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Vorwort

In dieser Arbeil beschreibe ich ein Verfahren rur Klassifikation kombinatorischer
Diesigns miltels Schnitizahlen. Die Methode beruht anf der Theorie der endlichen

Gruppenoperationen, inshesondere der Gruppenoperationen aul Verbinden.

Funiichst einige Worte wur Historie und dem Umfeld der Entwicklung an der
Universital Bayreuth:

Die Konstruktion von r-Designs mit grofem @ wird durch YVorschreiben einer
Automorphismengroppe stark erleichtert, Einem Resultat von Kramer und Mesner
Fufolge (vgl. [19]) hat man daru ein ganrrohliges Gleichungssystem su lésen,
worin die Feilen und Spalien den Bahnen der Groppe auf den - und £-Teilmengen
der gewihlten Permutations gruppe entsprechen. e Unbekannten sind wahlweise
D oder | und beschreiben cine Auswahl von £-Bahnen, die durch Vercinigen #u
der Blockmenge des Designs gemacht werden,

Diecses Verfahren wurde an der Universitit Bayreuth im Rahmen eines von
Prof. Dr. K. Lave geleiteten DFG-gefiirderten Projekies in den leteten Jahren
erfolgreich angewendet. Die Anstrengungen miindeten in der Entwicklung ei-
nes Programmpaketes DISCRETA 3], welches f-Designs #n vorgeschrichener
Gruppe konstruiert, [he Arbeitsgruppe profitierte von der Mitwirkung von D
AL Wasscrmann, dessen Programm zum Losen ganzeahliger Gleichungssysteme
ivel. [33]) wesentlich zu Erfolg der Untersuchungen beitrug. Femer mub erwihnt
werden, dass die beschriecbene Arbeilsgruppe einen Vorldufer besitzt, denn bereits
Anfang der neunziger Tahre hat Dr, B, Schmalz susammen mit Prof, Dr, R, Laue
aul diesem Forschungsgebiet gearbeitet und Schmalz hat mit seiner Dissertati-
on [30] Plonierarbeil geleistet.

Ieh selber hin von Herrn Prof. Dr A, Kerber anf dieses Gebiel gestoBen wor-
den, als wir uns den konstruktiven Anwendungen endlicher Gruppenoperationen
suwendeten (vgl, Kerber [ 13]), Die Untersuchungen im Rahmen meiner Diplom-

arbeit waren anch gewissermalbien der Grundstock, aus dem das Paket DISCRETA
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im Rahmen ciner Gemeinschafisarbeit hervorgegangen ist,

Konkret gingen meine Arbeiten anf den Hinweis von Hermn Kerber surick,
dass die in der Methode von Kramer und Mesner betrachtete ganzzahlige Ma-
irix mit der von Plesken in sciner Acbeit Counting with Groups and Rings | 28]
betrachieten Theorie der Gruppenoperationen aul Verbénden zusammenhingt.

Es= stellte sich heraus, dass die Kramer-hMesner Matrix in der Tat als Sperialfall
der von Plesken betrachteten ganerahligen Marizen geschen werden kann, wenn
man namlich den Tetlmengenverband und die Bahnen anfl ¢- und £-Tellmengen
betrachtet. Damit war der Durchbruch zu einem theoretischen Uberban geschalTi,

der sich spéter noch als vorteilhaft heravsstellen sollte.

Soweit das Umfeld, jetzt sur konkreten Aufpabenstellung:

Im Rahmen der Konstruktion von Designs mit vorgeschrichener Automor-
phismengzruppe stHB man recht bald auf die fundamentale Frage nach der Be-
stimmung der Isomorphictypen der pefundenen Designs, Um die Schwierighkeit
dieses Problems einschitzen #u kiinnen, muss man sich klarmachen, dass die be-
trachicten grofien Designs oftmals aus mehreren Millionen von Blicken bestehen,
g0 dass herkimmliche Ansitee sur [somorphicklassifikation mittels Backtracking

ausscheiden,

Hier nun die Methode, die zur Lisung des Problems herangezogen wird:

Ein nlitzliches Mitlel zur Klassifkation ist die Betrachtung von Invarianten. die
in vielen Fillen die Nichtisomorphie von Objeklen nachweisen kinnen. Hier bie-
ten sich die Schnittinvarianten an, genaver gesagl die Schnittzahlen von Designs,
[Diese wurden bereits 1971 von Mendelsohn in [27] betrachtet und sind »u ei-
nem wichtigen Bestandteil der Theorie von 1-Diesigns herangewachsen. Unlingst
wurde eine umlassende Arbeit von Tran van Trung et al. [32] verdfTentlicht, in
der diese Theorie in Richtung von hheren Schnittzahlen weiterentwickelt wur-
de, wobei hishere Schnittzahlen eine Verll gemeinerung der gewShnlichen (Men-

del=chn’schen) Schnittzahlen sind.
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Im Fuge der hier prisentierten Resullate werden zuniichst plobale Schnittzah-
len von Designs definiert, die eine modifizgierte Art hitherer Schnittzahlen sind
ivgl. Abschnitt 2.3). Diese globalen Schnittzahlen dienen als Invarianten der De-
signs und kiémnen zur Klassifikation herangezogen werden. s reigl sich in Lem-
ma 2.3.2, dass die Theorie der hiheren Schnittzahlen auch anf globale Schnittzah-
len fortgesetat werden kann, Mun muss korreklerweise noch erwihnt werden, dass
ich aus technischen Grinden swel verschiedene Arten von globalen Schnittzahlen
betrachte, dic ich durch eckige und mnde Klammersymbole in der Notation un-
terscheide. Es stellt sich jedoch heraus, dass beide Versionen in einem gewissen
Sinne doguivalent sind. Sate 2.3.1 zeigl, wie man aus der einen Sorte die andere
berechnet und vmgekehrt auch wieder die wsprimglichen #ahlen runickbekom-
men kann, Der Zusammenhang wird durch die Stirling-#ahlen erster und eweiter
Art beschrichen, dic ich in Abschnitt 1.3 vorstelle, inshesondere dic Stirling sche

Inversionsformel, die hier eine Rolle spielt.

Das Klassifkationsproblem &6t sich somit auf folgende rentrale Aufgabe wu-

riickfiihren, die den Kern der hier prisentierten Arbeit hildet:

Muan berechne die globalen Schaintzahlen eines Designs, welches zu
einer vargeschrebenen Automorphismengruppe Eonstruiert worden

it

Diese Aulzabe kann erstaunlich einfach geltst werden. Hierzu kehre ich aul die
urspriinglich betrachtete Theorie von Plesken ruriick.

Wir untersuchen also die Operation einer Gruppe aul einem endlichen Ver-
bund. Die Bahnen der Groppe kinnen laut Plesken als B-Basen eines Rings her-
genommen werden (vgl, Definition 4.2.1). Die Multiplikationskonstanten dicses
Rings sind die bereits erwihnten Strukturkonstanten der Gruppenoperation aul
dem Verband {vgl. Gleichung (4,2)), Dieser Ring wird von Plesken aul swei Wei-
sen realisiert: Zunichst bilden die unter der Gruppenoperation invarianten Ele-

mente des ganzzahligen Halbgruppenrings dber den Elementen des Verbandes
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einen solchen Ring, wie Sate 4,22 reigt, Andererseits (Satz 4,2,3) bilden die Spal-
ten der Matrizen der Strukturkonstanten ehenso eine E-Basis dicses Rings, wobei
die Multiplikation das Hadamard-Produkt der YVektoren ist, also die komponen-
tenweise Verkniipfung der Fintrdge. In Sate 4.2.3 wird der sugehirige Ringiso-
morphismus vorgesiellr.

Beide Realisicrungen der Ringe sind wichtig fiir dic nun fol gende Anwendung
aul die Berechnung von globalen Schnittzahlen von Designs. Die erste Realisie-
rung im Halbgruppenring #eigt die Berichung o den Designs und deren Schnitt-
zahlen: Ein Design st nichts anderes als cine Menge von £-Teilmengen, und diese
Mengen kinnen als formale Summe im Halbgroppenring anfgefalit werden. Der
dazn isomorphe Ring, der mit den Spallen der Malrizen der Strukiorkonstanten
susammenhingt, fihrt auf einin Satz 5,12 beschrichenes einfaches Verfahren wur

Berechnung von globalen Schnittzahlen von Designs,

Einige Worte zur Bewertung des Ergebnisses sind angeacigt:

Es zeigt sich, dass man in der erforderlichen Rechnung alleine mit den Bahnen
der Gruppe aul den Blicken des Designs auskommlt, also griGenordnungsmélig
ctwa hundert Eingangsgrilen hat (anstelle von Millionen von Blécken). In einer
abschlicBenden Uberlegung (Korollar 5.1.4) wird geseigl, dass die hergeleiteten
k=41 Gleichungen fiir die globalen Schnittzahlen in gewisser Weise eine Verallge-
meinerung der Aussage von Lemma 23,2 ither globale Schnittzahlen sind: In den
ersten ¢ + | Gleichungen erhilt man nimlich die Gleichungen von Lemma 2.3.2
zurtick. Wesentlich sind jedoch dic weiteren & — ¢ Gleichungen, und die Tatsa-
che, dass in Gleichung (5.5) von Satz 5.1.2 der Vektor der globalen Schnittzahlen
aul der richtigen Seite steht, und damit direkt berechnet werden kann. Das Ergeb-
nis kann also auch als Autlé=sung der Gleichungen vom Mendelsohn'schen Typ
angesehen werden,

Dviese Ergebnisse zeigen inshesondere die Bedeatung der Theorie der Grup-

penoperationen fiir dic Anwendungen auf und belegen den enormen Wert der
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Plesken schen Arbeit,

Dic beschrichene Matrizen sind in unterschicdlichen #usammenhingen auch
von vielen anderen Autoren betrachtet worden, siehe etwa Kreher [22] und [23]
fiir die Teilmengensituation, Wihlt man die triviale Gruppenoperation, so erhiilt
man die Insidensmatrizen swischen 1- und &-Teilmengen, die auch in der ho-
mologischen Algebm eine Rolle spiclen. Diese Matrizen sind Gegenstand um-
fangreicher Untersuchungen, ich nenne hier stellvertretend nur diec Arbeiten von
HL Krdmer tvel. [20] und [217).

Wihlt man den Untergruppenverband ciner Gruppe und betrachtet dic Ope-
ration der Gruppe durch Konjugation, so kommt man rum Burnside-Ring und
seinem Dual, Der Burnsgidering spielt eine Rolle bei der Zerlegung von Grup-
penoperationen in ihre transitiven Bestandieile, klassifiziert nach Stabilisatortyp.
Plesken beschreibt in seiner Arbeil eine Dentung des dualen Burnside-Ringes.

Der yon Plesken betrachtete Ring scheint erstmalig bei Wielandt [34] als #en-

tralisatorring von Permutationsdarstel lungen aulrutauchen.

Um dic Universalitit des Plesken schen Ansatees #u wiirdigen, habe ich mich
entschlossen, in dieser Arbeil von Plesken-Malrizen und Plesken-Ringen #u spre-
chen, Es scheint mir beachtenswert, wie Plesken mit cinem ganz allgemeinen An-
satz cinen Rahmen fiir vielfiltige, bisher weitgehend unabhiingig voneinander be-

trachicte Theoricn schaift.

Ich danke meinen Betrevern Herrn Prof. e AL Kerber und Henn Frof. Dhe
K. Lave. Ferner danke ich allen, die zur Entstehung dieser Arbeil beigetragen ha-
ben, seies durch fachliche Diskussion oder durch Korrekturlesen der vielen Vior-
abversionen. lch nenne hier Evi Haberberger, Harald Meyer, Serzey Molodisoy,
Alice Nicmeyer und Alfred Wassermann.

Ein besonderer Dank geht an Tran van Trung, der mich auf die Arbeit von

Bolick [7] aufmerksam gemacht hat, und mit dem es vicle anregende Diskussio-



nen gab, Schlieflich danke ich allen Mitarbeitern und Mitarbeiterinnen des Lehr-

stuhls 11 fiir Mathematik der Universitit Bayreuth,

Bayreuth, 2. November 19949 Anton Betten



Kapitel 1
Einfiihrung

In dicsem Kapitel betrachien wir einige grundlegende Eigenschallen von Designs
und thren Parametern. Als weiterfuhrende Literatur seien die Bucher von van Lint
uncd Wilson [25] sowie von Cameron ungd van Lint [B] emplohlen. Weilerg um-
fangreiche Werke, die sich ausschlieflich mit Designtheorie bew, Inzidenzstruk-
turen beschiftigen, sind die Biicher von Beth, Jungmickel und Lenz [2] und der

“Klassiker”™ von Dembowskd [10].

1.1 Inzidenzstrukturen und ;-Designs

Eine Inzidenzstrakinr ist ein System B von Teilmengen einer Menge V., deren Ele-
mente Pankte genannt werden (der Buchstabe 3V stammt vom englischen Wort ver-
riety). Dic Teilmengen heilbien flicke. Eine Inzidenzstrokiur heildt endlich, wenn
die Menge ¥V endlich ist. In dieser Arbeil sind alle Inzidenzstrukiuren endlich. Die
Anzahl der Punkte wird meist mit dem Buchstaben o bereichnet, die Anzahl der
Blicke wird mit b ahgekiiret.

Die Inmidenzrelation ist die Inklusionsrelalion @#wischen Punkten und Blécken,
Wir sagen, dass e¢in Punkt p & V mit cinem Block £ € B modient, wenn

poe B gilt. Ein inzidentes Punkt-(Blockpaar (g, 5) heilit Falme. Ein nicht inei-
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dentes Punkt-/Blockpaar ( p, #) heilt Ansijalne, Die Inklusionsrelation, und da-
mit auch die Inzidenzstrukiur selbst, wird hdufig in Form einer Matrix codiert, der
Inzidenzmatrix, Daru seien p. ... . p, dic Punkte und &, ..., By die Blicke
der Inzidenzstrukiur. Die Inzidenzmatrix ist die (2 x &)-Matrix & = (m; ;) mil
i = 1wenn py £ By gilt und Null sonst. Andererseils definiert jede 071-Matrix
KN o= (n; ;) vom Format » : b eine Inzidenzstruktur (V, B) mit » Punkten und b
Blicken, wobei die Punkte den Zetlen der Matrix entsprechen und die Blécke aus
den Spalien von A hervorgehen, Ein Punkt g ist genau dann in dem Block B
enthalten, wennn; ; = 1 sl
Ein f-iv, &, &) Design ist cine Inzidenzstruktur T = (W, B mit

iy [V =,
(i) | 8| =k fiir jeden Block & € [,

iiil) Fir jede i-Teilmenge T < V gibt es genan A Blicke aus B, die T umfassen.
Wit anderen Worten: YT~ € {T] : [LReB: T C R

Dig Fahlen v, v. & und & sind (unter anderen) die Foramerer des Designs. Die
Fahl ¢ beschreibt die Punkiregularitds, Die Fahl kst die Blockprdte, & st der
Index des Designs, Nicht zu jedem Parameterquadrupel gibt es Designs. Ande-
rerseils kann es @ ein und demsclben Pammetersatz eventuell mehrere Diesigns
geben. Zwel Designs D) = (V. By und Dy = (V, B5) heiben isamorpl, wenn
es eine Abbildung = = Symy, gibl, die das Mengensystem 5y in das Mengensy-
stem [y iiberfiihrt, Dabei ist die Anwendung von 7 elementeweise zu verstehen,
d.h. BY =[BT | B € Byl mit 7 = [p™ | p € B}. Die lsomorphierelation ist
cine Aquivalenzrelation. Die [somorphismen cines Designs aul sich heifien Awu-
tomorphismen. Sie bilden beziglich Hintereinanderavsfilhrung eine Gruppe, die
Agtomorphismengrippe des Desipns, Ein Design mit & = | heilt Speiner-System,
Weitere Parmmeter von Designs sind die Anrzahl der Blocke, die einen festen Punkt

cnthalten. Im Falle ciner Punktreguolaritat ¢ = 1 ist dicse Anzahl unabhingig von
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der Avswahl des Punkies, hMan bereichnetl diese Grife mil
r=|[BeB|pec B}

fiir p & ¥, und nennt sie Wiederhofungsanzakl (replication nimber).
Als Auvsgangspunkt der Betrachtung von Diesigns kann folgendes Schul-
midchenproblem angeschen werden, welches Reverend Kirkman (1806-1895)

um 18350 in ciner Aufgabensammlung verdflentlicht hat (vgl. [14], [16], [15]):

LFlifteen voung ladies in a school walk owi three abreast for seven days
in suecesyion; i is required 1o arrange them daily, so that ne two will

werl® wice abreast”

Mummeriert man dic 15 Schulmadchen mit den Zahlen von | bis 15, so gilt es,
7 mal 5 Diciergruppen aus den Aahlen von 1 bis 15 so festrulegen, dass jeweils
alle 15 Zahlen inden 5 Gruppen auftauchen und ferner je swei Zahlen nicht hiufi-
ger als cinmal rusammen in einer Dreiergruppe genannt werden, Die notwendige
Bedingung III:{’}I =105=7.5. {;} ist mit Gleichheit ecfiillt, so dass je #wel Zah-
len sogar genau einmal in einer Gruppe zusammenkommen. Demnach licgl cin
Design anl 15 Punklen vor, mit Blockgrisbe 3 und der Eigenschafl, dass je swei
Punkte (f = 2} genan einmal (A = 1) in einem Block genannt werden, Das Design
hat also die Parameter 2-(15, 3, 1) und ist folglich ein Steiner-System,

Eine Lidsung des Schulmidchenproblems ist in Abbildung 1.1 aufgercigth
Einer Idee aus Beth, Jungnickel, Lenz [2] folgend, werden die fiinfzehn Midehen
als Knoten mit den Nummern 1 bis 15 identifiziert und auf der Peripheric bew.
im Xentrum cines Kreises angeordnel, Die Dreiergroppen ir einen Tag sind al=
Direiecke eingereichnet. Die Lésungen Fir die anderen 6 Tage ergeben sich durch
sukzessive Rotlation des Bildes um den Mittelpunkt in Aweicrschritten gegen den
UThreeigersinn. Man kann die Lisung anch in Tabellenform notieren, dann ergibt
sich das darunter aufgefiibrie Schema,

Es liegt nahe #u fragen, wie man Designs gane generell konstruieren kann.

[Deses Problem besitet keine wniverselle Antwort. Ein Verfahren, welches auch
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Ml i Ml s Fr Sa So
[ 2 3 6 5|5 7T 2|2 4 6|6 | 73 414 5 1
610 12 13 104 9 1311 8 9|3 11 514112 12 14
79 14 21201 11 103 14 13(5 12 9 (2 10 8 [6 13 11
5 8 13 11 96 14 8 (7 12 11(4 1o 14(1 13 1Z2(3 9 10
4 11 15 4 1513 12 15|15 10 15|12 13 15|16 9 15|17 & 13

Abbildung 1.1: Eine Losung des Schulmidchenproblems
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mit grofen Parametersitzen gut rurecht kommt, wird in dieser Arbeit vorgestellt,
Hauptsichlich sind wir hier jedoch an der Beantwortung der eweiten Frage inter-

essiert, die da lautet:

Cregeben eine Menge von Designs zum selben Parametersalz wnd auf
derselben Punkimenge V. Welche dieser Designs sind wesentlich ver-
schieden, mit anderen Warten, welches sind die Aguivalenzklassen
isomarpher Designs im Sinne der bereits eingeflihrien Isomarphie-

relation ?

1.2 Parameter von Designs

In dicsem Abschnitt betrachten wir cinige Resultate dber die Parameter von De-
signs. e Aussagen sind allgemein bekannt und kdnnen in vielen Kombinato-
rikbiichern nachgelesen werden,

Ein wichtiges Resultat besagt, dass jedes 1-Design pleicheeitip auch ein (1 —1)-

Diesign ist. [terativ erhilt man, dass es sogar ein s-Design fiir alle 0 = 5 = 7 150

LL21 Lemma Sei D = (V, B) ein i-iv, k, &) Design und 5 eine ganze Zahl mit
0= & = . Dann ist D gleichzeitip ein s-(v, k. k) Design mir

A2

Ay = A T
()

(1.1}

(d. b dy = &),

Setzl man s = 0, so folgt

y = }.M =bh, i1.2)

(i)

fur jedes 1-Design, denn jeder Block enthilt dic leere Menge.
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In jedem 1-Design (hew, in jedem f-Design mit ¢ > 1) ist die Anzahl der
Blicke, die cinen belichigen vorgegebenen Punkt enthalten, cindeutig bestimmt,
Man bereichnet s1e mit a2 = v und Lemma 1.2.1 Lefert:

r_l

vr=kb [ & Ao =}-I.{T}I' (1.3
In jedem 2-Design (bew. in jedem r-Design mit ¢ = 2) hat man
—1
()
k-1
(:-1)

Wird ein r-iv, &, o) Design IV als (1 — 1)-Design, d. h. genaver als (r — 1)-

[« rik— 1) =da(v—11). (1.4)

A =r = &>

(v, &, ay—1 ) Design betrachtel, so sprechen wir vom Design Zem reduZierfen 1 und

schreiben dafiic red D, Fiir | = § ist dempach red P = redred ... red P ein
i rmal

i — -l k) Design.
Diie Existens gewisser f-Designs ist so offensichtlich, dass man diese Designs
als rriviale Devigny bereichnel. Yuniichst hat man das wvellstdindige Dexign, wel-

(4

:.:l' Dicses Design hat die

ches aus allen &-Teilmengen von W besteht, d. h. B = II

Parameter f-{v, K, Aqax(v, 1, £ mit

B —
Y T Y [ .
Arax (;:_‘I)

Die Fahl &g vt &) st der grobte mogliche Index, den cin Design #n festen
Parametern ¢, v und & haben kann.

Ein weiteres triviales Design ist das leere Design ohne Bldcke. Ferner gibt es
das Fin-Block Desjign mit & = v und A = 1. Das Design mit ¢ = & = 1 und
B = {'Ii'?] ist ein weiteres triviales Steiner-System. Das Design mitk = » — 1 und
B = I{Ill_:l] ist chenfalls trivial. Die leteten drel vorgestellten Designs sind alle
vollstindig,

E= gihl cinige Konstmuktionsvorschrillen zur Erzcugung newer f-Designs aus
bereits bekannten (-Designs. Sel jetet stets T = (V, B) ein i-(v, £, &) Design.

Das supplementdve Design supp IY hat genan die £-Teilmengen als Blocke, dic
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nicht #zur Blockmenge B des Anspangsdesigns gehéren, Die Parameter des sup-

plementéren Designs sind
f— vk, Al v K — A0

Da o jedem Design auch das supplementire Design mit dem IndeX fmas (2, 7, £1—
# existiert, kann man sich chne Einschrinkung aufl die Betrachtung von Desipns
heschriinken, deren Index kleiner oder gleich :l.lmullfl-', {, k) ist, Das supplementiire
Diesign des vollstindigen Designs ist das lecre Diesign.

Ein weileres Design ist das kemplemenidre Design D7, welches als Blicke
die Mengen B = V' B besitet, wobei # die Blicke von T durchlibuft, Wir
werden spliter #eigen, dass das komplementire Design wiederum ein f-Design
ist. Der Index des komplementiren Designs wird in Korollar 1.2.6 berechnet. Da
das komplementare Diesign Blocke der Gralbe v — & hal, kann man sich ohne
Einschrinkung aul das Studinm von Designs mit BlockerdGe kleiner oder gleich
_%r.' beschrinken, Die bereits erwihnten trivialen Designs mit ¢ = & = 1 und
k= v — | sind rueinander komplementér. Das komplementéire Design des Ein-
Block-Designs ist cin Design, welches dic leere Menge als cinzigen Block besitet.

