pl.'-::-]'.-h:r.n. has been solved without I::nuw]udsi: al the full
automorphism groups of the designs.

[n case of Sroup B-| 3 cubits of dl:sig nz are oblained, each of lunglh 4. The
numbers af the representatives in Tabe 6 smd 7 oare 22, 23 and 45, The designs
with the conjugale group as automorphism group are isomorphic o them, We
visualize in Tabe B the 3 isomorphism types with the help of the dodecahedron.
The coloured points are the elements of the representative of the block orbit

The two dus.ig n= wilh Bj % :uul.-::-rnurphim Eroup an: i.s.-::-rnurphic us well as all
(1§10 IﬂL‘E]EI.‘I! with the i:|.1|1j|.|.|_e:.|1|: groups u:'.aul.-::-r.n.-::-rphi.r.m group, The mpn:'.cnluliuu
ol this ]n::-n'l.-::-rl:lhi.:m cluss is the dusign rmumber 58 in Tab, 6 | see 'Iiig,. S,

The ciher 12X designs not imarianl under one ol the bigger sutomorphism
groups Fall into 32 orbits, Esch representative can be visualized with the help of
the dodecahedron, but e only show the first one in Fig, .
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Figure &: Visualisation of one l2omorphizm Type of 3020, 4, 1] Under Group A

[ total, 36 isum-c:-l.'ph]xm Lypes af dl:siE_n.". are oblzined L'n:xpl.':ling the Sy mme-
iry group of the dodecabedron as preseribed avlomorphizm group. They are listed
in Tak. 9,

Cioup grouporder | nh solutions | isom. byrpos
A a0 1301 Az
4% 3,470 2 1
9% Hy QA0 12 3
1 lotal: 152 a6

Table 9: Isomorphism Types of 051200 with Symmety Group A of the Dodec-
ahedmon

Oin the Webpage

http:/ /www . mathe? uni-bayreuth.de/ "discreta/s
SOLIDS /dodetypes . htm

all of them can be fownd vispalized with the dodecahedron.

4.1.4  Resalis for oller groaps ul.3—[1|]', 4, 1) designs

We have tested 2ome other groups as automorphism groups for 305 on 20 points.
The resullz of the isomorphism program of DISCRETA for these groups ane listed
in Tak. 101

Ter explain the notation: IFG acts on §8 and H acts on §, the group & = H
acts on § ® §ly componentwise, G4 indicates that a fixed point has been added
i the permutation representation of &. Finally, ¥ means the induced action of
0 o {-sets.

[



FPrexcribed graup A Eraup onder EM-xixz W dengm # iscimarphism bypss

{pader af ¢ H"w ar overgraops)

T
Audi Dode ) 2= Ag (11 F!E:I‘m.__ﬂﬂ 152 Alwl+i=Hy 4+ =Hg
A Drode, pam. inr ) 120 1% = 3 = 4w A
SqHIig 130T | AT 4= 75 - IiwB;+3ixBy
Efﬁ g 24000144 L4 12w 43 2 ImB; +3xBy
& vwini 0y 120 [T2L5 | 480 15 % 97 14, 3wl +3 R0,
FlrLalp) = 0 2EE I ] ] eI |
ETLz(R) = Ida 1440 4 1% 2 1uA
FEEa{py = Oy i 440 1w IB + 1A
FE L) = Tda T2 n® 2k 4 1 xA
FGLa0] % Oy L34 1% 11 2 1u A
PO Laln) = Pdy T3 4w 1B 2 2w A
FRLai%] % O 20 1w 1T 4 1% 4
FPSLat¥) « [da ¥ ] neEar F 1A
l'llﬂ+| Bl | AL 55| 1w Lo & 4wl Hy o+ 1 Hy
5a4+51 120 (720 | A8 4w ™ B A 5By o+ 3 0y
.J.EI' 20 a % 2T + 1A

T L A4 Tw2l 4 L -

fay

(st} M 03 W 1% EEM] 130 = A

Table 10x Isomoaphism Classification of S08(200 with Severml Automorphism

Ciroups
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