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Chapter 1
Introduction

[n this chapler, we discuss some hasic propertics of designs and their parameters.
For further study, | recommend the books of van Lint and Wilson [27] and of
Cameron and van Lint [8]. Facing only the theory of designs and incidence strue-
tures, there are also the books by Beth, Tungnickel and Lenz [2] and the famous

book by Dembowski [ 10].

1.1 Incidence Structures and /-Designs

AN incidence strictizre 15 a system B of subsets of a set V whose elements are
called pojnrs, The subsets ane called Blocks, An incidence strocture is called
Sinite, 1f the set Vis finite. In this work all incidence stroctures will be finite,
The number of points is denoted by v, the number of blocks is abbreviated by the
letter b,

The incidence relation is the relation of inclusion between points and blocks.
We call a point p £ Voand a block B & B incidens iF p £ B holds, An incident
point £ block pair (p, ) is called fag, A non incident point £ block pair (p, #)
15 called ans flag. The relation of inclusion and therefore the incidence structure

itsell is often coded by a matrix, the incidence matric. Let py, ..., e be the
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points and By, ..., B, be the blocks of the incidence stucture, The incidence
matrix is the (v = B)-matix & = (q; ;) with w;; = L il p; € 8 and zero

otherwise. On the other hand, every (¥ l-matrix N = (n; ;) of size v = b defines
an incidence structure (V. 81 with v points and b blocks. We take v points and &
blocks corresponding to the rows and columns of the matrix A7, respectively. The
point p; is contained in the block B il and only ifn; ; = 1.

Acf-lv, kb, A) designis a incidence structure T = (V. B with
iy [V =,
(1) | B| =k foreach block B £ B,

(1) For each {-subset T = V there are exactly & blocks of B containing 7. In

other words: ¥T € [1:'} : 3, BeB: TCBHA.

The numbers ¢, v, & and & arc (amoung others) the parameters of the design. The
number £ describes the peind regidarity, The number & is the Mook size, » is the
index of the design, Mol every parameter set belongs 1o a design. On the other
hand, the may exist several designs for the same parameter set. Two designs
Ty = (V. By and T2 = (V. B2 are called ivomorphic, if there exists a permuta-
tion 7 & Symy;, mapping the set system By onto the set system B-. Here, applica-
tion of the permutation = is understood element-wise, i. e Hf ={8" | B e B
mit 87 = |{p¥ | p £ B} The relation of isomorphism is an equivalence relation,
The isomorphisms of one design onto itsell are called amomorphisms. They form
a group with respect 1o the composition of mappings. This group is called awio-
maorphism group of ihe design. A design with » = 1 is called Steiner sysfem. Ina
design with point regularity ¢ = 1, the number of blocks containing a fixed point

is a constant

r=|[BeB|pecH]

for e WV, the replication numtber:
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The starting point for the development of design theory may be seen in the
following problem of schoolgirls which was posed by Reverend Kideman ( 1806-
1895 around 1850 (el [14], [16], [15]):

“Fijieen voung ladies in a school walk owd three abreast for seven
deayys in succession; it is requived te arrange them daily, so thar ne

twe will walk hwice abrean.”

Labelling the 15 schoolgirls by the numbers 1 1o 15, we are asked o define 7 times
5 groups o blocks of size three out of the 15 numbers such that all 15 numbers
appear in the 5 blocks and any two numbers together do not ocour twice in the set
of all blocks. The necessary condition Iil:"} = 105=7.5. {;} is satisfied with
cquality, so any two numbers occur exactly once together in a block. This means
that we are looking at a design on 15 points mit blocksize 3 and the property that
any two points (§ = 2) occur exactly onee (A = 1) ogether in a block, The design
has the parameters 2-(13, 3, 1) and thus 15 a Steiner system.

A solution to the schoolgir] problem is shown in Figure 1.1, Following an idea
ol Beth, Jungnickel, Lenz [2], the filteen girls are identified with nodes labelled by
the numbers 110 15, These nodes are placed on the periphery of a circle (with one
point in the center af the circle), The three groups of one day’s walk are indicated
as triangles. The solutions for the other & days are obtained by motating the picture
around the central point along the circle in steps of size two, Below the salution
for all seven days is displaved in form of a table.