Nicht zu jedem Parametersatz existieren wirklich Designs. Ein nlitzlicher Test,
ob ein Parametersate sinnyoll ist, beruht auf folgender Uberlegung:

Wenn ein f-(w, &, &) Design existiert, dann sind alle Parameter &, auvs (1.1)
ganze fahlen, Das bedeutet, dass fiic 0 = s < ¢ alle Nenner in
v —slhe

[k — s]e—s

in den jeweiligen Zahlern (inklusive A) anfgehen. Hierbei st [y, dic fallende

f_.ll. =

Fatiorfelle der Linge b, definiert als

gy i=a -fa—11-ila—(b—11
imit [a]n = 1) Ein Parametersate ¢-(w, &, &) heilt zuldssig, wenn alle 4, ganeeah-
lig sind. Sei Ad die kleinste positive gange Zahl, so dass

A |1:' - -'ilr—.-
[k — 5]_s
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fir alle s mit 0 = 5 = ¢ ganzzahlig ist, Dann sind alle Parametersdtze der Form
-l kol Al mith € M orulissip,
Sci D = (V, Bl einf-(v. &, A) Design, Fir p £ V sei

der, D= (V' [ph. B,) mit B, =[B\{p}|BeB. pec B
das abgeleitete Design (derived design). Set ferner

res, D = (V' [p), BF) mit BF = [B<B|pg B
das residuelle Design von .

1.2.2 Lemma Sei D = (V, B) @in t-(v, &, L) Design und sei p € V ein fester
Punki, Dann gilt

(i) der, IV ist ein
=1 —fw—-1k—=1,4)
Design,
(1) ves, D isiein
=11 —iv— 1k sy —A)
e

Design, mit ;) — b = }.m.

Abbildung 1.2 zeigl den Xusammenhang der Parameter eines Designs mit den
Parametern des abpeleiteten bew, residuellen Designs sowie des Designs rum klei-

neren i,

Das folpende Abzéhlpringip ist ein wirkungsvolles kombinatorisches Hilfs-
mittel, Man verdeutlicht es am besten an Hand cines kleinen Beispiels: Sei £2 eine

cndliche Menge und seien A, & und © Teilmengen von £2. Angenommen, wir
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(8~ U-(o, b, ASEEY (- Oefe— Lk LX) (8= 1(o— 1.k, A "75 )

—{t—1]

Abbildung 1.2: e Parameter der Designs T und red T, der T und res T

wallten die Kardinalitit yon £2 = 22 WA U AU C) berechnen, alleine unter Ver-
wendung der Kardinalititen der Mengen £2 und aller Schnitte von Mengen A, B
und . Dann hat man (vgl. Abbildung 1.3)

162 =2 — |A| — |B| = |C]| +|ANB|+|ANC| +|BAC|— AN BNOC).

Q1

Abbildung 1.3: Berechnung von |€2] mittels Inklusion / Exklusion

Der allgemeine Fall gestaltet sich wie folgl:

1.2.3 Lemma (fkiuvions 5/ Exklysionsprinzip oder Siebformel) Sei € eine endli-
ehe Menge wnd seien Ay, ... | A Teilmengen von 2. Sei @ = 2\ |_J{_, A;. Dann
eilt

i

|Ez|=|=:3|+zr:[—l1f Y ) Al

j=1 e Lot k=]
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1.2.4 Lemma Sei D = (V, B) einr-(v, k, &) Desipn, Filri, j c Mmiri +j =t
seien I € (V) und 1 € {:’] disjunkie Teilmengen von V. Dann ist die Anzahl

;L,-_J-=|{Hes|rc;a,am=;ﬁ}

unabhéingig von der Wakl der Mengen I und T unter den angegebenen Bedingun-
pen. Ex gilt iin = &; fiiri = t wnd oy n = A. Man hat die Relarsion

Aijl =i — A1 firi+j =1 (1.3}

Wir stellen dic Anzahlen &; ; fir ¢ + § = 1 in cinem dreieckigen Schema
wie in Abbildung 1.4 dar. Die Anfangswerte A, = A, o [ir0 = s = 1 erlauben
o0
.-.-..l-. x‘x"'\.

Ao Ap,1

SN
Az A A,z

Aaw LR

Abbildung 1.4: e Parameler A; ¢ eines (-Designs

susammen mit (1.5} die Berechnung aller Werte, Weitere, dirckte Formeln sind

wic folgl:

1.2.5 Lemma Sei D = (V. B) ein i-{v, k, L) Design. Seien I und J disjunkie
Teitmengen von V der Gréifle | bow, j wnd seii + j = 1. Dann gilt

i )
(i) oy = Z[—IJ"(::)L,
=0

ey

(i)

(i) 3, = &

{Ray-Chaydhuri und Wilsan f29]),
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Als Anwendung dieser Aussage ergibt sich nun das anpekiindigte Resultat,
dass das komplementire Design eines f-Designs T = (W, B) wiederum ein -
Design 151 Sei T eine belichige -Teilmenge von V. Die Blicke des komple-
mentiren Designs, die T umiassen, sind genan die Komplemente der Blécke ans
B, die keinen Punkt der Menge T enthalten, also zu T disjunkt sind. Demnach

milt:

1.2.6 Korollar Sei D = (V, B) ein t-(v, k., 3) Design. Dann ist das kemple-

menidive Design T ein t-Design wil den Pavamelern

vy

. o AT =k

f—iv,e —k Aol mil iy = & e = A .
(i) L3

1.3 Etwas Kombinatorik von Partitionen

[n diesem Abschnitt sollen einige Ergebnisse aus der Kombinatorik von Partitio-
nen vorgestellt werden. Das Material zu dicsem Abschnitt stamml wesentlich ans

» Halder und Heise [11, Kapiiel 1, 4 und 3] und Ker-

den Bichern von Aigner [ ]

ber [13],

Scin € M cine natirliche #ahl (00 € M) und & cine n-clementige Menge.
Mil (@, ..o o) bezeichnen wir die Folge der Elemente ay, ..., a,, wohingegen
leri. ..., a-] die Mulrismenge der Elemente aq, ... . a. meink. Die Elemente einer
Multimenge sind nicht geordnet und werden mit Viellachheit gergihll, #Fur Fr-
leichterung der Schreibweise kimnen Vielfachheiten ouch als Exponenten notiert
werden. Falls eine Multimenge aus natiirlichen Zahlen besteht, ist s nitelich, dic
Eintrige in absteigender Reihenfolge #u notieren. Wir nennen eine Mullimenge
[a1. .. ., ap] natiirlicher Zahlen jn Sfandardform, wenn a) > ... = a, gill,

Eine Dekompeosition oder Zevlegung einer Menge N ist ein System von even-

ell lecren, paarweise disjunkten Mengen P, 0, P mit [J[_ P = N, Wird
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das hMengensystem als Folge betrachtet, so heibt die Zerlegung geordner, Ist die
Ferlegung eine Multimenge, so nennt man sie gngeordner, In beiden Fillen schrei-
ben wir & B N, wobei P = (P, ... P eine Folge bew, P = [, ..., 7]

cine Multimenge von paarweise disjunkien Teilmengen von &V sk Formal:

PEN = | |Rm=N A mnP=hic i # ]
i=l
fir & = (#,..., 70 bew, P = [, ..., 5] Dic &, die auch leer sein

kéinnen, sind die Teile der Dekomposition.
1.3.1 Beispiel

(i) (2,7, 1, 2vist die Felgeund [2,7, 1, 2] = [1, 2%, 7] ist die Multimenge der
Flemente 2,7, 1,2, Da es bei Multimengen nicht auf die Reihenfolge an-
7.2,2. 1] = [7.2%, 1]. Die leteten beiden For-

men sind dic Standardformen der Multimenge.

kommt, gilt [2,7,1,2] =

(1) Die Folge ({2, 3} {1}, {4}) ist eine geordnete Ferlegung von {1, 2, 3, 4}
e Multimenge [{2, 3}, [1], {4}] ist eine ungeordnete Ferlegung derselben

Menge.
<

Wir kommen nun wur Definition von Paritionen. Es gibt verschiedene Typen
von Partitionen, und leider sind die Bezeichnungen in der Literatur nicht immer
cinheitlich. Eine Mengenpartition ist cine Zerlegung.

Eine daklpartition von n & X isl cine Folge p = (..., o) bew. cine
Mullimenge p = [pi. ..., p-] natirlicher Zahlen gy, ..., poomil EL, P = N,

Die gy sind die Teife der Partition und wir schreiben auch hier p = n

r
[l ol T — Zj'.-',':ﬂ
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firp =ip.....pobew, p=1lp, ..., Pl

Wir betrachten insgesamt 8 Typen von Partitionenen, Abbildung 1,5 gibt cinen
Uherhlick iiber diese, Sie rerfallen in jeweils 4 Mengenpartitionen und 4 Zahlpar-
itionen, 4 geordnete und 4 ungecrdnete Partitionen und schlicBlich in 4 verall-
pemeinerte und 4 eigentliche Partitionen. Trigl man die drei Kriterien [ Zahl- /
Mengenpartition }, | ungeordnete / peordnete Partition | sowie | el gentliche £ ver-
allgemeinerte Partition | an den drei aufspannenden Seitenvektoren eines Wiirlels

aul, soergibt sich Abbildung 1.5,

eigentliche / verallgemeinerte Partition

| P
/ I[N Zahl- /
# Mengenpartition

ungeordnete | T
geordnete Partition [N

Abbildung 1.5: IHe acht Sorten von Partitionen

Eine Fahlpartition (g, ..., po) bew, [ pr. ..o o] heilt eigentlick, falls p; =
| fiiri = 1,. .. ,r gilt, Im Falle p; = 0 spricht man von einer verallgemeinerien
Lahlpartition (d, h. wir zihlen auch die cigentlichen Partitionen #u den verallge-

meinerten Fahlpartitionen).
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Falls eine Zahlpartition cine Folge ist, so heifit sic geordner, Falls sic eine
Multimenge ist, spricht man von ciner gngeordneten Fahlpartition, Falls die hMul-
imenge in Standardform ist, so soll auch die zugehérige Partition als in Standard-
form bezeichnet werden. Die Mengen der eigentlichen ungeordneten, der eigentli-
chen peordneten, der verallgemeinerien ungeordneten und der verallgemeinerien
peardneten Fahlpartitionen werden mit TLini, inl. ﬁ*lﬂl:l und T1*(#x) bereich-

net. Genauer hat man:

Ty ={[p.....¢eln|rel pel p=1Hri=1,...rl,
Miry={ip,....p0bn|lrel pmel m=1hri=1,....r]
ﬁtf_.lifIZ{|,I'.?|....,,I'},-||—H|rEH, meM pp=0fri=1,....r}
M*ny=1{(p1,....pr0n|lrel peM p=0fri=1,....r}

1.3.2 Beispiel [2,4, 2, 1] ist aus ), [4. 2.2, 1] ist dieselbe Partition in Stan-
darclorm. (2, 4, 2, 1) ist aus TT09). (2,4, 2,0, 1] isl qus m a4, 2, 201, 0] ist

diezelhe Partition in Standardform, (2,4, 2,0, 1rist aus 1159, O

Bei Mengenpartitionen hat man cbenso vier Typen. Eine Mengenpartition
P=(P...., P Nbw P =[P.....P] F N heilt eigentlich, falls
P P hird = 1, ..., r gilt, Eine Mengenpartition, bei der die Teile auch leer
sein kinnen, heilit verallgemeiners. Insbesondere sind eigentlichen Mengenparti-
tionen auch verallgemeinerte Partitionen. Die Mengen der eigentlichen ungeord-
neten, der eigentlichen geordneten, der verallgemeinerten ungeondneten und der

verallgemeinerten geordneten Mengenpartitionen sind:

TN :=[[P.... . BI-N|reM, & £000 i=1,....r],
NN =[(P,..., RN |rel, & £0Rri=1,....rl
0N =[[Fi.....R|F-N|reN],
5N =[P, ..., PN |reN].
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1.3.3 Beispiel [{2, 3}, {1}, [4}] ist cine ungeordnete Mengenpartition (d, h, ans
T, 2,03, 400, (42,34 {1}, [4]) ist eine peordnete Mengenpartition (d, h, aus
TIOLL, 203, 40000 T2, 3E 9, (1], @, [4}] isteine ungeordnete verallgemeinernte Men-
genpartition (d. h. aus ﬁ‘[[], 23400, o2, 30 @, (1], 1A {4}) ist cine geordnele

verallgemeinerte Mengenpartition (d. b aus II%0{1, 2, 3, 4}, o

Die Lange einer Partition ist die Anzahl ihrer Teile. Wir schreiben €0 p) bew.
£ fiir die Linge einer Zahlpartition p oder die Linge einer Mengenpartition .
Die Menge der Partitionen der Linge r sei mit den bereits eingefiibrten Symbaolen
bercichnet, wobei susitelich cin weiterer Index r angefiigt wird. Demnach sind
M (N, TN, O (e und T1, () die Mengenpartitionen von N CAahlpartitionen
von /) mit penau r Teilen, Die Versionen mit den fiberstrichenen Partitionssym-

bolen bezeichnen die ungeordneten Partitionen dieses Typs.
il

Fiir eine Zahlpartition pist |p| == 3~ |1 pi das Gewicht von g,

Betrachten wir noch einmal Abbildung 1.5, Fir jede der drei Richiungen der
Basisvektoren des Wiirfels kann eine Projektionsabbildung definiert werden, Die-
se Projektionen laufen jeweils entgegen den Pleilrichtungen, d, h, geordnete Par-
titionen werden auf ungeordnete abgehildet, Mengenpartitionen werden auf Zahl-
partitionen abgebildet und schlicBlich werden verallgemeinerte Partitionen auf ci-

gentliche Partitionen abgebildet:

(i) Jeder geordneten Partition kann eine ungeordnete Partition zugeordnet wer-
den, und swar diejenige, die sich durch Vergessen der Reihenfol ge der Teile

ergibt. Wir haben somil ewel Abbildungen
TONI = TIN), P =P, ..., P P =|P..... 5]

TiTin) =TI, p= (... o = = ... ]

(1) Jeder Mengenpartition emner Menge & lilt sich eine Zahlpartition wuord-

nen, namlich die durch diec Kardinalitaten der Teile definierte Partition von
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n = |N|. Diese Zahlpartition ist genan dann geordnet, wenn bereits die

Mengenpartition peordnet gewesen ist, Dics liefert ewei Abbildungen

Il s TN —= Tim), & =0, 0P = 0™, ..., P
I TN = Ty, P = [P, Pl e [Pl R
die wir Typabbildungen nennen.

(i) Jeder werallgemeinerten Partition kann cine cigentliche Partition zugeord-
nct werden. Bel Mengenpartitionen werden alle leeren Mengen entfernt,
bei Zahlpartitionen streicht man Teile der GriGe Mull, Falls die zugehirige
Fartition geondnet war, so sollen die Teile beim Entfernen aufricken, d, h,

die Anordnung soll unverindert bleiben, Wir haben also Abbildungen

TN — TLN), P P,

ITN = TN, P s P,

S M¥im) — Min), p— p,

T (n) — T, [ = [
Alle drei Abbildungen spielen [iir die Beweise der Aussagen dieses Abschnil-

les eine Holle,

Mengenpartitionen sind niitzlich um Abbildungen endlicher Mengen in an-
dere endliche Mengen #u untersuchen. leder Abbildung ¢ ¢ A1 — R mit &N =

[1.....0e}und & = {1....,r} kann cine Mengenpartition
Pr={PUL N TN (1.6}
von N rugeondnet werden. Dazn sctel man
P = T bir i =1, ..

Die geordnete Mengenpartition .7 ¢ beschicibt die Abbildung f cindeutig.
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1.3.4 Beispiel Diec Abbildung @ {1,... .4} — {1,... .5} mit fil) = 3,
F2r =1, fi3) = 1, und f(4) = 5 hat als zugehérige Mengenpartition 7y =
(2,30 AL WL {4 O

1.3.5 Bemerkung 7y ist genan dann eigentlich, wenn f surjektiv ist.

Man kann Abhbildungen und rugehérige Mengenpartitionen auch unter der
Operation von Cruppen betrachten. Inshesondere bicten sich Symp, und Svmg
an. Operiert man mit Svin g, so i1 die eben betrachtete Mengenpartition Py als
ungeordnete Partition, d, h, als Multimenge aufrofassen, Operiert man mit Sym,,,

50 15t sumindest der Typ der Partition invanant.

Hanfig ist e= niitzlich, Xahlpartitionen in DMagrammlorm #u zeichnen, dem
sogenannten Fervers Magramm. Sci p = [p. ... . py] cine ungeordnete Zahl-
partition in Standardform. Wir zeichnen ein Diagramm mit zeilen- und spalten-
welse angeordneten Boxen, Die {-te Peile repisentiert den Teil p; und besteht ans
pi linkshiindi g angeordneten Boxen, Die Partition p = [5, 3, 3, 1] etwa hat das

[agramm

Diie konjugierte Partifion crhiall man durch spaltenweises Auslesen des Dia-
gramms. Mit anderen Worten, die konjugierte Partition hat als Ferrers Diagramm
gerade das an der Hauptdiagonalen transponierte Diagramm, Wir bescichnen
dic konjugierte Partition von p mit p'. Beispiclsweise hat die obige Partition

=15, 3, 3, 1] das transponicric Diagramm
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woraus man p' = [4, 3,3, 1, || abliest. Die Linge der konjugierten Partition
ist p1. Der i-te Eintrag der konjugicrten Partition ist dic Anzahl der Teile von p,
dic grober oder gleich ¢ sind:

(P =|1i = &p)| pj = il|.

Sl a = lar. @2, ... .a.] eine Partition der Zahl v B Der Multinomialkoef-

ny H _ a!
al " \ayai. .. .a ) ]_[’I.'=| a;!

isl unabhingipg von der Rethenfolge der Teile der Partition a. Das nichste Lemma

Jizient

#eipl, dass er ganzahlig ist, denn er beschreibt die Kardinalitdt einer endlichen

Menge.

1.3.6 Lemma Seia € T1, (n) und sei N eine n-elementipe Menge. Die Angahl der
Miiglichkeiten, die Menge N in r angeordnete Klavsen der Grélien ay, .. ., a;

einzireilen ist (). Mit anderen Worren,

A TN : (LA =al| = [").
¥}

1.3.7 Beispiel Dic Anzahl der Weisen, das Wort MISSISSIPFP] in belichiger Rei-
henfolge der Buchstaben #u schreiben betragt

( 1 ) — 34650,
1.4, 4,2

Unser nichstes Ziel ist die RBestimmung der Anzahl der Miglichkeiten, eine

&

n-Menge in nicht angeordnete Klassen von vorgeschrichener Grofe cineoteilen.
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sl g, dz, . odgm] € ﬁlf‘il:l mitayp =y =L = by Die peordnete Partition
Aa = (@) —az,d2 —as... . Qefa)—1 — dejars defay ) € T (@)
hei Bt Differenzpartition von a.
1.3.8 Bemerkung S¢1a & (). Dann ailt
iAa’y = |{‘|l = La) |a; = i}l

Die Partition Aa” wird auch der Zykeltyp von a genannt. Es gilt [Aa’| = £(a)
und 3700 0 - (Aa’; = |al.
1.A.9 Beispiel Wir betrachten die Partition @ = [5, 2. 2, 1]. Die konjugierte Par-
Htion ist a” = [4, 3,1, 1, 1]. Der Zvkeltvp ist Aa” = (1.2.0,0, 1) € TI®F(E(a.
Manhat ] +2-24 1.5 = 10 = |a]. O

L3N0 Lemma Sei a € 1in)und N eine n-clementige Menge, Seiv = £a). Dhe
Anzahl der Méglichkeiten, die Menge N in nicht angeordnete Klassen der Griifie

i1, 83, ... ,dpe einzileilen st
| (lﬁa"l) ||
| e’ |! Ma’ (a '

Reweis: Nach Lemma 1.3.6 gibt es [Ijl] Mengenpartitionen 4 = (b, ..., o)

von N mil [A;| = a;. Dann ist A= [+, ... .4} cine Mengenpartition mit
nicht angeorndneten Klassen. Tede Mengenpartition # mit [[.A| = a hat nach He-
merkung 1,38 penan (Aa’); Klassen der Grobe §. Jede Permutation dieser Klassen
untereinander [iB1 den Typ ||o4(| der Partition 4 irvariant. Alle Mengenpartitionen
mit derselben ungeordneten Partition & ergeben sich durch solche Vertauschun-
gen aus der Partition A, Demnach ist die Anzahl der ungeordneten Mengenparli-

tionen vom Tyvp a gleich

1 ny 1 |1'lu’|) |::|)
H:‘;If,ﬁ.u’jj!. al " flan \aAa ) \a)l
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1.3.11 Beispiel (Fortsetzung von Beispiel 1,3,7) Die Anzahl der Weisen, eine 11-

elementige Menge in nicht angeordnete Klassen der GrofGen 4, 4, 2, | cinzuteilen

I 4 11 ) 1 ( 11
. : = —- = 17325
4! (J,J,E 4.4,2, 1 20 \4.4. 21

(demma’ = [4.4.2. 1] = [4.3.2. 2] und Aa” = (1. 1.0, 23 o

betrigt

Hiufig michte man die Gesamtanzahl der Mengenpartitionen einer n-clemen-
tigen Menge in r Klassen bestimmien (unabhingig vom Typ der Mengenpartition ).
Hicren nitzt man ans, dass dic Abbildung || - || cine ungeordnete Zahlpartition
von i it genaw - Klassen liefert. Durchliult man alle solchen Zahlpartitionen, so
kann die gewiinschte Anzahl der Mengenpartitionen durch Anwenden von Lem-

ma 1.3 10 kestimmit werden:

1.3.12 Lemma Die Anzahl der Méiglichkeiten, eine n-elementige Menge N in r

nicht angeordnete Klassen einzureilen ist

) | r " — .
Sanr)i=— Y (M)(“)—m,wn.

aell,nl

Dijese Anzahld wird S0rling-Fahl sweiler Art genannr.

1.3.13 Beispiel Wir wollen cxemplarisch 4205, 31 berechnen. Es gibt genau awei
Partitionen der #ahl 5in 3 Teile: a = [3. 1. 1] und & = |2, 2, 1], Die konjugierten
Partiticmen sind @’ = [3, 1, 1] und &" = [3, 2]. Man erhilt Aa’ = (2,0, 1 und

Ab" = i1,2). Nach Lemima 1.3.12 ergibt sich

5205.3) = %((1; J) | (17 j) * (|?:) | [1; ))

I
=g’ (60 + 90 = 25,



Einfithrung 21

Saln, rl,r =
niol 2 3 4 5 & 7 B 910 Bin
oo o 0 0 i 0 0o o000 1
Lo 1 4] 0 [l 4] [ o0 00 |
2001 I i i 0 0 o 0060 2
J|r 3 1 N (0 0 o0 060 3
401 7 i ] (0 0 0o 0060 15
Sl 15 25 10 1 0 0o o000 52
a0 L 31 90 63 15 1 0o o000 203
T L 63 2001 330 140 21 I 000 BTT
BOL 127 9ss 1701 1030 266 28 1 O 0O 4140
Q1 255 3025 TTTD 6951 2646 462 36 1 0 21147
Lo 1311 9330 34105 42525 22827 5880 750 45 L[115975

Tabelle 1.1: Stiding-#ahlen der eweiten Act a0n, r) und Bell-Zahlen Bin)

Tabelle 1.1 zeigt die Werte von $20n, r). Dhe Zahl Bin) = 37 Sin.r)
heilit Befl-Falil.

L3144 Lemyimwa Die Anzakl der surjeltiven Funkionen einer n-elementigen Menge

N in eine r-elementige Menge ist

SEE NI (;ﬂ,)(;): 3 (i):m,r_wn.

ayed, .. aei
o<l o v

Reweis: (Val. Kerber [13, Seite 81 ] oder Halder und Heise [11, Beweis von Salz

4,10 Seien & = {1, ... ;n}und & = {1.. ... r} Mengen der Kardinalitélen n

und r. Jede surjekiive Funktion §° @ & — K defimert nach Bemerkung 1.3.5 eimne

geordnete cigentliche Mengenpartition o4& ¢ von N, deren Teile die Urbildmengen
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der Elemente aus B unter f sind, Somitist.A € TNV Andererseits ist die sur-
jektive Funktion f durch die Urbildmengen und damit die geordnete Partition 4 ¢
cindeutig bestimmt. Es gibt also genaw soviele surjektive Funktionen @ N — K,
wie es Partitionen in TT. (A7) gibl. Mun hildet © die Partitionen I, () surjektiv anl
TI.(N) ab und jede ungeordnete Partition ans TL-(N) ist das Bild von genau r!

peardneten Partitionen, Es folgt mit Lemma 1,3,12
= | -
Eain, r) = TN = —||]'J,LNJ|.
r!

Muliplikation mit ! ergibt die Gleichheit des hintersten und der vorderen bei-
den Terme der behaupteten Gleichung, Fir den dritten Term bemerkt man, dass
der Typ der Partition 4 eine geordnete Zahlpartition von i an r Teile ist: |4 =
(e oo wttp) & Mpiwd, ap = 1, ... .4, = 1 und EL, a; = n. fu jedem sol-
chen Typ gibt es nach Lemma 1306 genau f_g}l vicle geordnete Mengenpartitionen

von N, O

Wir hezcichnen diec Anzahl der (ungeordneten) Zahlpartitionen von n in e Teile
mit F, .. Die Matrix (F, .0 18t eing untere Drelecksmaltrix mil Einsen aul der

Diagonalen, e Gesamtanzahl der Zahlpartitionen von # ist By = Ei:l Py

1.3.15 Lemma Seien r und n natfirliche Zahlen mit 1 <= r < 0 wnd sei N eine

H-elemetige Menge, Dann gili
i |1'I,..[NJ| = r!. &aim, r,

(i) |1

=i (1)K Saim k) =,
(i) |ﬁr[N]| = fain,r).

fiv) |TI (W)

= EE=| -5:(]?, ﬁ.':l,

m—1
P

(i) | T | = 3202 (0 - (220)-

) || =
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(vii) (11, (n)| = P, ..
fviii) T ()| = B0, Pug = Po.
Hewels:

(i) Lemma 1.3.14.

(i}

(iii)
(v

(V)

Jede Partition o4 € 1170 A) besilel cine gewisse Anzahl, etwa &, nichtleerer
Teile, Vergilt man die leeren Teile, so erhidlt man die cigentliche Partition
A oaus T (V). Zu jeder solchen Partition gibt s genau [”L'_} = ) Weisen,
n — k leere Teile einzufiigen, um ein Element aus M58 2o erhalten. Mit

(i) folgt

1] N
|11 ()| = Z(:)p[k.wq = (‘;) L da(n B,

k=1 k=1
Tede Partition aus TT7 (N} kann nach (1.6) durch cine Abbildung f @ N —
R ={l,....r] codiert werden. Da wir verallgemeinerte Partitionen von
N betrachien, ist f nichl notwenig surjektiv (Bemerkung 1.3.5) Demnach

aibt es penan r? solche Funktionen und ebenso viele Partitionen,
Lemma 1.3.12.
Folgt aus (iii).

Im nichinegativen Teil B o« M des ganzzahlizen Gitlers £ x Z definieren
wir zu jeder Partition @ € 1. (n) cinen Weg vom Punkt (0, 0) zum Punkt
ir,n). Wir beginnen mit dem Punkt Py = (0,00, Fird = 1....,r defi-
nicren wir wechselweise Punkte O und Py durch 0 = (8 — 1, Er;.=| dj)
und £ = (i, E:,-=| ayl. Die Folge der Punkte Fo. @, P, Oz, o0 Q00 B
definiert einen Weg von Py = (0, 0) zum Punkt P = (r, #). Dicser Weg hat
die Gestalt einer Treppe, wobel jedes Punktepaar ¢J; und P zusammen eine

Treppenstufe bildet (vgl. Abhildung 1.6). Alle Teile von a sind grober als
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Mull, d. h, die Hihen { y-Koordinaten) der Punkte P steigen streng mono-
ton, Abhildung 1.6 zeigt die Treppe #ur Partition (1, 2, 1, 1). Projiziert man
ty

.h
Fy

Ahbildung 1.6: Die Partition (1, 2, 1, 1) als Treppe

dic y-Koordinaten der Punkte /. ..., Pr—| auf die y-Achse, so erhilt man
cine (r — 1)-Teilmenge der Zahlen {1, ... . n— 1], Andererseits definiert je-
de solche Tellmenge genan einen Weg vom Punkt (0, 0) sum Punkt (r, 1),
der einer streng monoton slei genden Treppe pleicht, Aus diesem Weg kann

die Zahlpartition rekonstroiert werden, Damit ist [T (n )| = [i:” gereigl,

ivi) Jede r-Fartition a € TTf(n ) mit & nichtverschwindenden Teilen engibt durch
Weglassen der leeren Teile eine Partitiona € TTg(n). Jedes a € Tgin) kann

aul [I] Weisen von verschiedenen a € 117 (#) erhalten werden, Damit folgl
= fn Ly =1
|r.|:l:.li:ll = Z |r.|_|;:[|'!]| = E )( .
K kyVk—1
k=1 k=l
ivii) Definitonsgemil gilt |ﬁ, [.lr]l =Py,

(viii) Weglassen der Nullteile ciner verallgemeinerten ungeordneten Partitiona
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— d e — . .
[T (m) ergibt ein Element von 1, (n) Fir ein wohlbestimmies & = r, Dem-

nach gilt |ﬂ:[ﬂ]| = EE=| Fo k.

O
1.3.16 Sate (Multinomialsaiz) Seien m.on € M. Im Palwomring E|x). . .., xy]
eill
" " : T
(x4 Fag)" = E (m. e ﬂm)lldlx; M
ay =0, oy =0
2B
" n r
— s
= .!l_ - .'|l|: "'.r::l =

E=(E) e I

Inshesondere gilt

m" = E (:)

as]l5iu)

Reweis: (Vgl, Halder und Heise [L1, Sate (1, 19)]) Teder Term im ansmultipli-
wlerlen Produkt (x) 4+ x2 4 ...+ x5, )" 38t ein Wort der Linge n in den Unbe-
slimmten x, ... .1, und jedes solche Wort kommit (hei Beibchaltung der Rei-
henfolge der Glieder) genau einmal vor. Da die Unbestimmien kommutieren,
kimnen wir jedes Wort in Standardform bringen, d. b in die Form A-I”'.x-;* e
mit nichinegativen ganzen Zahlen a;, die 377 a; = a erfiillen, Demnach ist
a = (@, ..., ag) € [} (n). Fiir festes a gibt es nach Lemma 1.3.6 genau (")
Weisen, dic Unbestimmicn in dicsem Worl anzuordnen. Jede dieser Weisen enl-
spricht einem Term beim Ausmultiplizieren des urspriinglichen Ausdrucks. Damit
ist die erste Gleichung geeeipl, Im sweiten Avsdruck wurden alle nichtverschwin-
denden a; gesammelt, Die innere Summe verteilt diese Exponenten dann aul die

Unbestimmten xp, . .., Ty, =
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Wir definieren fiir n & M die fallende und sieigende Faktorielle:

[x]lp i =x-ix—11--ix —m+10

[¥]" i=x - (x 4+ 1) ifx 4+85—17,
und setzen [xlo = [x]" = 1. Die drei Folgen von Polynomen
(x| =0}, (lxls|n =0} ([lx]"[# =0]

bilden drel verschicdene Basen des Polynomrings tiber den rationalen Zahlen. Wir
wollen einige Eigenschaften der Stirling- und der Bell-Zahlen rusammenstellen:
1.3.17 Lemma Seien n, k € M. Dann gilt
(i) S200, 00 = | wnd $20n, 0 = F2000 &) = 0 firn, & = 0,
i) Saim + 1, k)= Sain, kb — 11+ & - Saim, k) filrn = 0und & = 0,
fiii) S2in+ 1,k = Et:ﬁJ{ﬂ E(j, k= 1) fiirn =0und k = 0.
fiv) x® =3 Salm, k)[x]g,
Beweis:
ii) Folgt aus der Definition der Stirling-Zahlen sweiter Art,
(1) Siche Halder / Heise |11, Satz (437, Seite 57]
(iii) Siche Halder f Heise [11, Satz (4.4), Seite 57]

fivy Siehe Halder f Heise [11, Satz (4.1], Seite 56]

Dic vorzeichenlosen Stirling-Zallen der ersten Art sind furn, ke M
rin, k) =|{g € Sym_ | cig) = k}|.

wobel ofg) die Anzahl der syklischen Faktoren des Elements g & Symy,, 1st, also

dic Anzahl der Bahnen von (g) aul der Menge {1, ..., n].
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1,318 Lemmza
(i) Filrn = 0pnd & = O gilt die Rekursion
rin+ Lkl =rin,k—1)+n- rin, k).
Die Anfangswerle sind

r0,0) =1 wnd rin, O =ri0 k=0 fir nk=0
fii)

’ k
rin, ;_:] = Z ;_I(li:lll)(j) l_[['ﬂ'l- — 13l

@] pinh i=l
Beweis:
(i) Kerher |13, Seite 821,

(i) Sei N =[1,....0jundseia e T (n) eine feste Fykelstrukiur Oir ein Ele-
mienl aus Sym,, mil genau & Fyklen, Mach Lemma 1.3, 10ist die Anzahl der
Mengenpartitionen 2 von N mit & nicht angeordneten Klassen der Griben
ay fira € Tegin) gleich J—,[Ix;'ljl IZ:} Innerhalb der Klassen von P der Gribe
ar; ktnnen wir die Elemente aul (a; — 11! Weisen #u verschiedenen #yklen
anordnen. Dies beweist die anzegebene Formel fir die Anzahl der Elemente

von Sym, mit k zyklischen Faktoren,

Die Stirling-Fahien der ersten Arf sind

Sqpim, k) = (=1 P i, b
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1.3,19 Satz

(1} e Stirling-Zahlen der ersten Art 81in, k) penidigen filr k = O und n = 0

der Rekursion
Siin+LE =8in k-1 —n  8in, k.
e Anfangswerte sind
SN, =1 wnd S, =& L =0 firn k=10,
iif)
L f1Aa’|\ fn\
p R Rk - i . |
Siim, k) =10-1) _E J.-!( &n“)(n)_l_[[““ 1.
el in) i=1

(iti) Sein € M. Dann gilt
i
[x]l, = Z &, k) - at
k=0

fiv) {Stirlings Iversionsformel)

" o~
N Sin, i) Al k=Y Sy(n, i) - dali k) = Eg
i=0 i=k

Hewein:
ii) Folgt aus Lemma 13,15 (1),
(1) Folgt aus Lemma |3018 (i3),

(111} (Mach Halder und Heise [L1, Sate (3.3)]) Fir m = 0 ist die angegebe-

ne Gleichung trivialerweise erfullt. Sei deswegen jotet no= 0. Wir sclzen
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(iv)

[x]; = 1'=” #'(n. k)x* mit unbekannten Koeffizienten s'(n, k). Offen-

sichtlich ist s'(ng, k) = 0 = &in, k) fir & = ». Im Falle v = 0 =sind
die konstanten Terme von [x]p4 und [x], Null, und somit 5'(n 4+ 1, 01 =
s, 00 = &qin, 0) = 0. Nun gilt

AN+
Eflﬁl + 1, .i.'].r"' = [*] 5t

k=1

=fx —mn[x]a

" fl
= Z 5, Bt - Z nes'in, Bix®
k=0 k=1
u+1 r+1
= E P e R E Z n-s'in, kat
k=1 K=l
a1
=3 (tn k=1 —n-s'(n, k)",
k=

Vergleich der Koeffizienten aul beiden Seiten dieser Gleichung #eigt, dass
dic #'(n, k) derselben Rekursion wie die &)(n, k) geniigen. Da auch die
Anfangswerte mit denen von §;(n, k) iibereinstimmen, folgl s'in k) =

Spim k) i alle n, &k = B

iMach Halder und Heise [L1, Satz (5.4)]) Nach Lemma 1.3.17 (iv) gilt
= gl k)x]y Hir e e BLOMIL i) lolgl, dass die Matrizen
(At K1) und (Sziw, &) ) mueinander invers sind. Zusammen mit der Tat-
sache, dass beide katrizen untere Dreiccksmatrizen sind, beweist dies alle

angegehenen Gleichungen.

Tabelle 1.2 zeigt die Stiling-Zahlen der ersten Art Hir kleine » und k.

Das folgende nitzliche Resultat findet man ehenfalls im Buch von Aigner [ 1],

Wir beniitigen es spiter. Es sel an dieser Stelle bereits erwihnt, auch wenn es

nichis mit Partitionen #u tun hat
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Jitm k)L Kk =
n|0 | 2 3 4 5 67 &9
01 0 0 0 0 i 0 0 0
1|0 | 0 0 0 0 o000
2|0 —1 I 0 N 0 a0 0
30 2 —3 1 ( (0 o0 i
4|0 — [ —5 ] (0 n o0 0
[0 24 —50 33 —10 1 0 0 00
G0 —120 274 225 25 —15 | 0 (RN
70 720 —1T7e4 1624 T35 175 =21 | (RN
B0 —5040 13068 — 13132 6768 — 1960 22 28 1100
QI 40320 —102584 118124 —6T284 22449 —4536 546 —36 1

Tabelle 1,2: Stirling-#ahlen der ersten Art &pin, &)

1.3.20 Lemima S B = [.E',-_J;:I il by ;= I[{}I_J"e'r'r” < i, § = n die Matvix der
Binomialkoeffizienten. Dann hal die inverse Mairix 3~ = r_.f;-;_,.] die Koeffizienten

b ==+ fro =i, j < a,



Kapitel 2
Schnittzahlen von Designs

[n dicsem Kapitel wird die Theorie der Schnittzahlen von Designs vorgestellt.
Abschnitt 2.1 beschiftigt sich mit gewdhnlichen Schnittzahlen, wobei die Ergeb-
nisse von Mendelsohn (Satz 201,10 und Kdhler (Sate 2.1.2) vorgestelll werden.
Die in letrterem Satr vorgestellien Kohler'schen Gleichungen dienen unter ande-
rem dem Machweis der Michtexistens von Designs su gewissen Paramelersilzen.
[Die berihmic (in dicser Arbeil nicht welter behandelic) Linear-Programming-
Aound von Delsarte wind von diesen Gleichungen hergeleitet, und awar durch Ver-
kniiplung der Gleichungen mit ¢inem linearen Oplimierungsproblem. Eine prizise
Darstel lung dieser Methode findet sich 2, B, in Bolick [7)

In Abschnitt 2.2 werden hihere Schnittzahlen von Designs behandelt. Die Fr-
gebnisse von Mendelsohn und Kohler lassen sich auf héhere Schnittzahlen fort-
setzen, wobel die Gleichungen jeweils nur leichte Modifikationen erfahren, Diese
Resultate stammen von Tran van Trung et al, [32],

In Abschitt 2.3 betrmchten wir cine modifizicrte Version der hoberen Schnitt-
#ahlen, die glohalen Schoittzahlen von Designs. Diese haben den Vorteil, dass sie
das gesamte Design widerspiegeln, und damit wur Klassifikation herangesopen
werden kimnen. Aus technischen Griinden betrachten wir ewel verschiedene Sor-

ten globaler Schnittzahlen, dic jedoch aguivalent in dem Sinne sind, dass dic cine

3l
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Sorte von Fahlen leicht aus der anderen berechnet werden kann und umgekehrt,
Dier Zusammenhang beider #ahlen wird wesentlich durch die Stirling-#ahlen er-

ster und weller Art beschriehen,

2.1 Gewdihnliche Schnittzahlen

Schnittzahlen von Designs werden bereits von Mendelsohn in seiner 197 1 erschie-
nenen Arbeit [27] behandelt. Wir betrachien in dicsem Abschnitt wwel fundamen-
lale Ereebnisse vion Mendelsohn und Kdhler.

Seit T = (¥, B) cin f-Diesign und M W mit | M| = m. Sei

w(M) =|{BeB: [BnM|=i}]

die Anrahl der Blicke des Designs, die M in genau ¢ Punkten schneiden. Wir

nennen oy (M) die j-fe Sehnirizalhl ven M mit D, Der Vekior
ai M = |:m;.[M b (M, L el M)

ist der Schwdttive von M mit TV Ist M eine E-Tetlmenge von V., so ist ap (M) =
| gleichbedeutend mit M = Bo £ B, In diesem Fall heibt a;(Ba) i-te Block-
Schmitizahl von By und af 8y) ist der Block-Schnitiive von By,

Das Folgende Ergebnis aus dem Jahr 1971 stammt von Mendelsohn [27].
Es beschreibt einen wichtigen Zusammenhang pwischen den Schnittzahlen einer

Teilmenge M untereinander:

2.1.1 Satz (Mendelsohn (271} Sei D = (V, B) ain t-iv, &k, &) Dexign und sei
M CV mit |M| =m. Dann gili fiiri =0,1, ... ,1:

3 (f_)ujwj = (”_’);_,-. (2.1)
— {

i=
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Reweis: Wir zihlen die Tupel

i

M
[J',H]E( )}CHZ T BOM

anl zwei Weisen ab: Wihlt man zverst die Menge | £ I["f]l uncl bestimml dann die
Anzahl der Blicke, die § umfassen, so ergibt sich die rechte Seite von (2,1), An-
dererseils kann man suniichst fiir j =4, ..., m genan r:_r-iM] Bliocke auswihlen,
dic M in j Punkten schneiden. Innerhalb dicser f-Menge kann man dann anf {:]

Welsen i -Teilmengen § wihlen. Das ergibt die linke Seite von (2.1). O

Die Koeffizientenmatrix der Gleichungen aul der linken Seile von (2.1 hat
eine besondere Gestalt: In den ersten (1 + 1) Spalten handelt es sich um eine obere
Dirciccksmatrix mit Einsen aufl der Diagonalen, Diese Spalten komespondieren
#u den Schnitteablen aniM, ... Lo M. Rechis danchen befinden sich wellere
Spalten, die #zu den Schoittzahlen a4 (M), ..., o (M) gehdren. Die folgenden

Gileichungen wurnden von Kihler [18] angegeben.

212 Satx (Kahler [18]) Sei T = (V, B) ein t-(v, &k, &) Design und sei M Z

mit |M| =m =8 Danngilt fiiri =0, 1, ..., 8

¢
ol M = Zf_ it (ﬂ)(.l‘:)}k
h=i /
m—t—1 ,

. F+h =i+ R4+
4 =]y Z ( A )( ,i )u,+,|.+|h'|-f]. (2.2}

=0
Den von Kohler angedeuteten, linglichen Induktionsheweis lassen wir an dicser
Stelle auslallen. Ein Beweis der Aussage wind sich splter ergeben, wenn wir den

allgemeineren Sate 2,24 beweisen,

Die Kidhler'schen Gleichungen sind niitelich, vm die Michtexistens in Fra-
ge stehender Designs nachenweisen, Das folgende Beispiel findet sich bereits in

Kiohlers Artikel [18]:
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2.1.3 Beispiel Dic Parameter 13-(32, 16, 3) sind suldssig, Anpenommen cs exi-
stierte ¢in Design T = (V. B) mit diesen Parametern, Dann kinoten wir M C

mit m = |M| = 15 wiihlen, Nach (2.2} giilte
(M) = 105 — Tde)g (M) — 1950015 (M)

Es wiire nun méglich, M so ru wihlen, dass rumindest cin Block des Designs die

Menge M enthilt. Damit wire a5 M) = 1. Es ergibe sich
cep (M 4 1o g i 4 195050 M = 105,

was unmiglich ist, da ey M) und ap (M) nichinegative ganwe Fahlen sind, Ein

[3-(32, 16, 3) Design existiert also nicht. O

2.2 Hohere Schnittzahlen

Die im letzlen Abschnitt eingefithrten Schnittzahlen kimnen verallgemeinert wer-
den. e hier vorgesiellien Aunssagen stammen aus der Arbeit von Tran van Trung
et al, [32].

Sel wieder T = (V. B) ein t-(v, &, &) Design und se1 B = {By, ..., B} die
Menge sciner Blocke. Wir definieren fir M © V und jede ganee #ahl 5 = |

l“if.u-- LB} e [f;) |hﬂ.i,-. " M| =i H
: o

d. h, die Anzahl der y-Teilmengen von 8, die sich gemeinsam in genan § Punkten

u;:'“EM] =

von M schneiden, Dicse Fahl heilt §-te Schnittzabl] der Ovdnung s von M mit dem
Design. Der Vektor

e (M) = (ué,“-'iM],. . ,af_“-'nm)

ist der Schaittive der Ondniing 5 von M mif dem Design D, Es gilt n'j“'n'luﬁ =
ci;( M) fiir alle ¢, d. h. die Schnittzahlen hiherer Ordnung verallgemeinern die

gewohnlichen Schnittzahlen.



Schaittzahlen von Designs a5

Weitere Parameter eines {-Desipns sind die folgenden: Seien £ und 7 disjunkie
Teilmengen von ¥V mit |[F| = jund [J] = jund § + j = 7. Fiir jede ganze Zahl

5 = | selzen wir

B -
M EN . -|"| P
"‘.i,‘l'=‘|{B';I""‘IJJW}E(H) : _|I'|:__- I.Ir.'i',"':__j l 5
K=

wobei J° = V1, J das Komplement von J in der Menge V ist. Im Falle s = 1 hat

man &y, ; = :-.}_' J-'. Im Falle s = Tund j = 0 schreibt man »; = sf!:, Inshesonders
- o L1
isLA = A .
2.2.1 Lemmmg (Tran van Trung, Qin-rong Wi, Dale M, Mesner [32]) 5ei D =

iV, By ein t-(v, k, &) Design. Seien [ € [T] und I & {1:] disjunkte i- bow. -

Teilmengen vor V it i + § = §. Dann gilt fiir jede ganze Zald s = 1 ;

! . .
w8l . d i
¥ B Z_ (=1 (Er) ( ¥ )

Insbesondere sind die Zahlen ffj wokldefiniert, alve unabhdngiy von der Wak|

der Mengen I und 1 mit den gefordenten Eigenschafien.

RBeweis:  (nach Tran van Trung et al, [32]) Eine s-Teilmenge von Blicken

{8, ... B} = {‘?] hei Bt zuldssig, falls

k3
re (s, s

=1
gilt. Um die gewiinschie Anzahl der zulissipen s-Teilmengen #u bestimmen. un-
lerscheiden wir zwel Arten:
Typi) Es gibt cinen Block, der #u J disjunkt ist, d, h, es existiert ein i = 5 mit

B, nJ =@

Typ i) Keiner der Blocke B; ... B;, ist disjunkt zu J, d. h. 8; 1 J = @ Hir alle
h=1,...,x5.
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Wir bestimmen nun die Anzahlen der zuléssipen s-Mengen von Blicken der Ty-
pen i) und i), I'm Falle 1) sei g die Anzahl der Blocke der s-Teilmenge, die zu 5

disjunkt sind:
w=\{hell,... s} | By d =8} = L

Entsprechend gibt e= 5 — n Blocke, die J nichttrivial schneiden, Wir bestimmen
dic Anzahl der Moglichkeiten, Blocke B = §f mit & 1 J # @ zu wihlen. Sei
R =B J. Firjede feste Menge R & 0 mit [R| = r gibles by ;- Blocke des
Designs, die f enthalten und J penan in & schneiden. Die Anzahl der Blidcke #
mit I B und #0 = @ist demnach

]

N = Z |[_|I'_.,1 eB|fTCB Bnl= E'|-| = Z(-:)ﬁ,l;ﬁ-_li__n- = A _.i".r__,-'.

Pt RS r=1
wobel die letzte Identitdl daher rithrl, dass & die Anzahl der Blicke ist, die §
enthalten aber nicht ganz disjunkt von J liegen, Demnach gibt es

i (ls.j) [if - :"-f._,i)
- i 5 — U
#ulissige s-Mengen von Blicken vom Typ i).

Diie Blicke einer ruldssigen s-Menge vom Typ ii) enthalten simitlich 7, aber
kein Element von J ist in allen Blocken enthalten, Die Anzahl dieser s-Mengen
von Blocken kann mil dem Inklusions- ¢/ Exklusionsprinzip (Lemma 1.2.3) be-
stimmlt werden. Sei £2 die Menge der s-Teilmengen von Blicken, die alle I ent-
halten, aber nicht gane disjunkt von 7 liegen, Dann gilt [£2] = [:"] = {A'_"‘L'-f}].