The guestion whow designs can be constructed has no universal solution, A
method For constructing designs will be presented and discussed later in this work.
Thiz method gorks well even for large parameters, i. e, high point regularity. Fore-

most we are interseted in answering the second question which is the following:

Criven a sel of designs fir the same parameter set and on the same xel

af points V. Determine the isomorphism classes of the designs, i e
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Ml i Ml s Fr Sa So
I 2 3|3 6 5|5 7 22 4 6|6 1 73 414 5 1
610 127 13 104 9 13]1 & 9 |3 11 514112 12 14
T 9 144 8 12(1 11 103 14 13|5 12 9 |2 10 8 |6 13 11
5 8 13[(2 11 9 (6 14 8 (7 12 11(4 10 14(1 13 12(3 9 10
4 11 15 4 1513 12 15|15 10 15|12 13 15|16 9 15|17 & 13

Figure 1.1: A Solution to the School gitl Prohlem
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the clasyes of designs which are pairwise isomorphic is the above

HEORAE,

1.2 Parameters of r-Designs

[n this section we recall some basic results on the parameters of designs. A first
imporlant obscrvation is that any f-design is at the same time alsoa (7 — | )-design.

[ncluctively, it is an s-design forall 0 = 5 =< &:

1.2.1 Lemma fer T = (W, B) be a 1-(v. &k, 1) design and let 5 be an integer with
0=y <7q. Then D is also an s-(v, k, L) design with

=35
" v Ll—x
he =h= (1.1
(=)
(e dp = AL

Putting s = 0, we oblain

p = .il.{;'_—}l =, 1.2}
(i)
for any f-design, as every block contains the empty set,
In any [-design (so in any t-design with ¢ = 1) the number of hlocks con-
taining a fixed point 15 unigquely determined. We put 4y = r and get from

Lemma 1.2.1:
LI
vr = kb | ¢ }..;.:}.1".—_]. (1.3)
In any 2-design (so in any (-design with 1 = 2 we hove

e—1

(251)

k—1

(:01)

(& rik—1)=ldaiv—1)). (1.4

di=r =2
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Ifwe regard a r-(v, &k, &) design T as a (1 — 1)-design, i, e, mone preciesely asa

it — L=, k&, k1) design, we call it the design with respect to smaller 1 and write

red T ireduced 1) Fordi = ¢, red' T = redred .. red Dis a (f — i), k., Ae)
i mal
design,

The existence of some special f-designs is so obyious that we consider them
as frivial dexigns. First of all, we always have the complete design holding all

k-subscts, i.e. B = [E] This design is a f-(v, &, fma (0. 1, £)) design with

B —
T .
INax (& _J)

The integer aAmaxto, 7, &1 i5 the largest possible index which a design with fxed
parameters ¢, v and & can have,

Another trivial design is the empiy design without blocks, There i=s also the
one-block design with £ = woand & = 1. The design with ¢ = & = | and
V= ﬂ'] = ¥ is another trivial Steiner System. The design with & = v — 1 and
B = [L,"_"1]| is dalso rivial. Nole that the last three examples all describe complete
designs.

There are some ways o construet f-designs from other f-designs. et always
D=V, B)bear-(v, &k &) design, AL first, the supplementary design supp T0 has

the k-subscts s blocks which do not belong to B It has the parameters
i— ['I.-'.. I‘:.. -:'..mn_\:['l'.. f--‘.'] - .|-".:||

As every design admits the supplementary design of index iq,, (v, 0, £ — &, we
may require our design 1o have an index which is al most %}.m;,x[u, i, k1 The
supplementary design of the complete design is the empty design.

Another design is the complemeniary design D7, which has as blocks the sets
g =V B where 2 muns through the set of blocks of T Later we will see that
the complementary design is again a f-design and we will compute its index in

Cormollary 1.2.6. As the complementary design has blocks of size v — &, we may
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require that the designs we are looking at have blocksize at most :lv. The designs
witht = &k = | and & = v — | mentioned above are complementary designs,
The complementary design of the one-block design has the empty set as a single
hlock.
For a given parameter set, there does nol always exist a design. A uselul test
for verifying whether a putative design parameter set is realizable is the following:
Ifai-iv, k, ») design exists, then all parameters «; of (1.1) must be integral.