5

Wir seteen fiir y £ V

&
A= |[B,:,,---,f-'r.i,,|'"Eﬂ‘_'r'E m”fl..]-

h=1

Fir¥ © Jmit¥ = [yi.... .} sei

i
Ay = [ A

h=]
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Die gewimschie Anzahl der s-Mengen vom Typ ii) ist die Kardinalitit von

=0\ |4,

ved

die sich nach Inklusion f Exklusion wie fol gt berechnet:

¥ &
=120+ -0ty | [ A
w=I ¥

M ey wmi=f f=l

wobei [Ti—, A, die Menge der s-Mengen von Blécken ist, die alle § und o wei-

A bw

tere Punkte aus J enthalten. Die Kardinalitit dieser Menge 1=t I[ :| unabhiingi g

W

von der Wahl der Punkte vy, ..., v, und soergibt sich

() ()

Addieren wir die Anzahlen der sulissigen s-Mengen von Blécken der Typen 1)

und ii), =0 erhalten wir

Livl - |;||.|- ll.)(}n.[ - |;||-|'.||) -;1' - |:'I-||,_|' -ll p . _II (}nr'l-ﬁ')
' E( i £ — i + % +2.=0 u ¥

=1 =1

B ) Br)

Die folgende Identitit fir Binomialkoeffizienlen aus Iyvanaga [12, Seite 1429

> ()" )-("")

i=n0

liefert das gewiinschte Resultat:

=)+ S ()
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Syen()()

=0

Drer ndchste Schritl ist die Verallgemeinerung der mendelsohnschen Gleichun-
gen (2,1) fiir den Fall hisherer Schnittzahlen, Wir bendtigen ctwas Vorarbeit:

Sel A = (a; ;) eine 0f1-Matrix mit & Zeilen und v Spalten. Wir numme-
ricren die Feilen und Spalten mit Indexmengen £ = (1,2, ..., u] und o—

[1.2....,vL
i) Seid ={j1, j ..., jeu} © & Dannist
J'=lieZ laij=aip=...=a;, =11 S Z

die Menge der Zeilenindizes, deren Eintrige in allen wu J gehdn gen Spalten

Fins sind.
() Sei § =i d2. ... ] © 2. Dann st
'={je8|ay j=a,;j=...=ay, ;=118

die Menge der Spallenindizes, deren Eintrdge in allen zu § gehdrigen Zeilen

Fins sind,

2.2.2 Lemma {Tran van Trune, Qiv-rong W, Dale M. Mesner [32])8ei A eine

0/ L-Metrix wit w Zeilen wnd v Spalien, die durch Indexmengen Z2 = 1,2, ..., u}

wnd &5 =1[1,2,..., v} beschrifter sind. Dann gilt fiiralle m,n € M:
5 ()5 ()
fel ) el

e Ly
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Beweis: Ist cine der Zahlen mound 5 Null oder m = g oder v = v, so ist die
Gleichung trivialerweise erfillt, Wir kiinnen also 1 = m = gund 1 = 5 = w
annehmen. Fir § © Z und J < & sei obpp) o) die (] = | J]-Untermatrix von o,
die aus den im Schnitt der #o [ gehidrigen Zeilen und der e J gehirigen Spalten
licgenden Eintrigen gebildet st Mit der G =n-Maltrix 1, . deren Eintrige alle

Fins sind, gilt dann

@) re(6)lann=n

_ Z_;:I [I:I) _ Z (l;:;l).

[t

:_'tr.

Das [olgende Resultal verallgemeinert die Gleichungen von Mendelsohn:

2.2.3 Satz { Tran van Trung, Ne-rong Wi, Dale M. Mesner [32]) Sei D = (V, B
ein 1-(v, k, &) Desipn. Sei M C V mit |M| = m. Dann gilt jiir jede panze Zakl
5 = lund filrallei mit0 =i =

L -

3 (‘.’)u'ﬁ*‘r_m - ("_’)(“). (2.3)
ig i 5
i=i
Beweis: Set N = (n; ;) die Inzidenzmainx des Designs, Ebenso wie in Lem-
ma 2.2.2 =i & = {1,2,... .5} cinc Indexmenge fir dic Spalten von A, Wir

betrachten A g 8. dic (m % B)-Untermatrix von AN, dic aus den #zo den Ele-
menten von M gehdrigen deilen der Inridenzmatrix A gebildet wind. Fir jede
i-Teilmenge 7 = Jry, ... .5} © M sei 7' die Menge der Spalienindizes von
Blicken, die { enthalten, d. h.

'=1{j|l0=j=<h: My, ;= LHhHr h=1,... 1]
Flir = v, ... ..l'l.",'}'ES!-i:.'i.

J=xeM [ rg = 1Hir ke =1....,j}
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Flir jedes I € {t{}l gibt ez || = A; Blicke, die § gane enthalten, Aus diesen
Blicken kinnen wir {Iirl}l s-Teilmengen bilden, die £ in ihrem Schnitt enthalten,
[Daes {T} solche f-Teilmengen I © M gibt, erhallen wir folgende Gleichung

(=2 ()

FE[J;:I

- ()
i
1e(®)
und dies kann durch doppelte AbzBhlung der Paave (7, {B; .. .. . B} € [H] s

{'?}I s P M2 By umgeformt werden su

M .
=2 ('-f)w‘:”rm.
— \i/ !
J=i
I_.

Der Folzende Sate verallgemeinert Satz 2.1.2. Der Beweis ist eine Verallge-

meinerung eines Beweises von Bolick [7] des Satzes von Kihler,

2.2.4 8atx (Tran van Trung, Qiv-rong W, Dale M. Mesner [32]) Sei D = (V, B)
et i-(v, &k, &) Design und sed M C Vit |M| = = 1. Dann gill fiir jede panze
Zahls = 1 und flirallei =0, 1, ... ,1:

d
R ey A
@i (M) =) JAVIAW:

=i
m—i—1 .
: FT+h—iNfr+h+1Yy
=1y Ej( A )( ; )”::—II:H["H]'
h=0
(2.4
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Beweis: Sel ™' (M) = (&, (M), ...y (M) der Schoitttyp von M und sei
D= (¥, ..., ¥ der Vektor mit den Eintrdgen v = |:*l:";'||[t"] fiir 0 = j = r.

Umschreiben yvon Gleichung (2,1) in Matrixschreibweise ergibt

X T T
Bo. ok (MT =nT.

Wir spalten den Vektor "M o zweel Teile auf, wobel wir die ausgewiihlten

Positionen im Index anreigen. Wir wihlen
M= (e M, e M),
den Yektor der ersten (f 4+ 11-Elemente, und
(¥ M (% A Y M
@, (M) = (23 (M) e T (M),

den Wektor der dbrigen Koeffizienten. Dann ergibt sich aus (2.1)

(L] T ; T T
Bo,..al 0.0 S MY = =B e ﬂ|,+| M+
(1] - 5l T
— U |f‘wJ = _'Em ] Bl L L 2] Sy (M)

—1 T
T :E“:'----..' A L

wobel 81 = (k] ;) nach Lemma 1.3.20 die Koeffizienten b = (— 17"+ (! ) hat.

In der i-ten Zeile ergibt sich fiir 0 = § = ¢:

al* (M) = E Er -+;[ )() ' ,'-;a'1+zr 1'“[ )[':)(T’)

h=r+1 j=i hi=j

=:|:'.|_

Wir betrachten O niher, und verwenden dabei folgende [dentitat fiir Binomial-

koellizienten, die in Kouth [17] nachgelesen werden kann:

= fn n—1
3 -1 (’) - i—l]*"( ) (2.5)
= j i
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* = z()0)

=

- S

I—i

- = it w
B i i intih— i —in

Wir erhalien

B f'—ll'l k- 'J'r)
B Jlth— j— i) (;
g0
| =0 i i
2.5) I_“r_r-(.fa—r'—]) i
F—i i
— —1y- f(.ﬁ—r—])(ﬁ-)
N h—r— 1\ )

Einsctzen dicses Ausdrucks fir C), ergibt nach ciner Indexverschichung die Be-

hauptung:
"'mﬁ
- - Z (—13' “( —i- I) )uj“[M1+Zr a+.«( (”i) Ay
W= h—1 —1 : — k ¥
m—i—1 ,
B i =iy i+ h 41 |
= (=nFE ( i )( i ) gy (M)

=0

e ()

Wahll man 5 = 1, so erhiall man hicravs cinen Bewels von Sate 2012,
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2.3 Globale Schnittzahlen

LUm Invarianten rur Isomorphicklassifikation von Designs zu erhalten, definieren
wir plobale Schnittzahlen, Gleichzeitig dehnen wir die Ergebnisse der letzten Ab-
schnitte aul diese neue Sorte von Kenngriiben aos:

Sci wicder D = (V. B) ein t-(v, k, }) Design. Fir jede ganze Zahl 5 = 1 und

jedes i e M scteen wir

; B v
[ P \ . .
Il'l-" (™ = H”J"i”.”1”‘ll1]e(-.'): |mf_1_l.-* =.ll
] k=l

2

also die Anxahl der s-Teilmengen von Blicken des Designs, die sich in genau ¢
Punkten schneiden. Dies ist die i-fe globale Scimitizalhl der Ordnung 5 des De-
signs D, Esista)” (D) =0 fiir i = kund ;" (D) ist 0 fiirs = 1 und b sonst. Der
Viktor

(T = (ur';"['ﬂ], cees Lré""]fP]\J

ist der globale Schnirttyp der Ordnung s von D.

Wir sind daran interessiert, die globalen Schnittzahlen eines Designs schnell
#u berechnen. Ein Algorithmus, der dies leistet, wird in Abschnin 5.1 vorgestellt.
Wir bereiten dies an dieser Stelle vor, indem wir cine leicht modifizicite Schnitt-

invariante einftibren, die sich als leichter berechenbar heraussiellen wird.
Filir s = 1 und ¢ & M seteen wir

lf:sj-,,...,ﬂj-,:.eﬂ*'; Ink” =i| :
f=l

die Anrzahl der =-Tupel von Blécken, die sich in genau ¢ Punkten schneiden, Wir

r_rl!'l'l['p] =

nennen dicse Xahl dic @ -te globale Schnitizahl ven s-Tupeln von Blgcken von T

Es gilt g (D) = 0firé = k. Der Vektor

el* (D) = (ué,*'m], ,ul_*'m]]
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ist der globale Schnittive von s-Thipeln von Bldcken des Designs,

Dig Schnittitypen von s -Teilmengen a (D und s-Tupeln a1 D) hiingen wie

folgl rusammen:

231 5atz Sei D = (V, Bl eing-iv, k, L) Dexign und sei 0 < 5 € M Dann gilt:

¥
el Py = Zu! Sais, w) ™I

=l

rawie

.I L]
(4] — lee] s
(D) = 3 E &, w) e

) w=I

Beweis: Wir betrachten die Polenemenge 930V, welche rusammen mit der Ver-
knitpfung M eine Halbgruppe bildet, Wegen M T M = M fir alle M  V sind
die Elemente dicser Halbgruppe sdmtlich idempotent. Sei ferner (E[TE0VI], 10
der Halbgruppenring tber [V mit ganezahligen Koclhizienten. Dic Elemente

dieses Rings haben die Form

a = Z ayy - M.

APV
Die multiplikative Verkniipfung dieses Ringes wind durch die Verkniipfung der
Halbgruppe, also die Schnitthildung, definiert. Wir schreiben deswegen statt des
Malpunkis das Schnittsymbol. Die Summe und der Schnitt sweler Elemente a =

Z_,,,qu[m dapg - Mund b = E-“E'fﬁ['l-"'lbﬂ‘f . M in Z]TPV1] sind

,:!-|-,l'_-_|:= Z chM+J:'M'|M,
Mei)

aifh:= Z E lep byl - W

Wk A e
I:H ! HN =W
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Wir betrachten E(V)] als E-Modul, Ein weiterer £-Modul ist der Raum der
panzzahlipen Vektoren W, = " = fen, ... . ey)p. Wir definieren folgende
Abbildung, welche wir Gewichisfunkiion nennen:
kD BV — 20 E dar - M Z dar * € ag).
MO M)

Diese Abbildung ist ein Z-Modul Homomorphismus. Der Raum W, ist der (e-
wichisragm, e Abbildung « ist niitzlich um Schnittzahlen @ berechnen: Seien
fy. ..., By die Blicke eines Designs T = (W, B). Dann gilt fiir jede ganze fahl

5= 1
&
(D) = ( o (B ) (2.6)
(By o 8 6B b=
unil
X
"D = ( Z m _J'f_t.})_ (2.7)

xe [y 41, j=1

K=[x},... , X3

Mil dem Multinomialsatz 1.3.16 [olzermn wir

il ) [1='I5] K ( E m B, )

= .r( HEBJ)
216 K(IZF( m)qﬂﬂ) = (4],

wiobei i m 5 = W liir jede Menge 5 setwen, In der Summe iiber alle nichine-
gativen ay, .. ., ay mit Ei=| ap = & sind evenluell viele Terme Mull, e mchl-

verschwindenden Glieder ergeben cine Zahlenfolge ey, oo Le mit 3 5 o = 5.
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Wir kiinnen die urspriingliche Summation aufspalten, indem wir firg = 1... ., %
#uerst die Positionen {xy, ... , x,} durchlanfen, an denen yon MNull verschiedene

Koelflizienten stehen, Dies engibt

I.*:I—L(Z Z Z (“ . )thTI)—l**J

= L. . . : = ] ——
w=l x. I: .I 1=l w = 1 =1 —l'Tr|
X .‘|- i ‘.r_: | =3
e beiden inneren Summen sind unabhingig voneinander und kinnen vertauscht
werden. Bel der innersten Schnittbildung kénnen wir den Exponenten e = | ver-

nachlissigen, denn [ir jede Menge M gilt MO M ML 0 M = M. Wir erhalten

=1 mal
v [
rm_,r[z > o ) X Ne)=cen
=1 =p=d, lo--- o Fu 1[' _]n'—l
L1 4= X=ix..
Die innere Summe ist unabhingig von der Partition ¢ = (e, ... . ¢,) und kann

ausgeklammen werden. Die ibrighleibende Summe aller Multinomialkoelfizien-
len iiber alle pecrdneten eigentlichen Partitionen der #ahl 5 in g Teile ist nach

Lemma 1.3, 14 gleich u!- 205, w). Wegen der E-Linearitit von g und (2.7) folgern

wir weller
& 5 ]
.:m;.n(z( y ( | )) 5 m;;_r,.)
=l a-l..l. =1 Cly - o Oy j.ll:-l.x.ﬁ_]. _||=|
Lt 1ok X =g, o,y
al & ixa
= "
= E ! Sa(s, W) K ( Z m 1'3,,_;)
=1 1.[ 11, .. & .I _|-—|
|......l\,,-.-'
I:l-n"]
EH' & (s, 1) - e,
=1

welches rusammengesetet die erste Gleichung ist, e aweite Gleichung folgt

durch Inversion gemil Lemma 1.3.19. Beide Gleichungen sind aguivalent. o
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232 Lemma Sei T ein 1-(v, k, &) Design, Dann gilt fifr fede ganze Zahl s = 1

und jede ganze Zakl i mit 0 =i =1,

(2= ()C)
o> **'( J6)C)

M-

wned

— [t h i Ry,
L Z ( )( : ) ety (.

Beweis: Selzt man M = WV, so gill
el (V) = o™ (D)

fiir v = lund i € M Die angegebenen Gleichungen folgen dann ans Satr 2

und aus Sate 224 mil m = .
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Kapitel 3
Die Konstruktion von Designs

[n diesem Kapitel betrachten wir die Konstruktion von Designs mit vorgeschrie-
bener Automorphismengruppe. Darzu wird zunichst in Abschnitt 3.1 dic Methode
von Kramer und Mesner vorgestelll und an kleinen Beispielen erprobt. Mil dem
vom Autor in der Bayreuther Forschergruppe um Prof, Dr, R, Lave entwickelten
Programmpaket DISCRETA [3] kinnen auf diese Weise Designs erseugl wer-
den. In Abschnitt 3.2 wird ein Resultat dieser Forschungen ausfiihrlich vorge-
slellt, nimlich Designs eur Gruppe PSLI3, 5) mit den Parametern 8-(31, 10, &),
Abschnint 3.3 priisentiert eine Liste aller bis dato bekannten r-Designs mil grobem
fid, h, ¢ = 71, die mit der Methode von Kramer und hMesner konstruiert worden

sind,

3.1 Die Methode von Kramer und Mesner

f-Designs mit grobem f sind schwicrig zo konstroieren. Der folgende Sate von
Kramer und Mesner [19] erleichtert diese Aulgabe erheblich. Daru nimml man
an, dass das #u konstruierende Design eine nichttriviale Automorphismengruppe
besitet, und schreibt diese Gruppe A von Anfang an vor. Dann konstruiert man

dic Designs, dic unter dicser Gruppe invariant sind, also diese Gruppe als Unter-

49
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pruppe ihrer vollen Automorphismengruppe besitzen, Das Problem, Designs @u
konstruieren, die unter einer festen Gruppe invariant sind, lift sich aul das Lésen
cines ganrzahligen Gleichungssystems zuriickfiihren. Durch die Wahl einer nicht
#u kleinen Gruppe A erleichiert sich das Konstruktionsproblem unter Umstinden
erheblich. Nachieiliz an diesem Ansatz ist allerdings, dass nur solche Designs
konstruiert werden, die tatsichlich die vorgeschrichene Gruppe als Aulomorphis-

mengrupps xu las=en,

3.1.1 Satz (Farl 5. Kramer, Dale M. Mesner [T9]} Sei t-(v, k. L) ein médglicher
Parametersaif eines Desipns (alse 7. B. ein muldssiger Parametersatz). Sei V =
[1.. .. .v}eine v-elementige Menge und seil A = Symy; eine Permaitationsgrippe.
Sei i':lji_l iy die Menge dert-(v, k, L) Designs auf'V, die unter A invariant sind.
A habe £ Hf:..imwr auf 1-Teilmengen von ¥V und £y Bahnen auf k-Teilmengen. Seien
Oy g, ind O . oo, Op 5, die A-Baknen auf [1;'} Bow [l'l]l Seien () ; €
O Vertreter dieser Balnen fliri € [1,k}und 1 = j < £, Wir definieren fiir
i =6 und j =&

mi ;= |[[K € ;| O C K}
Aux diesen nichimegativen ganzen Zahlen bilden wir die Matrix
.-'h:’;j‘1 = (i ).
Sei ﬂ:l_n-.k.:u.'u die Menge der Lisungen von
M =1,
mit ¢ e [0, 11**. Dann induzieren die Abbildungen
DY oy = B ks D= (V. Bl 18

il

teljl =1 ﬂt._.-‘ = B, und 0 sonst
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wnd
E"‘l — E}‘I‘I ID = 1"! .E" :|
f—iw i1 f—iwok,ays  FEF L= L, O
it
fe
B= | Oc
j=I
p=1
sieinander inverse Bijektionen swischen den Mengen i!:i—iu-.k i pred E:"_“, kY

Fewels: Wir reigen zunéchst, dass die Zahlen m;, ; wohldehniert sind, also nicht

von der Wahl der Vertretermenge @ ; € (O ; abhdngen, Wir schreiben kurefristig
m 0 = |[K e O ;| OC K},

wobei das Argument aneeigl, welche Menge O < (3, ; in der Definition der Zahl

benutet wird, Fir jedes a € A gilt dann

:Ja,-,lu[f};‘lr-] =[[K ey, | O €K}
=K €O, |0 S K" )|
=[KeO, |0, <Kl
= (K €Ol 0, S K}

:Jii,-_;[ﬂ,_,-],

wobei wir beniitzen, dass O ; = ﬂ;.,i gilt, denn diese hMenge isl cine Bahn der
Gruppe A. Damit ist die Wohldefimertheit gereigl.
Wir #eigen nun, dass Rir TV = (), B D4

d={v k4]

dic Abbildung B +— g
mitpg(jl =1 & iy ; € B < O ; © B wohldefiniert ist, und dass das Bild
in 'EFJ'_(.-.A.;.] enthalten ist. Zunichst folgl wegen A = AutiD), dass mit Oy ; € B
auch jede Menge EJ'E_J; fiir @ € A in [ enthalten ist, Die Blockmenge B setet sich

also aus ganzen Bahnen unter A susammen. Mit anderen Worten, dic Bahn IS'E__I-
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ist entweder vollstidndig in B enthalten oder B0 0y ; ist leer. Der Viekior g gibt

an, welche k-Bahnen in dem Design enthalten sind:

tplijl=1 &— ﬂ';.._J;EE — H.E,_r"EE-

i
F—{p kR0

Wir zeigen nun, dass der Vektor gg in £ liegl, also eine Lisung der Glei-

chung (3.1) ist, Sei i = £,. Dann gilt

iy £
Y migeorali= Yy |[KeO,| 0 c K}
i=1 DII-IJ

=K e B| O; £ K}

= A

Demnach gilt --'h‘i;‘j‘,.~ -:E =k le,g.alsogg € ﬂ;"_“.“,._h].

Anders herumzci e £ E;l—u-.t.h cin 0/ 1-¥ektor der Linge £; mit .-'l-'f;'_"t T =
A ll'.xl' L= ist machruweisen, dass dic Blockmenge BI cin I-{v, &, 2) Design

Dy =V, Byymit A = AutiDy) definiert. Dazu sei T eine beliehige (- Teilmenge
von V. Dann gibt es einen Index § = £, und ein Gruppenelement a € A mit

e und T = 0 ;. Wegen

Ly
= Zm,-_j-ﬂj]
=1
£y
> K €Oyl 0y S KN

p=i
Fofi=1

ir

= Y UKe0,; 108 ck°)
:-;u'lll
N

= ) UK€ =0:; | T <K}
=

Fifl=1
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“[fe< Gonsires}
K BT S KN

folgt, dass BI die Blockmenge eines i-(v, k, &) Design ist, Als Vercinigung ganeer
Bahnen unter A ist B; insbesondere unter der Gruppe A invariant. Demnach gilt
A=AuP)und D e D)

Fusitelich verifiziert man leicht die Gleichungen
HFH =BF und Ig, =L

Dies bedeutet, dass die angegebenen Abbildungen ewischen den Mengen
E.'—[-".-"n.-"-_l und ﬂr (k2 Fucinander inverse Bijektionen sind,

]

Dig in diesem Salz betrachiete Malrix .H;'I‘,. heilit auch Kramer-Mesner Ma-
fri (nach [19]3 Die Gleichung (3.1) heilbt auch Kramer-Mesner System. Ein ef-
firienter Algorithmus sur Lisung dieses Systems wird von Wassermann in [33]
beschrichen. Ein umfangreiches Progrmmmpaket zur Konstruktion von Designs
mil vorgeschrichener Automorphismengruppe wurde vom Autor in einem DEFG-
gefdrderten Projekt an der Universitdt Bayreuth entwickelt, Das frei verfiigha-
re Programm DISCRETA [3] automatisiert die dazu notwendigen Schritte und
ist dank ciner graphischen Benutzeroberfliche leicht benutzbar, Es lGuft auf al-
len gingigen Unix-Systemen, inshesondere anl Linux. Das Programmpaket stellt
eine Vielrahl von Gruppen bereil und ermiglicht es dariiberhinavs, ans beste-
henden Gruppen durch Kombination neue Gruppen @u konstrojeren, Aol Knopf-
druck kann dann die Kramer-Mesner Matrix berechnet werden, Das inlegrierie

Programm von A. Wasscrmann dient der Suche nach Lisungen.

AL L2 Beispiel Wir betrachten den dreidimensionalen Wiirfel, dessen Fcken wie

in Abbildung 3.1 nummeriert sind. Wir sind aufl der Suche nach Diesigns mit den
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(5 6
J/ 1 =000 5 =001
I G,
@ e T 100 6 =101

w 2 3_po 7=0n
e ey 4=110 &=111

Ahbildung 3.1: Der dreidimensionale Raum P27 als Wiirfel

Parametern 3-(8%, 4. 1), wobei wir die 8 Eckpunkte des Wiirfels als Menge V neh-
men. Fusitzlich verlangen wird, dass die Designs unter der Gruppe A der eigentli-
chen Bewegungen des Wiirfels auf sich invariant sind. Diese Gruppe wird erzeugt

von den Elementen

a = (1302, 3, 5106, 4, TIE),
g =11.2,4.3)(5.6,8,7)

und ist isomorph zu Sym,. Wir berechnen zunichst die Bahnen O ; der Gruppe
A auf i-Teilmengen. Die Anrahlen der Bahnen sind £ = 1,0 =1, {2 = 3,8, =
3,4y = 7. Tabelle 3.1 reigt die Vertreter ﬂr‘.,i der Bahnen, Die Ordoung des Sta-
hilizators und dic Bahnlinge sind im Index angercigl. Nun stellen wir diec Matrix
.M‘I_;l__1 aul (Abbildung 3.2). Jede Zeile und jede Spalte dieser Matrix ist einer 3-
bew. 4-Bahn zugeordnet. Der rugehdrige Vertreter ist als Teilmenge der Ecken-
menge des Wiirfels dargestellt. Das Gleichungssystem .ﬂt’f‘ﬂ* cpl o= 15, besitzt

genau vier Lisungen r; € [0, 117, welche die Menge E‘%i-us.d. |, bilden:

=00, 0,1, 0,00, 1,
2 =00, 0,0, 1, 0,0, 13,
s =00, 0,0,0, 1,1, 01,
I4 =l Loo,o,o,0,1, 1.
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Ooir {1z
lIﬂ.1l|: ”.ll"‘h.t’:
s {llas _ .
O 1L2hs D00 {1.2.3.8h 04
a0 T Q41 {1,2.3,6}212
2 {1, Bleq
'I:]_1I4Z {J.:.:‘L?]‘E.IE
l::':,gl [L"”:.I:
O (.23 Dy5 {1.2.3.5h;
C:I.a..|: [].:.-?}I._-I- Opg 127, 8lss
H2: T S E:'q;: -I],—‘-,f!,?]u:

Oaz: {1,4,6}38

Tahelle 3, 1: Die Bahnen der Gruppe des Wiirfels anf Teilmengen

Die zugehirigen Designs Dy, = (V. B ) Oiri = 1...., 4 bilden die Menge
A :
i]ﬁ—[h.-i.l'l'
A LA
Dy, =0V, 043004 7) = (Wi o1 217 A,
<A A
1‘-’]: :[']-':, E]_1I.|. I I::'.;.'.'] = [ll-':".a o . o . -"'a AL
A LT
Dy, =V, 045U O4) = (W 208 e s Al
. Iy s oy Ry |
D, =V, 04y VO gO7) = (W | 208 | a0, | 10 A)

<

Einige der prominentesten 7-Designs besitzen eine der Mathieugruppen als
Aulomorphismengruppe, Sie wurden von Wilt in [ 36] konstroiert, Hier das grole
Witt-Diesign zur Mathicu-Gruppe Moy

A L3 Beispiel Die Gruppe M2y wird erzeugl von den Permutationen

(1234567801011 121314151617 18 [9202]1 2223,

(217107904 13 14195008 18 11 12235152022 2] 1),
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- = i [ . - ri
* = ri 1 i = -
=t ) ) [ = ) -
T s -
el el i i i i -
A A7 LA LA A AT L
':l:-'r/p ':I-a- = .I:_.q:c Sp:--_,a l:l:r-.l--.-_':\ = - ..._q..;-
Ay
[Earg 1 1 1 1 0 0
(1.2.3]1,24
Wl
L1 0 2 1 0 1 0
(1,2, TH 24
. 0
ol 0 3 0 i 0 1
(1,4,6}38

Abbildung 3.2: Dic Kramer-Mesner Matrix .-'I-'f_‘:‘_d

(12430223303 12304 16)(5 181 (6 100(T 200 (8 1439 215 11 17171322515 19,

und hat 244823040 Elemente, Man stellt fest, dass die Parameter 5-(24, 8, 1)

#ulizsig sind. Die Bahnen der Gruppe aul Teilmengen der Kardinalitit kleiner

oder gleich & sind wie folgt (im Index die Orndnung des Stabilisators j:

-Bahnen :

L {}aaag23mdn
1-Bahnen :

L: {1 Memooasn
2-Bahnen :

L2 {1, 2}sgmoun

d-Bahnen :

1AL, 2, 3hionean
4-Bahnen :

1: {1, 2, 3, 4}2304a
E.Bahnen :

{1, 2,3, 4, Slsman
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&-Bahnen ; 8-Bahnen :

1: {1, 2,3, 4, 5, 6}2160 1:{1, 2,3, 4, 5,6, 7, 83s
2:{1,2,3, 4,5, 8hism 2:{1,2,3,4,56,7, [ T}asm
7-Bahnen : 301, 2,3, 4, 5,8, 11, 13} 3008n
1:{1,2,3,4,5,6, T}

2:{1,2,3,4,5 8, 11}4z0

E= ergibt sich folgende Kramer-hesner Matrix, seitlich wieder die rugehiri-

gen Bahnreprisentanten:

Fg{_g-f»? d;.ﬁ'" ’-Fhﬂﬁl
o P <
o o
) AL
b - —
AL
e
May - .
'Hj_g = [1,2, 3,4, Sts7an425u (34[] 128 ])

[Das System eH;:'_? 1 = (1) besitzt die olfensichtliche Lsung ¢ = (0.0, 1), d. h
die 759 Elemente der Bahn () 5 bilden ein blockiransitives, unter M-y invariantes
5-24, 8, 1) Steiner-System, &

Da jedes f-Design mit ¢ = | gleichzeitig ein (1 — 1)-Design ist, erhalten wir

aus Sate 3.1.1 auch folgendes Resaltal:

J.1.4 Korollar S« ¢ ¢ .'E::L_“,_'L:,_1 ein Lisungsveklor eines 1-(v, &, 1) Designs mit

vorgeschriehener Alomorphismengrioppe A, Dann gilt flivallei <1 :
M xT =001, (3.2)
Mit anderen Worten,

Fe 'E;:L—I:I'.l'-..:-\::l -err i =1I. i:'!'-?-']
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3.2 Die Konstruktion von 8-(31, 10, A) Designs

1998 konnte die Existensz von &-(31, 10, &) Designs nachpewiesen werden
(vgl. [4]). Die Designs wurden mit der Methode von Kramer und Mesner kon-
struiert, wobei die projektive Gruppe PSL(3, 5) als Automorphismengruppe vor-
geschrichen wurde. Die 31 Elemente des projektiven Raumes PGi2, 5) lauten wie

folgt:

il 0.mT 8201007 15203, 1. 007 222¢0.
220, LmT 0Zy20 0" 16204, 1,17 23501,

Tad

LTIz, 4T

I R i A N N

il

A2, LmT WwZizo, 0T 17202 0" 242023, 17 31Z44nT
4202, 1.007 240,07 182,207 252033, 17
5=(3, 1.7 [2Z¢0, 1, 107 19=(2,2. 107 Z6=id. 3,17
R TR 13201, 1,07 023,217 27a(0.04, 17
T, 17 42021, 07 212,217 2RS4, 07

Die Gruppe PSLi3, 5) operient auf diesen Elementen als Permulalionsgroppe
vom Grad 31, Die Gruppe wirnd durch folgende Elemente erseugt:

(1263345)(B 121611272859 17 20 1022 247( 1321 15 3123 293 14 26 19 303 18 25],

(1AS46)0A I3 1823 2859 19 29 [4 24 1025 |530200 11 312621 1),

(14563E21 18 16){9 30 29200 10 14 15243 11 23 26 281 {12 LT 27 22)(13 31319 25).

72T Z L3 P22 15004 10 12 19558 1723301325 18 14016 31203024 29,

Die Gruppenordnung betridgl

(57 — 15 — 5357 — 59

— — (5 454+ (5 — 115 — 115" = 372000,

Tabelle 3.2 #eigt die Anzahlen der Bahnen von A = PSLI3, 55 aul i-Teilmengen
von Vo= PGi2,5) Hir 7 = 10, Die anschlieBende Tabelle listet alle 10-Bahnen
von A anl V. Gereigt wird jeweils der lexikographisch kleinste Vertreter ei-
ner Jeden Bahno Die Ordnung des Stabilisators der Vertretermenge ist im In-

dex aufgefiibrt. Die Babnlinge ist der Quotient aus Gruppenordnung und der
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i o1 23456 7 8 9 1w
#E—H:]'mcnw.m.'i"l 1 1 2 3 5 12 22 42 92 174

Tabelle 3.2: Die Anzahlen der Bahnen von PSL(3,5) auf i-Teilmengen von
P2, 5)

Ordnung des Stabilisators, Jeder Vertreter beginnt mit der Folge der natiirli-
chen Fahlen |, 2, 3, ... Aus Platrgrinden wird nur das letzte Element dieser
Scric gercigl, das Anfangsstick wird durch das Auvslassungsecichen (... ) ab-
gekiiret. Beispiclsweise wind dic Menge {1.2, 3,4, 5,7, 16, 20, 24, 28] darge-
stelltals ..., 5,7, 16, 20, 24, 28},

Ji-Buhnen: ML 57,8914, 18 i O R W R B I e 1119
1200 5,7, L 20, 24, 28} gy ..., 57,89, 13,15 S5 [L.. 4,78, 12,21, 25, 26}
2., 10 M., 5, 7,8, 12, 14, 19) S (..., 4,7, 8, 12, L6, 20, 20),
- ORI T T .1 W11 ¥ . 5789 12,22 ET-[... 4,7 8, L1, LG, 20, 25}
40,9, 120 .., 57,89, 12, 14] A& .., 4,78, 12, 16, 20, 21}
Al 5,78, 13, Li 200, 2., 5 7,8,9,12,18) .. 4T, 8, 12,15, 1, 20
[ WU T T e N .. LY A5 TR 9037 [ I W R R I e | e 113
Tl... 5,7, 4 13, 14, 25 .., 57,89, 13, 14] Gl ... 4,7, 8,9 12,20, 29},
B ..., 5,7 8,9 13,17 % .., 57,89, 13,27 G2 ..., 4,7, 8, 5 13,20, 21
9. 5,7, 89 13, 300, I6: ., 57,89, 14,31], G [ 4,7, 8, 12,15, 1, 23
0e ..., 57,8, 12,13, 21}z .., 57,8912,27) G L., 4,78, 5 L2, 10, 20}
1,5 7,08, % 12, 212 ..., 57,89, 13,3 G L., 4,78, 5 12,13, 29)
122 5 7,8, % 12, 20, o, 57,89, 10,12, GG [ 4T, 8, 12, L6 10, 20
2o &1L 13 q0: 4. .. 57,89, 10, 1515 G .. 4, T E B 1L 19, 23
14 ... 8 12, 14y A .., 5, 7,8,9, 14, 19]; G L., 4,78, 5 L2, 10, 1T
15 ..., 8 12, 15y A2: 0., ,5,7,8,9, 14,27, S P W - O B e
Iec | . 5 T8 8 12, 13} 43 ... 57,89, 14, 1512 Toe ... 4,78 91D Lo, 20k
17:0... .5 7, 4,5, 12, 28 A0, 57,8, 13,15, 22, TI .. 4,78, 12, 16, 19, 20}z
18 ]... 5 7,8, 12, 14, 18}, A%: L., 4,78, 12, 16, 30, 28], T2 ..., 4,78, 12, 15, 23, 20},
186, 5 7,8, 12, 14, 28}, Af: Lo 4, TR, 12,16, 30, 24, T[4, T8, 5 13,20, 241
..., 5 T8 % 13, 16k A7, A, 7,8, 12, 16, 21, 25, Ta ... 4,78, 5 12,20, 26}y
21:]... 5 T8, % L3, 28, AB: L. 4,78, 12,14, 25, 39 TE .. 4,78, 5 12,17, 20}
23,5 7,8, 12,13, 20} A0: L 4,7 8,9, 12, 19, 26], T [ 4T, 8, 12,15, 20, 23,
5 o PO O I e S0 ..., 4,7,89, 12, 19, 78], TI-0... 4,78 9 12, 1K, 20},
b DU A A I I B S0 0., 47,8, 12, 13,21, 29], TE .., 4,78, 12, 16, 19, 23
e, 5 T8, 13, 14, 24, 520, 4,7,8,9,12, 18, 24|, T [ 4T, 8, 12, L6, 2, 3R
. o PR T A A B M. 1141 53,478 912, 18,301, B ..., 4,78 0 11 1K, 2upy



4,7, 8,19, 12, 18, 20},
4, 7,8, 9,13, 17, 20
4, 7,8, 19,12, 18, 31}
4,7, 8,1, 12, 30, 24},
4, 7B, 12, 13,20, 244
4, 7,8, 9,12, 19, 31}
4, 7,81, 12,13, 20}
4, 78,0, 12, 16, 19}
4, 7,8, 12,13, 21, 24
LA T B 012,13, 18]
4, 7B, 12,13, 21, 3L
4,7,8,9,12,21, 24
4, 7,8, 0,12, 15, =)
4,7,8,1,13, 17, 28],
4,7,8,9,12, 15, 20}
4, 7,8, 132, 14, 28, =),
Ly 7,8, 0, 12,19, 2],
A TR, 12, 14, 1B, 2]
, 4, 7,8, 9,17, 20, 25)

101, .., 4,7, B, 9, 12, 16, 28],

1oz, 4, 78,8, 12, 13, 1TH
02 1...,4, 7,89 17,19, 23|
0d: 4. .., 4,7, 8,9, 12, 15, 27|,
1., 4,7, 8,8, 12, 18, 19}
I06:]..., 4,7, 8,89, 17, 18, 3|2
D6 ). .., 4,7, 80,12, 17, 3],
L7 | ,7, 8,0, 17, 19, 26],

4q
4
4
L) . 4,
4
4

7,8,9,132, 15,28
,7,8,9,12, 15,21}
7,8,0, 12, 19, 4},
1,6, 0,12, 1K, IThH
.7, 8,8, 17, 20,23}

113:

114:0.. .

115:
11&:
117:

118: ...

11%:

120:0...

121:
122:

123:0...
124:0...

125:
136:

127: (...

125:
123

120: [...

171:

132: ...

133:

124:0...
135: [..

136

127:0.. .
138: ...

170

141:0...

14:2:

143 0...
e 4, TOE T2 M, 2, 252

4T RS, 1315 17,
(4,708,912 30, 21,
. 4,7,5,%9, 12, @0, 28],
(4,7, B, 9,12 14, 20,
4T 89 13 2], 27,
(4,7,8,9,12 35 3L]2
4,7, 8,9, 12,19, 21,
AT E D1, 18,
. .4,7,5,9,12 21,31,
. 4,7,5,9, 12, 15, 18],
AT E D13 4,170,
4,7 89,1213, 15,
. 4,7,5,9, 14, 17, 35].
(4,7, 8, 12, 14, 35, 28],
(4,7, 5,9, 12 14, 231,
. 4,7,5,9, 13, 21, 24]-
(4,7, 8,9, 12, 17, 18],
4,708,912 18 25]
. 4,7,8,9, 12 27, 23]
4,7 8,9, 12 13, 28],
ORI T A e A L
4,708,912 14, 18],
. 4,7,8,9, 12, 1%, 27,
A TR Q12 IR 2L,
(4,7,8,12,13, ™, 21,
(4,7, 8, 12,0, 31, 24,
4,7, 8,9, 13, 17, 21,
. o4,7,5,12, 14, 14, 257,
(4,7,5,9, 13, 1%, 2002
(4,7, 8,9, 13, 14, 20,
I T T e |

145: |

46 ...,
147:].. .,

144: |

Ldee ...,
15 ...,

151: |

152:1....

153
154:
155:
156
L57:
[EH
155
Lk
Ll

16 |.. .,

JEEH

e ...,
LG5 ...,

L
L7
Lis:
Lo

17 ...,

171
172

173:1...,

174:

Mok Wk oWk kR R R R R R R R R E R R E R R ERE R R R E R
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8,1, 12, 14,21},
4,12, 15, 18,2117
4,9, 13, 14, 18}
8,9, 13, 15, 17}
#, 12, 13, 24, %),
4,0, 14, 17, 18]
4,0, 12,13, 27,

A, 12, 15, 19, 30}

4,1, 13,15 274

, 8,132, 13,20, 70},
LB, 012,13, 15].

4,9, 13, 15, 28],
4,0, 13, 14, 16],
8,0, 13, 16, 27|,
4,9,12, 13, la}s
4,9, 13, 13, 14]g
8,0, 13, 14, 27),

LA 014,17, 215

L 4,9,12,14,7Th

L8, 12, 14, 18, 19},
L8912, 14, 15}2

, 4,9, 13, 18, 251y

L 8,0, 13, 14, 15};2

8, 12,15, 19,30, 23],
,4,12,13, 20,21, 415
L 8,13, 14,21, 24, 28},
L8, 12, 14,21, 28, 31],
L8, 12,15, 19,21, M2y
L 4,12, 14, 18,21, 3114
L8, 13,21, 24, 29, 0} o

FaLi{3.5)

Tabellen 3.3 und 3.4 zeigen dic (42 x [ 74)-Kamer-Mesner Matrix M550

Urm jeden Matrixeintrag mit einem einzigen Zeichen darstellen zu kémnen, wurden

wweistellipe Fahlen durch Buchstaben ersetzt:

a=10, b=11,

|:"=J.1I e

Die Werte 40, 60 und 120 werden als A, B und O dargestel It

Es gibt Designs en &4 = 93 und 4 = 100, Genaver haben die Losungsmengen
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die Kardinalititen:

|E§1-.;.a|,|n.-;3]| = 138,
|E1";I—|3|.Il:u.|l:-:u]| = 1638

A
BE—(31, 10,4

Diesign IZ’E = (W, HF 1. Wir peben die Designs schlicht durch Auflisten der Bahn-

Teder Lisungsvektor p £ £ erzeugl wie in Sate 3.1,1 beschrieben ein

indizes it g j) = 1 an. Die ersten dret Designs im Falle & = 93 sind

Dy o o L2579 12, 13, 14, 16, 19, 24, 25, 29, 30, 33, 36, 39, 42,
43, 46, 48, 52, 53, 55, 57,60, 64, 65, T2, 75, Th, 81, B3, B4, 85, 01,
92, 94, 96, 98, 103, 105, 107, 109, 113, 114, 116, 120, 124, 125, 126,
128, 131, 132, 136, 138, 139, 141, 147, 148, 149, 150, 152, 159, 162,
167, 168, 172,

Dy, 1,257,912, 13, 14, 16, 19, 24, 25, 29, 30, 35, 36, 39, 42, 43,
A6, 49, 52, 53, 35, 57, 60, 63, 69,70, T2, 75, TE, B0, B4, 85, 90, 94,
05, 98, 100, 101, 103, 104, 105, 110, 116, 117, 121, 122, 125, 128§,
30, 134 135, 137, 135, 139, 143, 147, 1458, 149 152, 156, 159, 163,
167, 169, 170, 172,

Dy, 01,205, 8, 11,12, 13, 14, 17, 19, 24, 25, 28, 20, 33, 36, 39, 42,
43, 46, 47, 48, 52, 55, 58, 60, 62, 64, 66, 71, 73, 76, 77, 78, 81, 85,
B, 90, 94 97 98 LO5, 109 LLL, 113, 116, 118, 119, 120, 125, 126,
127, 131, 132, 133, 136, 138, 140, 145, 146, 149, 151, 1532, 159, 167,
1a9, 172,



B Kapitel 3
3.3 Liste von t-Designs mit groliem ¢

In diesem Abschnilt sollen einige Existenzaussagen [ir 1-Designs mil grofem
mnsammengestellt werden, Die Ergebnisse wurden, sofemn nicht anders erwihnt,
innerhalb der Forschergruppe der Universitit Bayreuth um Prof, De B Lave er-
Fiell

Funichst bendtigt man Permutationsgruppen, deren Grad verhiltnismilbig
Klein ist. Eine ausflihrliche Liste der primitiven Gruppen vom Grad kleiner oder
pleich 50 sowie der einfachen Gruppen findet man in dem Beitrag Finite Groups
and Designs™ von Chouinard I1, Jajacay und Magliveras im |, Handbook of Com-
binatorial Designs" von Colbourn und Dinite [9, Sciten 587-614].

Eine weitere Quelle fiir Gruppen ist der von Eobert A. Wilson und anderen

unterhaltene ATTAS der Groppendarstellungen [35],

Parameter Gruppe A, A, Format von Mﬁ_, [ésungen [iir

B-(d0,11,1440) | PSL(4, 3), G065280, 53 = 569, (AL = 40)
B-(36,11,1260) | Spif, 2), 1431520, 79 « 694, (AL = 8d4)
B-31,10,) PSLi3, 50, 372000, 42 « 174, L =93, 1IN [4] {44 = 1)

B-128,14.5) ASLIE, 314, 151632, 48 « 3532, 4 = 14040, 18600 (Ax =
B0

B-[28,13.%) ASLIZ, 314, 151632, 48 =« 3300, » = 5832, TORO, 7128
(Ah =240

B-(27,13.0) ASLIZ, 30, 151632, 31 « 176, A = 3204, 3240, 4608, 5076,
5148 (AL = 1H)

B-(27,12.0) ASLIZ 30, 151632, 31 » 154 5 = 1296, 1932 (AL = 6)
B-(27.11.432) | ASLI3, 3), 151632, 31 = 121 (AL = 3)

Tabelle 3.5: 8-Diesigns mit vorgeschrichener Automorphismengruppe
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Parameler

Cruppe A, |A], Format von M;‘i Lisungen fir
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T-(40,11,4)

PSLi4, 3), 6063280, 24 = 569, 4 = 8230, 11220, 14190,
14850, ITR2Z0 (AL = 330)

T-(40, 1047

PSL4, 3), 6063280, 24 « 263, = 560, 1008, 1208, 1296,
1568, 1656, 2304, 2504 (AL = 4)

T-(36.11.4)

Spin, 23, 1451520, 37 = 694, L = 3360, 4200, 4536,
4935, 5040, 53271, 5376, 5775, 38R0, 6l11, 6216, 6615,
6720, TO56, T35, 7360, 7791, TEO6, 82935, 8400, 8631,
BT36, 9135, 9240, 9471, 9576, 99735, 10080, 10311, 10416,
LTOBLE, 10920, 11151, 11655, LITa0 (AL = 21)

Tlr't 34:9:l’l :I

PTLIZ, 3204, 163680, 45 =« 345, L =135, 171 (AL =1)

7-(33,10,4)

P2, 32), 163680, 32 « 596, L = 600, 720, 840, 880
[ AR = 400

?_I: 3 3 LEJH:II-:I

PTL(2, 320, 163680, 32 = 248, 4 = 60, 65, 80, 83, 100,
LO&A, 120, 125, 140, 145, 160 (AL = 5)

7-(33.8,10) | PTL(2, 32), 163680, 32 = 97, (Ak = 2)

731,100 | PSLi3, 51, 372000, 22 w0 174, & =480, 744, 800 (AL = 8)

T-(30.89.4) PILi2, 271 4+, 58968, 6] = 307, 4 =105, 112 [5] (AL =
1)

T-129.11LAY | POL2, 2704, 38968, 43 = 647, » =2130, 3465 (AL =
383)

7-(29,10,420)

PULOZ, 2704, 58968, 43 « 391, [5]TAL = 140)

T2, 144

Spih, 2], 1451520, 16 « 103, 4 = 23040, 30240,32760,
IS2R0, ITROO, IR160, 40320, 40680, 42840, 43200, 45720,
AR240, 307D, 52920, 53280, 55440, 55800, 57960 (AL =
1800}

Tabelle 3.6: 7-Designs mit vorgeschriebener Automorphismengruppe (Teil 1)
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Parameter aruppe A, |A|, Format von _-'I.-"[;'1 . Lésungen [iir

T-(28, 14 5} AGLIZ, 304, 303264, x A = 30420, 44460, 51480 [31]
i Mho= 180)

T-i28,13,5) Spi6, 21, 1451320, 16 « 101, & = 10080, 15120, 17640,

18984, 20160, 21504, 22680, 24024, 25200, 26544 (AL =
LR

7-(28,13,24780)

AGL(3, 314, 303264, 26 = 241 (AL = &4)

7-(28,10,6300)

PrL(2, 271, 58968, 29 x 257, [5] (AL = T70)

?":2?| ]3 |.I.:'.:|

AGLIZ, 3, 203264, 16 = 127 4 = 10140, 14820,
17160 [3]1] (AL = &)

7-(27,12,3)

ASL(3, 3), 151632, 17 = 154, & = 1896, 1944, 5832, TOS0,
7128, BITA( AL = 24)

7-(27,12,3)

AGL(3, 31, 303264, 16 % 114 3 = 2544, 2592, 3192, 3840,
IBRE, 4536, 5136, 5184, 6432, 64RO, TT2R [31] (Al = 24)

7-(27,11,3)

ASLI3, 30, 151632, 17 = 121, A = 540,675, 765, 810, 840,
900, 930, 945, 1035, 1080, 1110, 1170, 1200, 1335, 1380,
1515, 1650, 1755, 1875, 1890, 2010, 2115, 2250 (A% = 15)

7402711 ,3)

AGL(3, 31, 303264, 16 = 91 1 = 1215, 1305, 1350, 1440,
1470, 1483, 1575, 1603, 1620, 1710, 1740, 1785, 1845,
1920, 1980, 2025, 2053, 2145, 2160, 2190, 2280, 2295,
2325, 2385, 2415 [31] (AL = 15)

?":2?| ] ] |.I.:'.:|

L4, 20, 25920, 77 = 668, L = 1500, 1860, 2385, 2400
Ak = 15)

?-':2?| ]U.;‘.:l

P2, 2504, 31200, 53 355, 4 =240, 540 [5] (A = 60)

7427104200

L1, 2), 25920, 77 « 458, (AL = 60)

Tabelle 3.7: 7-Designs mil vorgeschrichener Aulomorphismengroppe (Teil 2)
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Parameler

sruppe A, |A|, Format von .-'I.-"[:Tj__. Lisungen [ir

T-(26,8,6)

PGL(2, 257, 13600, 54 131, [6] (AL = 1)

T-(26.9.4)

PrLi2, 25), 312003, 34 = 132, & =54, 63 8] [6] (AL =9

T-(26,11.4)

PULZ, 25), 31200, 34 293, » = 1176, 1356, 1336, 1716,
1886, 1926 (AL = 6)

7-(26,12.5796)

PUL2, 25), 31200, 34 = 379 (AL = 1E)

T-(24.8.4)

PSL(2, 23), 6072, 57 % 143, 5. =4, 5,6, 7, 8 [6] (AL = 1)

7-124,9.0)

PGL2, 230, 12144, 36 = 125, 5 =40, 48, 64 [6] (AL = 4)

7-{24,10,4)

PGL2, 230, 12144, 36 = 196, A =240, 320, 340 [5],[24]
(AL = 200

7-i22,11,3)

POLZ, 191+ 4, 6840, 49 = 154, 4 =315 630 (AL = 105)

T-(20.10.4)

B2, 197, 3420, 26 % T4, k=116, 124, 134 [5](Ax = 2)

7-020,10,126)

(PGLI2. 8) x C1) + +. 1008, 111 x 244, (Ak = 2)

Tabelle 3.8: 7-Diesigns mit vorgeschrichener Automorphismengruppe (Teil 3)
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Der Plesken-Ring

In seiner Arbeit  Counting with Groups and Rings™ [28] von 1982 betrachtet
Plesken Groppenoperationen aul Verhiinden oder, allgemeiner, auf Halbgruppen.
Fr bestimmit die Anrahl der Lisungen von Gleichungen in Halbgruppen, wobei
dic Variablen #u festen Babnen der Gruppe gehoren. Dicse Anzahlen bilden den
Ausgangspunkl einer eigenen Theorie, im Verlaute derer ein Ring eine besoncdere
Rolle spiclt, Dieser Ring, ich nenne ihn den Plesken-Ring, kann aof swei Wei-
sen realisiert werden. Funichst bilden die unter der Gruppenoperation invarianten
Elemente im ganzzahligen Halbgruppenring ither den Elementen des Verbandes
einen solchen Ring. Leichter #zu handhaben ist dann die zwelle, isomorphe Reali-
sierung des Rings als E-Modul mit Multiplikation, wobei das Hadamard Produlkt
die Rolle der Multiplikation einnimmt, Diese Version bietet sich fiir effiriente An-
wendungen besonders an. Wir werden im Kapitel 5 darauf zurtickgreifen.

Inden Ahschnitten 4.1 und 4.2 werden die Grondlagen der Theorie vorgesiell,
sunichst das Konzept der Gruppenoperationen aul Verbanden und dann der damit
Fusammenhidngende Plesken-Ring (wir werden schen, dass es sopgar zwel Plesken-
Ringe gibt), Auch die Plesken-Matrizen werden eingefiihrt, Tm Abschnitt 4,3 wer-
den Verbinde mit Ranglunktion betrachtet, und damit die Anzahl der Indizes ver-

doppelt. Das bedeutet aber gleicheeitig, dass dic Plesken-Matrizen cine Blockaeer-

4
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legung erfahren, In Abschnitt 4.4 betrachten wir speziell den Teilmengenverband,
Meben einigen wichtigen Resultaten wie Rekursions- und Inversionsformeln fiir
die Plesken-Matrizen wird hier der Zusammenhang zur Konstruktion von Designs
deutlich: Ex #eigl sich i(Lemma 4.4.2). dass die Kramer-Mesner Matrix nichis an-
deres st als ein Ausschnill der Plesken-Malrix der Operation der vorgeschriebe-
nen Gruppe aul dem Teillmengenverhand,

Ausfiihrlich wird diese Theone auch von Kerber |13, Kapitel 8] behandelt.

4.1 Gruppenoperationen auf Verhiinden

Wir h::ginnu:n mit dem Konrepl ciner Grpppenoperation anf einer Hﬂﬂ}gﬂ.{ppﬁ
Sci A cine Gruppe und (M, o) cine Halbgruppe. A operiert anl A, falls Fir alle
x,v e Mundallea e A gilt

(xoy 1 =x"z ."'d-

In diesem Fall nennen wir die Gruppenoperation von A auf M mit der Halbgrup-
penstrukiur vertrdglick.

Eine Halberdnung (Poset) aul einer Menge P ist eine Relation = mit

(PO x=x

(PO2) v = yund y <= x = x =y,
(PO3) v = yund vy = 2= x =
fur alle x, v, z € P. Eine Tellmenge M C P, in der alle Elemente vergleichbar
sind, d. h, in der entweder v = v oder y = x fiir je swel Elemente x, v € M gilt,
heit velixidindig geordner oder Ketre, Eine Teilmenge M C P, in der keine awei
Elemente vergleichbar sind, hei Bt Antiketie.

Einec Gruppe A speriert auf dem Poser (P, <, lalls
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fiir alle x, v € P und alle a £ A gilt,

sel jetzt (F, <) ein Poset und M eine Teilmenge von P, Eine abere {uniere )
Sefranks von M st cin Element w milm = w (m = w) Oic alle s = M.

Die kleinste obere Schranke von M st eine obere Schranke w mit der Figen-
schaft, dass w = w' fiir jede weiter obere Schranke w' gilt, Man nennt dieses
Element auch Supremunt von M. Wenn das Supremum einer Menge existert, so
isl e= elndentig bestimml.

Die griilite untere Schranke von M st eine untere Schranke w mit der Eigen-
schafll, dass w = w' [ir jede weiter untere Schranke w' 2ill. Man nennt dieses
Element auch fyfimgem von M, Wenn das Infimum einer Menge existiert, soist cs
eindentig bestimmi,

Falls das Supremum einer Menge M existiert, so schreiben wir daliir "-.,-"mE'H m
oder Y M. Fiir das Supremum zweier Elemente x und y schreiben wirx v y. Falls
das Infimum einer Menge M existiert, so schreiben wir daliir £y, m oder /A M.
Fiir das Infimum sweier Elemente v und v schreiben wirx A y.

Eine Menge P heilbt Verband, wenn gilt:
(%Oa) (P, =) ikt ein Poset,
(Wib) Je ewei Elemente von P haben ein Infimum und ein Supremum,

Ein Verband heilt volisidndip, falls zu jeder Teilmenge von Elementen das
Supremum und Infimum existiert, Endliche Verbinde sind also immer vollstindig,

Die folgende Bemerkung charakterisiert die Operationen v und ».:
4.1.1 Bemerkung Sci (L, v, ) ein Verband. Diann gilt fir alle x, v, z € L£:
(V1) xvy=ywvxundx sy =y x (Kommutativitit ),
(W2 xwyivz=awiywoiund (v aow) sz =3 oo (v ooz (Assosiabivitat b,

(W3 xwx=rxund x »x = x (Idempotenz b,



72 Kapitel 4
(V4 (v ylAaxr=xund v Ay v x =x (Absorptionsgesets ),

Andererseils st jede Menge M, aul der swei Verknipfungen w und » erklin

sind, dic (V1)-{V4) erfiillen, bereits cin Vierband:

4.1.2 Bemerkung S¢i M eine Menge mit @wei bindren Verkniipfungen v und .,
die (V1) his (W) erfiillen, Dann st M cin Verband bertiglich der durch

ISy e XWyY=y I: = xAy=x) (413
fiir alle x, ¥ £ M erklirten Ordnung.
Dies rusammen liefert die Aquivalens
(V0ay ATV = (V1911 AV2A (V3 Ay

Demnach ist es gleichwertig, ob in cinem Verband die Ordnungsrelation oder die
Verkniipfungen v und » sperifiziert werden. Wir schreiben wahlweise (M, <)
oder (M, v, o~

Eine Crruppenoperation awl einem Verband (st cine Operation ciner Gruppe A
aul den Elementen eines Verbandes (£, v, &), welche kompatibel mit den Ope-

ratoren Supremum und Infimum ist, fiir die also
x vy =x%v " unl x Ay =x% A"
fir alle x, ¥ £ Lund alle a £ A gilL.

4.1.3 Bemerkung Sci (L, v, A ein Verband mit zugehiriger Ordnungsrelati-
on = . Sei A eine Gruppe, die aof den Elementen von £ operiert. Dann sind

acquivalent:

i1} A openert auf dem Verband £ als Verbandsoperation, d. h, (x v v)7 =

v yTund (x Ay =2 Ay lurallex, v e £, a € A
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(i) A operiert aul dem Poset (£, =), d, h,x = v = 2% = y* firalle x, v £ L,

a £ oA,
Beweis: Kerber [13, Lemma 51,11, Seite 143]. o

Wir betrachten nun die Operation der Gruppe A auf der endlichen Halbgrup-
pe (M, 21, Scien @, ... . dic Bahnen von A auf M. Ferner scien o, ... , 04
Vertreterelemente der Bahnen, d. b oy € @ fir 1 =@ <= . Fir1 =i, j. &k = ¢

definieren wir
”.?Jik =[x,y e Dy O |x2y = all. (4.2}

Diese Anzahl ist unabhingig von der Wahl des Repriisentanien op € Oy Denn fiir

jeden anderen Reprisentanten of aus der Bahn & gilt

Hix, y1e @ x O |xoy =gl = H[.r, yied 0| A" I'DI'I.'d I

~ all
=|{|:.||'._1.'1Ellf]l‘-E I x O I|.r-:p}'=p¢}|
=iz, ey =0 | xoy=ea]

&
_”I-_I'i!\- .

Das Supremum aller Elemente cines endlichen Verbandes wird Einvelements
genannt, Das Infimum aller Elemente eines endlichen Yerbandes wird Nellelement
genannt:

lg = l'\l.‘r X, Op := ;l"\ X,
el xel
Ein Verband (£, v, ~) besteht aus ewei Halbgruppen (£, ) und (£, ~). Das fal-
gende Lemma stellt einige Aussagen von endlichen Vierbandsoperationen zusam-
men, die sich unter anderem aus den zugehdrigen Operationen aul den Halbgrup-

pen ergeben,

4. 1.4 Leminxa ( Plesken [28]) Die Gruppe A operiere auf dem endlichen Verband

(£, v, ») ordnungstrew. Dann gili:
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(i} Je owei Elemente derselben A-Bahn sind wnvergleichbar (d. k. die Bahnen
Bilden Antikerten),

{ii} Op wnd 1 g sind einelementive A-Bahnen,
(iti) e Bahnen von A auf L bilden ein Poset in Bezup auf die Ondnung
D=0 = Ixc@ IJved:x=y.

Wir kéinnen die Bahmen als O, ..., O¢ so nummerieren, dass O <= 0; =
i = j gilt. Eine solche Nummerierung heidl topologische Mummerierung.
In diesem Fall ist O = {0p} und Oy = [1£].

P - Voo W Y .

fiv) Wir setzen @ = ""‘"'r”.i.j = ﬂ'jjl.j:!rr, J = L Dann gilt
o

;= lx € O | x = ol

tenel

A
o= [{x & E:'J; | x = e}l

(v} Wir definieven (£ % £)-Matrizen P(A)Y = I:r_r;'_'j] and PiA = ir.rl:"'j], e
wir Plesken-Malrizen nennen wollen, Die Balnen selen fopologisch sor-
tiert, Dann sind P{AYV ynd P{A)" obere Drejecksmairizen, deren Djage-

nafelemente alle Eins sind. Dariiberhinaws gils

fiirallel =i, j < £,
fw) Fiirallel =i, j < £ gili

ay - 1051 = 10 - .
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In Magrixform hat mean

PiA) D =D PA",

mit der Diagonalmatric D = ). Insbesondere gilt

AT =D7 . PAY D,

Hewers:
(1) Scicn 7 und z% = w ewel verschicdene Elemente derselben A-Bahn awl

L flir ein @ & A. Angenommen, es gilt z = w (Im Fall @ = 2 hat man
I - - I
o = z, d h wir kénnen die Elemente 7 und w = 7 betrachlen und

sind im ersten Fall), Da £ endlich ist, ist A ker (A) eine Untergruppe der
endlichen Gruppe Sympg und deswegen chenfalls endlich. Also gibt es cine
Fahl s mita® € keriA). Dann Falgt

1 T
-‘ﬂ'-‘“::-"‘-f"” = = =

—_

also 7 = 77 = 2% = ... im Widerspruch zur Annahme.

i) E=sgilt
E = (A ) A ﬂ X = []c
x=l
rel xel xel
fiir alle o = A und somit [E J: vinid 1‘1 J

(i) Wegen x = x fliralle x € & und alle § = £ gilt (PO1). Angenommen, cs
gilt O = Oy und O = &y fiir 1 = i, j = £, Dann existieren x, x" Y
und v, ¥" € O mitx = yund y' = x". Da A aul (0} transitiv ist, gibt es ein

a e Amity™ =y, Also
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und demnach x < ™ was nach (i) nur fiir v = x™ méglich ist, Damit falgt

y=xundi = j,also (P0O2),

Um (PO3) nachzuweisen, seien 1 = j j.k = Imit & = O; = O
Demnach existieren v € 0, v, _1."' = II:]‘; und z € £ mitx < vy und _1_,"' = 7.
Sciag € A mit v™ = y. Dann gilt

- e R |
rTEZy=y =2

und demnach x < 29, was {0 < O implizier,

Der Machweis, dass die Elemente des Posets wie angegeben nummeriert
werden kénnen, erfolgt mit Hilfe cines graphentheoretischen Arguments:
[Me Bahnen & des Poscls definicren die Knolen V; cines endlichen gerich-
teten Graphen . Eine Kante wird genau dann vom Knoten V; zum Knoten
vy gelegt, wenn im Poset {0 < (3, gilt, Wir schreiben 15— V), falls cine
Kante von V; nach V; existiert, Dieser gerichtele Graph hat keine Schleifen
(Kanten eines Knotens #u sich selbst) und ist aryklisch, Gibe es cinen Zy-
klus Vi +— Vi, = ... =V, = V;, dann wire fir jedes | = j = r:
Oy = @ = &y und nach (PO2) demnach &, = &, Dies kann nicht
sein, denn der Graph ist schleifenfrei. Ein graphentheoretisches Argument
(siche bespielsweise Manber [26, Section 7.4]) besagt, dass die Knoten
jedes endlichen gerichteten azyvklischen Craphen topologisch sortiert wer-
den kbnoen, d. b dass V; — V; in dieser Nummerierung die Ungleichung
i = jimpliziert i'fl'.runrﬂgl man die derart erhallene Anordnung der Knoten
aul die Bahnen der Gruppe, so gewinnl man eine Nummerierung mit der
gewiinschten Figenschaft. Man bemerkt ferner, dass in einem Yerband alle
Elemente oberhalh von Op und unterhalb von 1p licgen. Deswegen gilt in

der topologischen Nummerierung stets Oy = {0g} und &: = {1¢].

fiv) Eine Gleichung x v y = zmitx € (4 und y,z € @ istnur fir y = z
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(v)

(wi)

miizlich, Deswepen gilt
ur}“__n: II_|[L1. viely =0 |xvy=a/]
=[xl |x Woj = ot

=llxe O |x =0l

und
uf‘_“i = u’f},— =[ix.y) e 0 O |xny=all
=[x | x Ao =al
=|[x & GJ- | x = o;}].
Die Bahnen (0, ..., (% seien topologisch nummeriert, Wir nehmen o #

i
Ofiri = jan. Dannexistieren x € O und 7 € O mitx = 7. Aufgrund der

Mummericrung folgti < f, im Widerspruch zur Annahme. Also ist PA)"
eine ohere Drelecksmalrix. AuBerdem gilt nach (i)
a = lx € O [ x =05l = [{o}] = 1.

Dic behaupteten Eigenschalten von (A" werden analog gezcigh. Ferner
hat man fiir 1 <4, j < £ :

cri:_l. = [[x € [0g]} | x = a;}[=1,

ay, =[x € O | x = L}l =101,

u'*'- =[x e -Iﬂli | Op = x}| =|-Iﬂj|.

aly =[x €[l | o = x}[ =L

Wir betrachten den bipartiten Graphen G;;. dessen Knoten die Elemente
der Bahnen £ und £2; sind. Ein Element v € {); wird genau dann mit
cinem Element v £ D_r' verbunden, wenn im Verband x = v gill. Doppelte
Abzihlung der Kanten des Graphen Q,-_,- crgiht

# Kanlen = Z [y e EJ'J- |x =y} = Z n'rf_‘j = [ :T.'x_]
xel) xeh
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= Y lae®|x=y = Yy =10 g}
velly veld;

4.1.5 Beispiel Wir betrachten den Dodekaeder ( Abbildung 4.1 und crdnen die

Rl B—
e
] '-._"-.
g { |I Wy ."-.
J | | h
Fi | | W
Iy I | W
"~ A
] .
. yd . - '-._:".'.
., | - !
| o _]!. "'-:" .'l\. ]
1
|I 'lIl -~ !l _,.-"". "'.‘:!I
E| __-""-. sl'- T il .-"'"-. ._.-"'
[ i | s
‘:_\ '\ b S
| oy .
", i L -“I'm !
LY | e,
I|I I||I g
lI III -"-.-.
M . |'l .

Abbildung 4.1: Der Dodekacder

Menge der Ecken, Kanten und Seiten durch Inklusion. Hingunahme der leenen
Menge, die in allen Elementen enthalten ist, sowie des Dodekaeders selbst, der
alle Elemente enthilt, ergibt einen Verband, den Verband (Dade, C). Der Dode-
kaeder hat 20 Fcken, 30 Kanten und 12 Seiten, Die Gruppe der Bewegungen des
Dodekacder aufl sich selbst operiert aul dicsem YVerband. Diecse Gruppe, isomorph
70 Alts, ist wansitiv aul Ecken, Kanten und Seiten. Somit haben wir insgesamt
finf Bahnen, {4 1, &1, @21, 011, Oy 1. die der leeren hMenge, den Ecken, den
Kanten, den Seiten bew, dem Dodekaeder entsprechen. Je ewei Ecken sind in ei-

ner Kante enthalten und jede Secite hat 5 Kanten und 5 Ecken. Dier Dodekacder hat
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12 Seiten, 30 Kanten und 20 Ecken, Damit erhalten wir folgende Plesken-Matrix:

(11 11 1)
0125 20

FUDede) = | 0001 5 30 |. (4.3)
o001 12

\ 0000 1 J

Mach Lemma 4.1.4 (vi) gilt mit

D = diag(|n i), ... . [D1]) = diag(l, 20,30, 12, 1),

{120 30 12 1)

g1 3 3 1
PriDade) = DV P Dader - D = | oo 1 2 1|, i4d
VI TV R

LU IV N

4.2 Der Plesken-Ring

Die Gruppe A operiere aul der endlichen Halbgruppe (M, o). Es scien
M, ... . Oy die Bahnen von A auf M mit Vertetern o; € O, Fir 1 = §, j. &k =

s r_rl;‘:m dic in (4.2) definierte £ahl. Plesken definiert folgenden Ring:

4.2.1 Definition Der (M, o, A)-Ring 15t ein Ring mit &-Basis by, ..., b mil
£
biaby =% o by fir | =i j={
k=1
Dier (M, o, A)-Ring ist also ein Ring mit einer avsgezeichneten £-Basis. Aus
der Diefinition heraus ergibt sich, dass der Ring his aul Isomorphie eindeutig be-
stimmt ist, Allerdings 15t zunichst nicht klar, dass dieser Ring wirklich existert.

[Mes ist das erste Resultat aus [28]:
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4.2.2 Satz Der (M, o, A)-Ring existiers,

Beweis: Sei (E[M], o) der Halbgruppenring von (M, o) iither &, Wir haben cine
Einbetiung ¢ @ M) — E[M], X — (X)) = Z 1 - m. Wir setzen die

=

Operation von A aul M fort #u einer Operation aufl (&M ], o) durch

(Z ﬂ) Y

meM mEM

fura = A, x, € &.
Sci (LM )4, o) der Unterring der A-Fixelemente in (£[M], o), d. h.

EMy={ucEM]|¥YacA: u" = ul

Sciuw = E xyinn & LM )4 mit x,, € & fir alle e € M. Dann gilt

e
z Tt = =u" = E Xyin? = E X oL,
el e e
woraus x, = x| firalle a € A [olgt. Demnach sind die Koeffizrienten cines

ﬂ.|||'l
Elements w & &[M],4 konstant auf den Bahnen von A, Andererseits hiegen alle

Bahnsummen

by i= () = E i

el

in &) M| 4. Zusammengenommen ergibt sich
ElMla= 1k |i=1...., £

Fs gill

biohj = E.‘l{ o Z_".-'

.l.'lEﬂ_l _'-'lEﬂ.r
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2. ). s

e ==y I:J_.-

Ta ¥ =

£

= E Z |[[_1.',_}':| © l::'.; = ':j_l' |.1.'Cl_'|' = .'H T

b=1 el

I3
k=1

wiobel wir ausniitzen, dass die Fahl ”El't unabhiingi g von der Wahl der Reprisen-

@ik

tanlen 7 € £ isL. Cl

Wir nennen den in 4,2,1 cingefiibrten Ring Plesken-Ring.

Betrachten wir den Fall, dass M = £ ein Verband ist. Dann gibt es aol £ zwei
Halbgruppen, ndmlich (£, v) und (£, A). Plesken zeigl, dass die (£, v, A)-und
(L, AL A)-Ringe in diesem Fall isomorph zu einem freien £-hModul mit £ Ereeu-
gern ist, aul dem eine zusitzliche Verkniiplung eingefiibrt wird, die der Multpli-
kation im Plesken-Ring entspricht. e Multiplikation ist das Hadamard-Produlkt
von Yekloren, das heilil die komponentenweise Multiplikation der Vekloreinirige.
Wir bereichnen das Hadamard-Produkt mit dem Symibol G

4.2.2 Satz (Plesken [28]) Die Gruppe A operiere auf dem endlichen Verband
(L, v, a) Seden Oy, ..., O die Baknen van A auf L. Seien o5 € O Vertre-
fer der Balinen Jiir 1 = & = £, Wir nebnien an, dass die Bahnen wie in Lem-
ma 4.1.4 tepologisch nummeriert sind. Seien uli_‘;,‘ wid dyyy die Strickfierkonstan-
ten der (L, v, A)- amd (L, ~, A)-Ringe B und R™ mir cugehdrigen E-Basen

by, b wnd (B, B Dann gile:
{i) Der (L, v, A)-Ring R ist isomorph zu (EL @, 4. Die Abbildung

R = (&, e+

. VIR .
bl = b= (0 gty
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mit n'rf‘:‘, =|{x e & | x = e, = ::r;“"'r‘rﬁ'!r l = i,j = £ ist ein fvo-
morphismus von Ringen, @ ist aly E-lineare Fortseizung der angegebenen
Abbildung zu verstehen. Ferner gilt

£
h'l.-' h'\." _ W h'\."
i GI = ”r'_.:.L ;-

=1

{ii} Der (L, », A)-Ring R” st isomorph i (EL o, +). Die A bbildung

R = (Ef, @, 4)
S N
iRy :
n'?‘l.
mif r:r.f‘j =y e ;| y =4l = n-_';"f.‘- fir L = a,j = € ist ein Ivo-

morphisimus ven Ringen. " ist als E-lineare Fortsetzmg der angevebenen

Abbildung zu verstehen. Ferner gilt

£
b @bl =Y alib.
k=1

Beweis: Wir zcigen nur den ersten Teil des Satecs, dic eweite Auvssage wird ana-

log dazu bewiesen. Zundchst verifizieren wir, dass ¢ ein Homomorphismus von

Ringen ist, Definitions gemidl ist die Abbildung ein Homomorphismus der additi-

ven Crruppen, Wir berechnen die /-te Komponente von h‘:‘r = h}r in &

e, =vedilx=all-[lyed;ly=all
= [{ix, ¥) e O x ﬂj | (xw ¥) = o}
=Y x.ve® =0 |xvy=uwl

wel

£
- Z E Hix. ¥v) €05 = 0; |x v y=w}|

k=1 well) ¥
=y =Mk
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Damit ergibt sich

Fs st

u'rl.'}l

wEap
v :
T

@ b e g}”l_’b}’j =h’ @ h:li’

P =

=l @0,

B vy
=Ly

£

— VoW

_(...,E EHTRhy A
k=1

B3

o

—

£
(d.5)

Ly g
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unl
Gy .Gy
Pl = (h*{' hj_") = : L (4.6)
EIF:I - ”F:-I:

Die Matrix #(A)Y ist nach Lemma 4.1.4 (v) cine obere Drciecksmatrix mit Ein-
sen aul der Diagonalen. Demnach ist 7 (A)" invertierbar, und zwar sogar iiber Z.
Dder angegebene Homomorphismus @™ ist somil surjektiv und injektiv, die Ringe

EY und T also isomorph. O

4.2.4 Beispiel Wir betrachten wicder den Yerband (Dade, ) (vgl, Beispicl 4.1.5)
unter der Operation der Symmetricgruppe des Dodekacders. Die Plesken-Ringe
(Dade, v, Alls) und (Dode, A, Alls) haben fiinf Basiselemente &, ... . 5B} und
Bl oo by Unter den Abbildungen @ und @ von Sate 4.2.3 entsprechen diese
den finf Feilen der Matrix P Dod el aus (4.3 bew, den fiinf Spalten der Matrix
PO Dode) aus (4.4). Im Plesken-Ring berechnen wir das Produkt b3 2565 Gemil

Sate 4.2.3 ergibt sich

f;[]\ {12 ) fﬂﬁ[]“l

3 3 4
b @by = I @] 2 = 2 = 240-by +3-b; +2-bZ,
il | i

k[],ll k[]) k[]j

was beispielsweise zeigl, dass sich jeder Eckpunkt des Dodekaeders aul drei Wei-

sen als Schnibt ciner Scitenfliche und einer Kanie darstellen 143k, O
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4.3 Gruppenoperationen auf Verbiinden mit Rang-
funktion

Sci (L, v, A0 ein Verband, Eine Rangfimbtion von £ ist eine Abbildung rk : £ —

B ox— rkix) mi
x o=y =» thix) - rkiy) (4.7

fiir alle x, vy £ £, Hierin ist = die in (4.1) eingefiibrte Ordnung aof £, Wir
schreiben (£, v, ~, rk) filr einen Verband £ mit Rangfunktion . Auns der He-
dingung (4.7) folgt fir vollstindige Verbinde

minrk(x) = rkilg ) und maxrkiz) = kil g
x=l rel

I'm Fall ciner Gruppenoperation einer Gruppe A auf cinem vollstindigen Verband

£ mit Ranglunktion rk verlangen wir zusitzlich
rkix™) = rkix)

fiir alle x € £ und alle @ £ A Hier sind einige Beispiele fir Gruppenoperationen

aul Verhéinden mit Rangfunktionen:

4.3.1 Beispiele

(i) Sei ¢ eine endliche Gruppe, £ der Unfergreppenverband von ;. Die
Ordnung ist durch die Inklusionsrelation der Untergruppen pegeben, Das
Supremum rweier Gruppen LU und Vst die Gruppe, die von allen Elemen-
ten von U7 und V oerzengt wind, d. h. U w Vo= (U, V). Das Infimum der
Elemente L' und V ist der Schnitt beider Gruppen, o h. &0 AV = I M V.
Eine Rangfunktion kann wie folgl erkldn werden: Fiir &7 < 7 seteen wir
ki) o= 30w falls (U] = T2, B gilt, Jede Gruppe A = Auli(7)

opericrt aul dicsem Verband. Insbesondere operient die Gruppe €7 auf sich



B

(1i)
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selbst durch Konjugation, Ein Element g € ¢ bildet &7 & () anf L7# ah,
Wegen U2 = ) = []i_, p!" folgttki®) = tkit/) = ¥°7_, n;. Eine
weitere migliche Rangfunktion auf £007) st rkil") = [L1].

Sei V cine endliche Menge. Wir betrachten den Verband der Tedlmengen
CRCVY, L 0. Die Ordnung ist die gewShnliche Inklusion von Mengen, das
Supremum ist die Vercinigungsmenge, das Infimum ist die Schnittmenge,
Eine Ranghunktion ist ok - PiV) — M, X [X] Jede Gruppe A < Symy;

opericrt auf dicsem Yerband durch
Ax TV — TV (0, X) = X7
und es gilt th( X)) = |[X% = | X| = ki X 1.

o

Eine Rangfunktiom induziert Schicfiten aul dem Verband. Dic -te Schicht be-

steht aus den Elementen vom Eang i

Le = {x € L | tkixy = i}.

Fiir den Rest dieses Abschnities sei £ ein endlicher (und damit vollstindiger)

Verband mit Rangfunktion. Ferner sei A eine Gruppe, die aul diesem Verband

operiert,

Wir bentitigen eine erweiterte Terminologie [ir die Bahnen von A auf £. Sei

O =rkiOpg)und r =kl Fliir =i = rseien &, ... . O, die Bahnen von

A auf L' Ly, Fiir | = J o= Loseien o; ;o€ O Vertreter dieser Bahnen, Dann

seteen wirfiic L =, j b =fundw =4, v =Lund w = £

I.. . '-_.'

L!&"_'I-!'I'ﬁ,'l =[x, y) € D Oy |x ¥y = at,ull, (4.8)
PR -hl

:rf,‘_'l;'l'iJ = {(x, ¥) € Djg x Oy | XA Y =l (4.9)
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und

PEETS T - ..I-_r )
oy =gy = lx € Ol x = op0ll, (4.10)
LA FRAYEE . -
e R | =Y v H [ 1) (4.11)

Fiir 1 = m, n < r entstehen £, £, Malrizen

) oy
-!P.-J.-..-H.HHJ — I'r_t“""“'l

h I_|I :|||._|'-|

[am, )™

":H'.'.'..-.-[-"l!l:l.“' = [ull'.j :l.‘._|"
Durch Ausammenfliigen dicser Maltrizen entstchen Blockmaltrizen

r:'F'[-"”f = (Puy.n ':-"U.J.Jnr.wn

'!F[*"“.“' = I:':;rj:ln..ll[-"Jﬂl‘l--]r.'r.r."
Bis aul cine eventuclle Umordnung von Zeilen und Spalten handelt es sich hierbei

genau um die Matrizen, die in Lemma 4.1.4 definiert wurden. Einige Eigenschal-

ten dieser Matrizen sind wie folgt:

432 Lemma Die Gruppe A operiere auf dem endlichen Verband (L, v, », 1K)
Set 0 = kil 2y wmd r = ki 12).

(i) Die LYY L) sind Antiketten fitri < r,

(i) £ = £, = 1 und Op = [og1) mit eqy = Qp und O, = [0, ] mit

a1 = 1g.

(i) Sei Bh die [-te Zeile der i-ten feile der Blockmatrizen P (A, Sei h;:“_'_l_.
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die j-te Spalte der i-ten Spalie der Blockmarrizen P (A, Dann gilt

(b2, )

PLAY =

finel

byl By, |

PlA)" = (b,;fl

h:j,_r) .

FiirD=i, j=r,u =& undv = £ gilt

r &
W W (F, k)™ g
EI.i.nI & h_.i.ll - E Z u'n'r.l'r.u' E'J:.x"

k=0 ==]
r E-# . .
bl @bl = 2 3 apdy) bl
=0 ==I
fiv) FlirD=mn.,m = r gilt
r?lil.rr(f{”? = ll:-cI.,.* 'TD..u':"i:"ﬁ' = (1l ..., |G.ll.f|,-|:|-
-'F.l.r:.ri-"i:'-"l = ':l'ﬂm.ll: ey |E:'m.-':,,|:|T1 Pm.ri-"”h = lfm:.“'
(vl Sei ) = n < m = r. Dann gili
P A) = Py gl AV = D, xtys

Pm.mi"'”“ = -'Fm_ml:.-“]"x = ff“.
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fvi) Sei Dy =diag(|O .. .., Qe ) fllrQ =i = r, Dann gilr
Pl AV = D Py (A)Y - Dy
Siir 0 < m. n = r. Aguivalent dazu hat man
PA =D P D
mit D = diag(dDy, ..., D).
Beweis:
(i) Seienx,y e L"(L). Dann gilt x = y = rkix) < rkiy) im Widerspruch
eu ke (x) = rkiy) =i.

(i) CemdB den Eigenschaften einer Rangfunktion gilt 2% = J0g] und £ =
{1g}. Mach Lemma 4.1.4 (i1) sind dies einelementige Bahnen, also Oh =
[Og} und Oy, = [1g}.

(iii) Umschreiben der Ergebnisse von Satz 4.2.3 ergibt die beiden angegebenen
Gileichungen.,
iiv) Sei j = £y undi < £, Dann gilt

(00"

1] =[{x e {lg} | x = "-"'.ll.j]'l =1

= Foald)l’ =1,
™ = |fx € Oy | x = LeH = O i

= P A = (10m1l e (O,
a™" =[x € Oy x = 0] = O,

= PoalA)" = (1Ol [One, I,
" = |x e lgh | x 2 owgl =1

= FuslA)t =1,



a0

iv) Firn < m liegt kein Element von L'

Deshalb gilt
Plr:..ui-"t:lu = M'.ﬂ'l:"d].” = Q'

e Mg

Die Gleichung

.’F“,.L.l.lm.|.|:4-i]"r =

LN

(AT = .I’,r“_

folgt mit (1) und mit

(N I 0 ) R 1

[N — i

o _
r.’; M die w

i

ivi) Anwendung von Lemma 4.1.4 (vi) aul die o

(w0 (om0
"-'fll'__l: ) |ﬂ.'.'._f| = | i | "'-'5','__|: :

In Matixschreibweise bedeutet dies

Pl A1 Dy = Dy P (A

(o, 0]

erzihl
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unterhalb eines Elementes ans LYY,

[

4.3.3 Beispiel Wir betrachten £iSymy), den Untergruppenverband von Symy

(vel, Abbildung 4.2, unten eine Tabelle der Konjugationsklassen von Untergrup-
pen). Abbildung 4.3 #eigh das w-Bild des Verbandes und die Plesken-Matrix
Y Symy ). Darunter findet sich das ~-Bild und die Plesken-Matrix &% (Symy).

In belden Matrizen ist die Blockzerlegung, die sich durch die Rangfunktion ergibt,

durch vertikale und horizontale Striche angedeutel.

o
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Bahn O Vertreter @ Typ 151 1] kO
Oy () 1 1 0
[ L, 20 o Fa f 2 1
(I i1, 2, 3 ~ T3 4 3 1
Q13 (01,2003, 4)) = & 3 2 1
O (11,23, (3, 41} = FaxEr 3 4 2
(VR ((1.2.3). (1, 2)) — Sym, 4 fi 2
[ 1, 2,3, 49 = &y 3 4 2
[ (L, 203,49, (1, 3002, 49) = Vy 1 4 2
(o (11,2, 3.4, (1,33} =y 3 5 3
32 ol 203 400, 2, 30 = Ally | 12 3
(IN (11,2, 3.4, (1,23} = Sym, 1 24 4

Abhildung 4.2: Der Untergruppenverband von Symy
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P a1y

L 00230020
L oo 1 0004
3

oo ofl )3

P (16 2 3|3 23 1]3 1|1}
o / T L ool 200101
! ' 1 olo1l oolo 1|1

L ooofl ol
L0 ot ol

1 01

Abbildung 4.3: Der Untergruppenverband von Sym,y., v-Bild, Plesken-Malrix
PV Symy ) (oben), A-Bild, Plesken-Matrix 2% Sym ) (unten)
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4.4 Gruppenoperationen auf dem Verband der Teil-

mengen

In diesem Abschnitt beschiftigen wir uns mit der Operation einer Gruppe aonfl
dem Teilmengenverband. In dicser Situation erhalten wir weitergehende Resulta-
te. Dhies istin der Matur des Teilmengenverbandes begriindet, doch wollen wir hier

nicht ticfer in die Verbandstheorie cinsteigen,

4.4.1 Lemma Sei V eine v-elementige Menge and sei A eine Permutations-
griappe awl V. Wir betrachten die induzierte Operation von A auf dem Verband
ROV, L0 |- ) it der Rangfunkiion R0V — {0, ... v}, X — X[, Sei
f.'hi*:ﬁ['lf::I] = {‘:'I;'I die i-te Schicht des Verbandes. Seien Oy, ... . O, flir

0= i < vdie Bahmen von A auf LY B0V mit Vertretem ;e O ;.

(i) FarQ <m =n < v gill:
. H
ll:-c-’.h ' ":inr.'r.r.'[--"“l-JLI = (J'Ji) 'll:-c!..l‘

i v —m
-:Pn-rrrrdi.l II_I_";";I = .ll.“xl'

n—m
i) FliralleQ <=m < h < n < v gelten folgende Rekursionsformeln:

n—m
(-“i‘ — ﬁ'i‘) . ":F'r-'r.r-'f*'ﬂl'll-I = r.-.-.-'.-[-""JU' ﬁ:..-.-[-"ﬂu~

_.Il?li- — —
(h )-::Fw.,,r.m“: e AT Py A,

—m
(tii) Die inversen Matrizen sind

(PA) = (=1 "By 1 A))

(P = (- 1" Py, (A1)

o’

e
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fiv) Ist A = Symy, so gilt &g = &) = ... = £, = 1. d h Symy, ist transitiv auf
i-Teilmengen filr alle i = v. Ex gilt Py (Symy)~ = (°) und damii

PiSymy)” = (P (Symy)~) = B oo, el

sowie Py o isfmu:'n = () 1

Pisymy) " = Py, (Symy

HBeweis:

(i) Wir zeigen, dass die Summe der Elemente einer jeden Spalte von Py, (A1

gleich |::::| ist: Fiir j = £, ergibt sich

- fm
.}

i=l i=1

lﬂl
=lXe | JOwi [1XZ0,;l
i=1

I'|-_-\.\__-—-l"
=Ll Pn=( )
(n
hm)
Wir #eigen weiter, dass die Summe der Elemente ciner jeden Zeile von
| AN zleich [;:ﬂ} islz Flr alle § = £, haben wir
fn A &n
w = 3 Y e Oy | Oy ST

i
J=1 =1

iy
=l¥e |JOu; 10w =¥l
_f:]

"1.—_\',_—.!'
=rEgvn=(

(o)
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(ii) (Mach Schmale |30, Sate 2,35, Seite 40]) Wir weisen zundchst die sweite
angegebene Rekursionsformel Fir die Matrizen 55, i A1 nach, Auf beiden
Seiten der Gleichung stehen Matrizen, die in ihren feilen und Spalten in
derselben Reihenfolge durch die mi- und »-Bahnen von A indiziert sind. Sei
a4 dler (i, k)-te Eintrag der linken Matrix, sowie x/ , der (i, k)-1e Eintrag

— rrr} [ 'II-EI

der rechten Matrix. Delinitionsgemal ist x p = {.l.-_.w ;" . Der enlspre-

chende Matrixeintrag der rechten Seite berechnet sich zu

Z”IM A ||' r.-]'“'

i=l1

£
H‘-] I] - I:I'.'.n'.-.n'.'_lr' 17,4, I'r]' L

= Jaigd ﬂl:‘. ]
_II'=|
g

= Y [[HeOu | O S HI| I[Nyl O, = N
=1
£y,

=)

I|'=|

irH. Nie E].ﬁf x C},,.Ii | s © H .'"lur]|

£
— H(H,ﬁhe U’ﬂ'ﬁ-j xﬂw1|f)m,._:H§,'-,’”

e— ——

=LEEVI=( )

- Y qme (}J) | Owi € HC N
Nel, ; !
I:lll'lul.l |ll.

B Z (H — m)
B s h—m

oy i

o n—m ulm.ll]ﬁ
-Il‘i‘ —m P&

= Ik



i

(i)

Kapitel 4

Mit Lemma 4,3.2 (vi) ergibt sich daraus die erste Rekursionsformel:

n—m H—m
( )n”jm.ntm” = Dy, - ( ) ol DF
h—m h—m

= -:'I:I_lri . n!r::ll'i,.ﬁ[ai'ln . I:JTI . i:l.ll . ﬂllﬂ[r’l :ll_l . -:[:ﬂ_l

= P plA) Py i)

Wir #eigen durch Induktion nach der Differens n — m, dass die inver-
se Matnx {Piﬁ.]u]_l die Form {i | et .F'lf.-‘lju ] hat. Mach Lem-
ma 4.3.2 (iii) ist (A = [?[ﬂ]ﬁ_“] cine obere Drelccksmatrix, Dem-

nach ist A1

L]

= 0 [iir # = . Die Diagonalmatrizen sind Einheilsma-
rizen: P{A)Y = f; . Wir bezeichnen die Blicke der inversen Matrix mit

[
{F[r’l]"']_l = (F, ). Damn ist £, = Ofirn < mund £, = I,

i
d. h. die Formel gilt fir o = m baew. n — m = 0. Wir bestimmen nun .'P*';,IH
fiir e — me = 0. Wegen (P(A)7) - (A0} = 7 ergibl sich in der n-ten

Feile und der n-ten Spalte der Blockmatrizen

Z Ew.k (A ]I_I : 'F:I:..,u = ﬂr'“:-c-"
=

]
= E P (A7 Py =0,

.'1—.".'

= O "Prﬂ'r.'+ E ?"-"'""I:"“_ .'1.'.-=H|'-.-=:-c-':u

=1
[
— ‘?:u.u = = E ':Fm..ﬁ':*"”u ":Fn':.rr
h=m+]
unc mit Induktion
[
':'F:l;..ll = - E Fre 1A (i 'I:Pnl:.rr
fr=m+1

= Z (— IrH-” : .-,-,-.l;-l.-"!_l ﬂj..‘.l[""!]u

h=m+I]
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= =0ty [_]]h'(u_m)'""‘_’f.u.ﬂu.]"'

h=m+]

—
— [—I]""+I (E[_]]Jn-l-_ﬁ _ (I'? J_ H?)) . -?.._u,u,.-,.[-’“l_l
h=1 f
— n—m
=|_|]”+”’+'([Z|—13*-{ ; )i|—])..:i°w_,r|.-1:|"'

=0

=0
=i—1 :'H-HH : 'F:'.'.-..'.'[""’ju-

Der Beweis fir (#(4)™) " verliuft analog,

iiv) Die Gruppe A = Symy isl transitiv aul i-Teilmengen von V. In jeder

Schicht gibt es also genau eine Bahn O, 1 mit einer Vertretermenge O, (.

C)rcenll- ()
gl Hr @, = (D | Oy 1 < r” - (; :::)

Diann gilt

%
=
C
ey
et
mni
3
]
Il

und

O
Es ist #n bemerken, dass die sochen bewicsenen Aussagen (idi) und (iv) #u-
sammen gleichzeitig cinen weiteren Beweis von Lemma 1320, also der Aussage

_ e . gl d
g By mit B, = L—JJ"""(
[ Fod i
liefern.
Dier Zusammenhang #u der in Abschnitt 3,1 betrachieten Konstruklion yon
Dlesigns mit vorgeschriebener Automorphismengroppe st in folgendem Lemma

angegeben. Das Resultat engibt sich dirckt aus der Definition der Matrizen.
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4.4.2 Lemma Dje Gruppe A operiere auf der Menge ¥V = {1, ... , v} Seien 0 =

1 =k = v ganze Zaklen, Dann gilt
M = 2",

wenn beide Matrizen in den Zeilen und Spalien in derselben Reithenfolpe durch

die 1- und k-Bahnen von A indiziert werden.
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Klassifikation von Designs mittels
Schnittzahlen

In diesem Kapitel soll cin ¥Yerfahren vorgestellt werden, die Schnittzahlen von
Designs mit vorgeschrichener Automorphismengruppe schnell zu berechnen. Dhas
Verfahren beniitzl die Kenntnis der Bahnen der vorgeschricbenen Gruppe A aul
den Tellmengen. Hintergrund der hier beschriebenen Methode st der Plesken-
Ring der Operation der Gruppe A aul dem Teillmengenverband.

Abschnitt 5.1 (Satz 5,1.2) stellt das Verfahren sur Berechnung der globalen
Schnittzahlen von Designs vor. Im Abschnitt 5.2 werden dann als Anwendung die
B-31, 10, &) Designs aus Abschnitt 3.2 mit dicser Methode vollstandig klassifi-

Fierl.

5.1 Die Berechnung von Schnittzahlen

Wir betrachten die Schnitttypen o™ (D) und &1 fir ganzzahliges s = 1. Wir

sclzen

A = [:H'II'II'IJ'IT rf'-*-'l?)lT]

99
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un
Al = [u"'[ﬂJT| |u'?'[‘DJT:]

und nennen diese Matrizen die Marrizen der globalen Schnirizahien.

Sei ¥V = {1.. .., v} dic Punkimenge und A = Symy; die vorgeschrichene Au-
tomorphismengruppe. Wir nechmen an, dass wir dic Bahnen der Gruppe A aul den
i-Teilmengen mit i = k kenpen. Seien & . ..., &, die i-Bahnen von A [iir
0 =i = k. Seien % ; € Oy ; Vertretermengen dieser Bahnen. Flir 0 < m,n <= &
haben wir die Plesken-Matrizen &, 4 A1, welche FUSAMMENZeNommen eine
grobie (& + 1) = (& + 1))-Blockmatrix P = (2, (AT bilden, Wir be-
#eichnen die Spalten dicser Matrix mil h?j' Der Plesken-Ring (#(A)", &, +)
wird von den Spalien dieser Matrix dber £ erzeugl.

Wir benitigen die im Beweis von Sate 23,1 betrachiete Gewichisfunktion
kL ETOVI] — W, wobel W der freie E-Modul vom Rang (v 4 1) is1, erzeugt
von den Einheitsvektoren e, ..., ¢.. Einschrinkung aul den A-Fixunterring
EEV)] 4 lickert cine Abbildung

o EIPOVIA ML) = W, B ag - M Y g e, (5.1)
MV MCV
wobei alle ay ganerahlip sind und EMEU agy - M Ox unter A ist, also die Koelfi-
zienlen ayy konstant aul Bahnen von A sind.

Wir definicren cine  weitere  Gewichtsfunktion v vom  Plesken-Ring

(PiA" @, +) nach W,. Diese Abbildung v sei die distributive Z-lineare Forl-

selaung von
. m m -
U PAY @4 — W, ["f'.;' = |05 e (5.2)
Der Ausammenhang ewischen & und v st folgender

5.1.1 Lemma Die GGruppe A operiere auf der Menge V. Seien O 1, ... O;, die

A-Balmen auf i-Teilmengen. Sei (0 ;) =¥y X die Summe aller Elemente
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der Bahn O, ;. awfgefady als Element des Halbgruppenrings (E[P (V1. 0, +).
Sei v ¢ (EPOVIA.TL+) — W, die in (5.1) definierte Abbildung und
(PLAT @, 4 der Plesken-Ring mit der in (3.2} definierten Gewichisfunkiion
v CPLAT, @, 41— W, Dann gilt

K= Pn:-l;ﬂl'_',

weobel ' die in Sarz 4.2.3 definierte Abbildung ist, die die j-te Bahnsumme
by

call ol
L0 ) auf das Basiselemeni EII:'-.I_E = : mir h,l,ﬁ = I:u':'li'r":' Cee s u'i'::r:' 3T

Bl"‘l
i
Siir by =0, ..., v abbiider,

Beweis:  Wir weisen die behauplete Berichung fir die FErzevger des Rings
(R4, 1y +) nach, d, b, fir die Bahnsummen (0 ;)

'f[“:':]r'.,i:” =p:|:: E ﬂ:l = E € = ll:]"._fl'cll = 1.‘|:E]:|-I|J.}

Hell Bed ;
={va wn} (i ;0.
]

Hier nun das Hauptresultat zur Berechnung globaler Schnittzahlen von De-

signs:

512 Satz Sei D = (V, B) ein r-(v. k&) Design mit A = Aut(T), Sei ¢ der
£ £y
Lisungsvekior des Designs, d h. B = B, = U iﬂh.}-- Sel y = E h?,j- Der
;Il-l:il : 1 :'illf_-j 1
Vekior 3 wind in feleender Welse aufgespalien:

. Zil
M . i3
— mi =

s
I

jlll: :I.. £
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R
S "'E|n::|___.l.|,|_|:|...é|

Zahl (—1y+S [f] ist (diese Matrix ist nach Lesmma 1,3, 20 invers cu der Magrix der

die ((k + 1) = (k + 1)) -Magrix, deven (i, [)-ter Kogffizient die

Binomialkoeffizienten). Sei §) die (v = 5)-Matrix der Stirling Zahien ersier Art
&1 = (8100, j)) und sei D = diag({, . ..., ). Dann gilt

Al = 'E[T:n.l..é|.|n:|...k| - Z (AL R, (5.3)
T
A lel L (5.4
Al = E|T:|.I...=c|.||:|...1-| CZE (A 8] - D, (3.3)
i einer ((k + 1) = s)-Marrix

( S e (o3 \

ZyA = | Py (A @l 0 Pyl S |- (56)
Popot (A7 @51 0 FPop— i) @ ey
L b .. b J

Beweis: Sl O ; die j-te Bahn von A aul i-Teilmengen, fir 1 = j = . Sei
PiA = (P (A]n] die Plesken-hatrix der Operation von A aul den Schichten
0, ..., &k des Teilmengerverbandes (W, 7). Sei h?}. fiiro = j = kundl = j =
£; dic Spalte der Plesken-Matrix, dic zu der j-ten Bahn von A aol i-Teilmengen

gehort. Definitionsgemal ist fici < &
3= PpiAl g (5.7)

Im FPlesken-Ring zerlegen wir

E &
@'5=3 3 Wbl (5.8)

i=n j=1
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mit unbekannten Koeffizienten _}'r!_";! £ & (diese Koelfirienten sind sogar nichine-

gatiy, da sie eine Menge von Bahnen beschreiben), Wir erhalten einen Vektor

g v
I'-I
L] M o sl ¥i2 . .
ptt = _. mit " = . fiir ©O-=§ =%k (5.9
T AR
'E].l. 1 [

Dann gilt
@'y =P gl = gl = e @
Mach Lemma 4,3.2 (v und Lemma 4.4, 1 (iii) ist die Matrix
P = (- B ")

cine ohere Dretecksmatrix. Deshalb ergibt sich
|'-I — E[ ]]"+-'J°' _ E:'"}ij (5.10)
furd = (0,1, ... . & Wir berechnen nun

¥
7Dy — m HJ.-*)

= mzn)
{
(

hzzh)

' 1 ﬁEﬂgI

- ahznmf)

Fiii=1
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Wegen K = |/ o |;r1'-' ergibt sich nach Lemma 5.1, 1

5oLl v (h Eeiﬂt ) |

;lll

dessen innerster Term cin Element des A-Fisunterrings 0V ] 4 ist, welcher
nach dem Satz von Plesken 4.2.3 (ii), angewendet aul den A-Ring, d. h. den M-

Ring, durch den Ringisomorphismuos ¢ abgebildet wird aul den Ausdrock

42.3 (i) ”(O Z h.;.j)
=1

Fi1=1
= v ESJ‘.a]
(3.8) ZE 1|:| n
=0 j=1
£ £
— EZ |'-| '|I'EI"'I
i=0 j—l
Lf‘;:] Z{Zlc}f” I':I}
f=0  j=1

Mach Lemma 4.3.2 {iv) ist .ﬂ;._,;lff’l.]'-' = (g, ..., @) MLi59) kann die in-

nere Summe als Matrxprodukt geschrichen werden:

4.3.2 (iv)
(5.9) . _
= 3 P e
=0
(5.10) { .
[Wh,ﬁ'? (AP rm ST R TP
E Z [*F AT [} II-—%'I.—- (i

=(41# ;140 _5:'].1.':-'””'11-
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und mit Lemma 4.4,1 {ii) und Gleichung (5.7 erhélt man

.- [ k g
4411 i+
1 1) E Zi—|]"+"(':)ﬂ],jl"'1]n-'E"'{-'Fj.l'["‘l]n _J:T] CE.
i=0 * j=i

Mach Lemma 4.4.2 ist ) gl A1 = ,-'I-'f;.i_J' dic Kramer-Mesner Matrix, und da nach

Korollar 3.1.4 jedes r-Design auch ein j-Design [iir alle j = ¢ ist, ergibt sich

442
314 k '
— [Z[ 1“‘"( ).'.il'*.;] (A @A L )
=
k—
+ E[ 11"""'( )-Ti:u,urh'" '3,
J=r+l

ik
+ L'—J]""*(J_)-'Frj.kir"!l]ﬁ : @";T] 8

wobel verwendel wurde, dass nach Lemma 4.3.2 (v) ) (A = Iy, die Einheits-

malrix isk. Fur den {0, 1}-Veklor p gill @ =x, also

k i .
e o, 11+ .
Felzd Z[Zi—ll“’“(':)ﬂ:.nm“-I_..=-,c|-*}
i=0 v j=i

— 1

+ Z (— w““( }%.pm“-@*a;

J=141

ok
+r.—1.1'+*(-) Pl AT ] P
i e — e —

—hg=h
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Mach Lemma 4.4.1 (i) ist die eilensumme der Plesken-Matrizen bekannt, es gilt
'F':-._r":"”rl _ _|.r_I:-c | = E_Lr:l eine Zahl, denn es gibt nur eine Bahn in der Schicht Null
(fn = 1), Ferner hat man .!il"i;;.l;,[.-‘{j'-' -FT = kg = b nach Korollar 3,14, Somit folgt

4.4, 1000,
1.4 . J L
2oyl ()
=0 J=i ! !
k-1 . L
j=i+1

Schreibt man diese Gleichung in Matrixform, so erhilt man
51 _ m—1
A= By o LA,

wobel Z,0A, pidie io (5.6) definierte Matrix ist. Dies beweist (5.3). Mit Satz 2.3.1
folgt (5,40 und beide Gleichungen susammen implizieren (5,5), Damit ist alles
hew iesen, -

Wir wollen die eben entwickelte Theorie an einem Beispiel erproben:

5.1.3 Beispiel Das unter Moy invariante 5-(24, 8, 1) Witl-Design aus Bei-
spicl 3.1.3 soll untersucht werden, Die Bahnen aufi-Teillmengen firi < & indizie-
ren dic eilen und Spalten der in Tabelle 5.1 gerciglen Plesken-Matrix 7 ( Moy "

e Parameler A, ; [iri 4+ j = = 5 lanten:

-'1'-\.i._|' _|I =1l I 4 2, 3. 4, 5
i=1n 759 A06 AA0 210 130 78
1 253 176 120 RO 52

756 400 28

-3

o fa fed
A
i
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K lazsifikation von Desions ...

o

ot TERY ) XINB-USYSALL 2] 217 [ RL

1 i i il il il ¥ i il il il o jof et s re il
y [ il y y il il il y il y o ol liregs+eTrl
y il [ y y il il il y il y o |ofllRLwcreTl
1 9] il [ y il il il y il y o |ollirgs+ el
il Z cl i} 1 il il i i} il il oo lLeserieiTil
1 LY | T 1) 1 il i i} il il oo EerEiTl

y g1 =3 y 21 il 1 i y il y o o les+etl

1 871 Yo £ 291 £ gl [ y il y o ol s+l

[ 0+ Izt 0z Oz11 (e 091 0z 1 il y o |oli+eToul

1T 8R9f  OFQel | S0 OERS | 01T (ira Nl 01z 1T I il o (of ezl

£L ODSRG OROEO | I0F  TLRED | SS1T 0919 ST | 1E2 Fira 1 o ozl

EET FRECY OTSTIC | [LL] 9L166 | £1Ys  OEERD | S8R | 1441 | esT (€2 |10 |of {1}

GEL TSlAG (RSLED [ Zion  Teo0fE | TEZIT HHECN | ST | ool | FZoz (o | F 1| 1]

T T T T T

o L L L e fa e fa fa fa S m B

S = = = &= = 4= + B m 2 E

Wt n W 7 wn o B g BB -

= e = N = = ) 3 5 2

= 3 2 g 2 E B - B

s 3 ¢ & ¥ £ £ § F

i f ¢ £ § ® E

= I £ A

o i
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Fs sei daran erinnert, dass &, = &; ;5 pesetet wurde, Die Werle {'r]l

=0, 1,...,5=ind:
(1,24, 276, 2024, 10626, 42504 .
Wir wihlen s = 2 und erhalien

Tk - T
A =By syoes S0 dup a9 D

f1—1 1—=1 1 —1 1 —=1 1}
i 1-2 3-4 35 —& T —%
00 1-3 a-10 15-21 28
oo o0 1—4 10-20 35 -5&
= oo o 0 1 -5 15-35 70
oo 000 1 —a 21-36
o0 000 0 1 =7 28
o0 0o o0 0 o0 1 -8
kI[] o o 0 0 (i (i i ]j

Kapitel 5

= f::..i}' Fiir

|—1 2 1 1 1
M e -0 1 -3 -Lliﬂg[ﬁ, ,_??1
I ¥
[Darin ist
2y 1 My .3
f EUJ"ﬂ {D]"D
2y - | o
ZaA,5) = (5)%5 - (el
FopiMayl™ @l 0 Py eMag T B
FhriM)" @l 0 P My 3
\ i) ca b
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{739 STA0R1 437.245479
6072 1536216 IB8.662648
21252 1636404 126003108
42504 R02584  18.744264
= | 53130 265650 1.328250

42504 42504 42504

¥e,10F)  ¥e20F) ¥e,3(F)

¥r.1ir) ¥r.2E) ¥1.1(0I)
759 759 759

mil von dem Lisungsvektor abhingigen #ahlen 1 , (1) = 5 ;0 M. =4, und
i= Ef'l. | HH-I._r" Wegen £ = (0, 0, 1) vercinfacht sich dies zu § = b 5, d. h.

i r=1

3= (759,253,77,21,5,1,0,1,0,1,0,0, 1.
Aulzespalien ergibt sich
=157, 5 =250". p=007",
=207, =T, =017,

pe =00, 107, =007, ga=i0,0,1)7,

Dzarans berechnet man

Vo (E) = ( 113344 21252 |- @0, T =21252 fir w=1.23
¥iulF) = { 340032 6072 ) cafo, T = 6072 fiir g =1,2,3
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und erhili

Y
(i
0
0
_$i3] — i
0
(i
0
\ 759

L1385
i
L70016
0
OG220
K]

K]

0

0
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26.179175
31282944
12751200
22668K0
106260
i
(i
0

i,

Das Ergebnis aus Sate 5.1.2 kann als Erweiterung von Lemma 2.3.2 angeschen

werden. Die Bercichnungen scien wic gehaht.

5.1.4 Korollar Sei T ein 1-(v, b, L) Design il vorgeschriebener Awlomorphis-

Mengruppe A Twm Lasungsvekior ¥, Dann gilt flirs > 1:

B, g0, & A =Z, A0 -4 - D, (5113

Inbesondere erhiall man die Gleichungen aus Lesnma 2.3.2 aus den ersien t + 1

Zeilen dieses Gleichungssysiemns Zinrdick.

Beweis: (5.11) ergibt sich direkt ans (5.5), In den ersten ¢ + 1 Zeilen erhilt man

By,....c0,... k1 - AT = diug((

(]
Q

N RS REEE Ap
)} E B R A1
PR ¥
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worans mit Lemma 1319 (iii) wegen

- | | A
Do Ak — = =l = ( )
! !

k=il

firy =0.... ,fundw=1,..., s folgl:

—aine(() (1))
)

()7
— : : . (5.12)
()5 ()
Auvslesen der s-ten Spalte von (5,12) engibt die erste Aussage von Lemma 2,3.2,

]

5.2 Klassifikation der 5-(31, 10, i) Designs

Wirwollen die 8-(31, 10, ) Designs aus Ahschnitt 3.2 klassifizicren. Es gibt 138
Designs mit A = 93 und 1638 Designs mit A = 100, Die vorgeschriebene Groppe
ist A = PSL(3, 3) auf 31 Punklen, Fiir uns relevant ist folgende Untermatrix der

Plesken-Matrix 20477

fa=42 | £g=92 | £1p=174
fg =42 Iz P plA)™ | Py oA
fg =92 0 fg2 P 1nlA)
g = 174 a a 174
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e Matrix 5 o0 A1 ist bereits in den Tabellen 3.3 und 3.4 oereigl worden,
Tabelle 5.2 #eigt J‘glq[ﬂjr'. Die Tabellen 5.3 bis 5.5 #eigen Py oA, aufgeteilt
in drel Teile. Es ist #u beachten, dass aus Platrgrimden die #ahlen 10 und griiber
durch kleine Buchstaben a, b, o, . .. dargestelll werden.

Wir betrachten zundchst die 138 Designs mit & = 93, Wir bercichnen die

Lisungen des Systems

Pyl Al gt =93 Loy

it £i. ... . Ei3s. Die Parameter »; siod:

An =16 3033635, s, =435240, ap =46350,
A1 =5259150, A = 1OBR10, o =744,
Az =1 577743, A5 =24180, Ay =93,

e Werte von {:}I = [::I] fur ) = i = 8 sind

1,31, 465, 4495, 31465, 169911, 736281, 2629575, 7 BEET2S.

Gemilh Sate 5.1.2, Gleichung (5.5) bestimmen sich die Schnittimvarianten AL

wie lolgl:

(3 ~1 o
A = w CZ ALED - A

L ) W |
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inker Teil

m

n
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3

Fo 1ol PSLI
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Tabelle 5
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Tabelle 5.4: Py 10(PSL(3. 5))7, mittlerer Teil
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Tabelle 5.5: Py 0l PSL(3, 5) 17 rechter Teil
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(1-1 1-1 1 -1 1 =1 1 —1 1)
0 1-2 3-4 5 -6 7 —& 9 —10
0 0 1-3 610 15-21 28 —36 45
0 0 0 1—4 10-20 3536 84120
0 0 00 1 -5 15-3%5 70-126 210
= 0 0 0 00 |l —& 21 —56 126 -—252
00 000 0 1 -7 28 —B4 210
00000 0 0 1 —& 36-120
00000 0 0 0 1 —9 45
I T O S I (i (i (i (i 1 —10
\0 000D 0 0 0 0 0 1
L1 2% {100
ZaiAdg- o 13- |oto
0ol 0o
Hicrben ist 2504, 1) die Matrix
()% (W)= )
ZalA. ) = (3 nd (5 )%
Prold)l @l oo Fuold)™ B
[ b /

117
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IIIr 16303365 2657997 10323225 4333 4296594 293805 1521 ESNII
163 0336350 BT 418420397500 4509 292085 633512 125000
TAZGAS1425 1157 514867 536625 1826 263294 681572410625

1956403800 B51 505189912000 370609118 857298 8R0000

23 TO6G30 IT2333520 586300 40 535372 375017 0635000

= | 410RATIRO 99 342272 | 56400 2402096 140741 752000

F23 706630 15920235922500 TA029 097039 625000
1956403800 1455564 42720K) T0R2 93993 3 BAG&00
TAIG351425 GE220 582525 6 345351 174825
Fa, 10K Va2 F) FaalE)

\ 16303365 165 303365 163[]33551

mit gan#en Fahlen

Vo) = FoalA) - @"5a ;)
= Fool A @ (P 2T dir 1= w =3

Murdic Zahlen 34, (5; ) bingen von dem spericllen Design ab, alle anderen Grolen
bestimmen sich bereits aus den Parametern des Designs, Die Vekiloren g miA

';IT fird = 1. 2. 3 sind:

dolty) =02, 2,9, 9 1169 9 7 4 8 9 7 11, 10, 18,9, 5,7, 7,97,
12, 8.8 10,8, 8. 8, 4, 5, 6,8, 9 8 8, 8 8, 10, 10,8 8 9. 10, 10, 12,
B OO R 12,9 9 R 8 T R 99 9 T 10,7, 8, 11,90 b 4. 6,9 3,7,
7,5,9,6,10,9,9,8 7,89,7,7,5,7, 10,6, 12, 10,9),

dolp) =2, 2,9 9 11,6, 8 1L 7,4, 89 7,7 14 189 5 87 7 8
OO R B TR R 77,99 7 10,7,9 8 7, 68 9 9 10,6 12, 8 10,
11,8 12,8, 8, 6, 7,7, 10,9 7,10, 7,9, 9, 5 6 8 7,667, 7,9 9,
13,7, 18,7, 11, 0,8, 11,6, 13,9, 7,8 7,89, 1, 10, 9),

Aolp) =02,2,9,. 9 11,6, 7,8, 8 7,849 6,15, 10, 18, 8, 9.9 6 8 &
12,68 10,7, 7.8, 8, 7,78, 7.8, B, 8, 7, 10,6, 7,9 8 10,8 12,7,
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10, 10, 6,9, 10,6, 10, 8,9, 8 6, 11,8 11,6,7,9,9, 11, 10,7,7, & 3,
7,9,7,7,6,7,8,9,9,5,9, 10,7, 13,9,7, 4, 6, 10, 6,9),

Diaraus ergibt sich

Dy,

i WoalE) | wg (Dyyl
1 163033630 ]
2 1369201800 [ a3 084075
3 [ 11863610100 | 1347 012000
i M (E2) n'L':,MI'ﬂH]
|| 163033650 5
2 [37T IRERO0 [ 607 176075
312092018100 [ 1380988000
1 Woelds) | e (D)
1 163033650 ]
2 1267341800 [ 602 154075
3 [ 11903 600100 | 1354 607000

Dia die Werte von Ll'.::-llz]['Dy] stels verschieden sind, folgern wir, dass Dy, Dy, und

T paarweise nicht isomorphe Designs sind. Wir prasenticren cine Tabelle aller

Werte von u.'fj (D) Hir 1 = ¢ = 138, Die Tabelle zeigl die sortierten Werte von

n:L[;,ml D). Die Indizes § der Diesigns Dy, werden anschlicBend aufgefiihrt,

501 366075 fiir [25}
593226075 fiir [110]
594 342075 fiir [93]
595 830075 flir [111]
596 853075 fiir [£7}
507039075 fiir [102]

JOT 225075 fir {107}
597 318075 fur {23, 128}
597 504075 fiir {5, 35]
9T AUTOTS flr {15, 46]
597 968075 fiir {8}

SO08 24B075 fir {126}
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508 341075 fir [14}

598 434075 fir [118, 132}
598 527075 fir [96}

508 BOGOTS fir [79}

598 899075 fir [32, 70, 112}
598 992075 fir [97, 100]
599 ORSO7S fir [48]

599 643075 fir [49

500 820075 fir [44, 119]
599 922075 fir [64}

AO0 015075 fir (41}

GO0 LOROTS fir (43}

00 201075 fir [16, 122]
GO0 ARO0TS fir [75)

A0 STI0TS fir (29}
BO0GAEOTS fir [134]

GO0 TS0TS fur [T, 36, 68}
OO BS2075 fir [106, 131}
a0l 131075 fir (101, 103, 105)]
01 224075 fir [10}

01 217075 fir [40}

601 503075 fir [127]

01 GE9OTS fir 29, 120, 137}
601 TE207S fir [69)

Gl SRROTS fiir [62, 88}

02 154075 fir [, 18, 45, 94
02 433075 fir [13, 109)]
02 526075 fir (66}

(02 619075 fir [93, 133
02 712075 fir [34}

02 BOS0TS fir [56, 57, 67

Kapitel 5

G2 BUEOTS fur [50, 61, 90)
GO2 991073 flir [51, 86]

GO DB4075 fiir [1, 21, 54, 77, 108, 113}
603 177075 fiir [72]

O3 270075 fiir [ 12, 59, 124}
GO3 363075 fiir [81. 117

B3 456075 fiir [84]

A3 549075 fiir [65]

607 6A207S fiie [91, 115, 116]
A3 735075 fiir [ 104]

G0k 014075 fiir [22]

éid 107075 fiir [ 26]

fi0k 3R6OTS fiir [11, 76, 129}
GO4 4TO0TS fiir [31, 55]

Gk BESOTS fir [9, 136]

60k TSEOTS fiir [29. 37

60 D407 fiir [98]

fi015 223075 fiir [47]

6015 316075 fiir [30]

G015 ATBOTS fiir [28]

A5 595075 fiir [33, 73, 123}
G005 DETOTS fiir [#0]

f6 153075 fiir [ 19, 92]

606 339075 fiir [53. 82. 85, 135)
606 525075 fiir [ 125]
f06 6 18075 fiir [17. 121}
(06 897075 fiir [60]

GOT 176073 fir [2, 130]

GOT 641075 fiir [+, 6]

GO 199075 fiir [ 114]

A8 292075 fiir [38, 74]
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GO 385075 fiir [99} 610 152075 fiir {78]
GO 4TEOTS flir [52} 6100 BOBOTS fidr J58]
08 571075 fiir [£3} f11 175075 fiir J63]
GOB 66407 fiir [24, 42) 611 268075 fir {71, 138}

09 315075 fiir [20}
G089 873075 fiir [27)

Wir crhalten dic folgenden Klassengroben: 148 223 310 42 g1 Eine Feinere
Klassifikation ergibt sich durch Wahl von 5 = 3. Dicse Klassifikation ist disknet,
il he keine pwel Designs haben dieselbe Schnitimalrix A Somil sind alle 138
Designs verschieden, Wir zeigen an einem Beispicl, wic sich eine Klasse der s =
2 Klassifikation aufspaltet, wenn man su & = 3 iibergeht. Wir betrachien die

aribte Klasse mit 6 Elementen:
[ﬂlu . Ehn ﬂ:w I]IJ'.'- I’mw I]Im .

Aldle Iesigns haben n:,?fh 'E‘F_:j = 603 084075, Die Tupel |n'L';,11|:“DF_: '|,r1,§|'1']|'D;_:]'| fiir

diese Designs sind:

(EO30R4075 . 1341757500 Fir Ty,
(FO3084075, 13470120007 fiir Dy,
(BO084075, 1350236000 ) fir Dy,
(EO3084075, 1353382500 ) fir T
(EO3084075, 13609930007 fir D
(FO3084075, 13624190007 fiir Dy,

Die 1658 Designs mit & = 100 kinnen ebenfalls durch Betrachten ihrer Schnitt-

rahlen mit s < 3 vollstdndig klassifiziert werden,
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