Thus, for) = 5 < ¢, all denominators in

must divide the corresponding numerators including A. Here, [a]y, is the falfing

Jaetarial of length b defined as

el i=a (a—1)---la—ib— 11
(with [a]n = 1). A pamameter set -y, &, 2] is called admissible i all &, arc
integral. Let Ad be the smallest positive integer such that

Aj. |1"_-'5|1—.1

[k — sle—s

is an integer For all » with 0 = 5 = 7, Then all parameter sets of the form i-
(v, &k, B - ALy with i € B are admissible,
Let D = (W, Bibear-iv, &k, &) design. For p < WV, let

der, ' = (V. B,) with B, =[B" {p}| BB pc B
b the derived design. In addition, we call
res, D' = (V. B") with B = [B e B | p ¢ B}
the residual design of T)

122 Lemma Let D = (V. B) beat-iv, k, L) design and let p € V be an arbitrary

point. Then



= Chapter |

(i) der, D iva
F=11—=flw—=1,k=1,4)
desigh,
(i) res, Disa
=11 —iv—1.&k 2y —A4)
design, with b, — A = At
Figure 1.2 shows the relation between the parameters of design and the param-

clers of the dreived and residual designs and the design with respect 1o smaller 1.

(v, &k, A)

(= 1o, kb A1) (- U= Lk —1,0) (8= v — Lk A7Ey

Figure 1.2: The Parameters of the Designs T and red D, der D and res D

The [ollowing counting principle s a uselul combinatorial method. Belore
stating the result, we present a small example, Let £2 be a Onite set and let A, B
and " be arbitrary subsets of 2. Assume we want to determine the cardinality
of the set 2 = 2% (AU BUC) using only the cardinalities of 12 and of all

interscctions of the scts A, & and ©. Then, according to Figure 1.3,

1] =|R — |A| — [B| — €|+ AN B| +|ANC|+ [BENC| —|ANBAC|.

The general case is scttled by the Following lemma:
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Figure 1.3: Compuling |£:.!| using Inclusion / Exclusion

L.23 Lemma (Principle of Incliusion / Exclusion or Sieve Formula) Let €2 be a
Jinite set and let Aq, ..., Ay be a set of subsets af €2, Ler =0 h Uf:l A; be the

set af elements af @2 which are conlained in none af the sets Ay, ..., A, Then

£
Q=i+ =0 3 | Am|-

j=1 s 1l 21, k=]

L24 Lemma et D = (W, Bibear-(v, b, M design. Fori, je Mwithi+j <1,
let I [F] and J € [1’] be disjoint swbseis of V. Then the number

;.,-u,-=|{ﬁes|f«;ﬂ,ﬂru=n?1}

is independent of the choice of the subsets I and 1. In addition, 4; n = »; for all

i = tanddy g =a. The recarsion
Ai jrl =hij — iyl g (1.5)
is safisfied fori+ j =<1,

We display the numbers Ai for i + j = f ina triangular scheme as in Fig-
ure |4 The inital values &, = 4, 5 for ) = 5 = ¢ ogether with (1.5) allow the

computation of all values., Other, direct Formulae are the following:
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Ao
- kN
r %
r %,
Ain Ani
& b E L
r % & %
- Ry o Ry
Aa Ag An,a
r b A iy ;. "y
o " e _-" ey
Az Az Ay g Ao,a
Mo Ao

Figure 1.4: The Parameters 4; ; ol a t-Diesign

1.2.5 Lemma fet D = iV, B be a i-{v, b, L) design. Let [ and 1 be disjoint

subsers of V of size i and j, respectively, wherei + j = 1. Then,

i .
(i} 2pj = Z[_]]‘f(.:)ls,

x=il

r—i—f
.FI:[':L%} (Ray-Chaudhur and Wilsen [24]),
k-t

r”_.l "."':-.ni

Applying this result to the complementary design of a r-design, we see that
this again is a r-design: Let T = (W, B} be a r-design and let T be an arbitrary 1-
subset of V. The blocks of the complementary design T containing T are exactly

the complements of blocks of B avoiding all elements of 7', This proves:

1.2,6 Corollary Let Y = (V. B) bea t-iv, k, &) design. Then the complemeniary

design T is a t-design with paramelers

: o A ek
= v—Kk dog) with Aoy = A = i

) - TE
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1.3 Partitions and their Combinatorics

[n this section, we present some results of the combinatorics of partitions. Much
of this work is inspired by the books of Adgner [1], Halder and Heise [11, Chapler
1, 4and 3] and Kerber [13].

Let w e M be a natural number (0 & M) and let N be a n-clement sel. We
denote by (ay, ... ,a, ) the sequence and by e, ... a, ]| the maliiser of elements
i1, ... e The clements of the multiset may be freely rearranged and muliplic-
itics are taken into account. In order to simplify nolaton, we mav express muolii-
plicities as exponents. I the multisel consists of natural numbers, we may order
the entries aceording to descending magnitude, We call the multiset [ay, .. ., a,]
of natural numbers jn standard form if a) = ... = a, holds,

A decomposition of a set N 15 a system of possibly empty, pairwise dis-
joint subsets Py, P with |__; & = N. A decomposition is ordered if
the scls form a sequence. Otherwise, we call it wnordered. In both cascs, we
write & = N, where P = (7, ..., o) may be either a sequence or a multiset

P =P, . P of pairwise disjoint subsels of the set & More formally,

-
PEN = UF}.:N A B NP =Wior §# j
i=l
for P = (P, ..., P and P = [P, ..., P, respectively, The possibly empty

subsets 7 are the parts of the decomposition,

1.3.1 Example

(i) (2,7, 1,21 is the sequence and [2. 7. 1.2] = [1, 2%, 7] the nudtiset of ele-
ments 2, 7, 1, 20 As we do not consider ordering of the elements of a mul-

2,702 = [7,2,2, 1] = [7,2% 1]. The last two forms are

tiset we have

the standardforms of the multiscl.
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(i) The sequence ({2, 3}, {1}, {4}) is an ordered decomposition of the set
{1, 2, 3, 4}. The multiset [[2, 3}, {1}, {4]}] is an unordered decomposition of
the same sel.

O

Let us now defing partitions. There are various kinds of partitions and the
lerminology not always seems Lo be consistent in the literature. A ser partition 15
a decomposition,

A number partition of n € M is a sequence p = (p1...., pr) or a multiset
p=lm...., o] ol natoral nuombers g, ... L o with EF:I = n. The p; are

the pereis are the parts of the partition and we again write p = » ¢

r
pFER = Zﬁ,—:.ﬂ

i=l
forp=ipy.....pr0and p=|py, ..., pel, respectively.

Alltogether, we are going to introduce & different types of partitions, of, Fig. 1.5,
We have 4 sct partitions and 4 number partiions, 4 crdered and 4 voordered par-
litions and finally 4 generalized and 4 proper partitions. Choosing these three
properties as labels of the three dimensions of the cube, we obtain the figure,

A number partition (py, ... . pedor [pr, .o, pe] s called proper, if p; = |
foréi = 1,....r. Il only gy = 0 i required, we call it a gereralized nwmber
partition (strictly speaking, the proper partitions thus also belong to the class of
peneralized partitions),

An ordered number partition is a partition whose parts form a sequence of
numbers, in an unordered number partition, the parts form a multiset. An un-
ordered partition is in standard Form il the corresponding multiset has this prop-
erty. The sets of proper unordered, proper ordered, generalized unordered and
peneralized ordered number partitions of # will be denoted by Tiin), [in), 11 (1)

and IT*{m). More precisely, we have

Miwi={le1..... o |Fn|lrel, el m=1lri=1,....r}
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fpmper [ generalized partition

I:}_:.__- _.-'f E I1 {_l"'u']
S |
g 1*(N) |
| I /
. | |
| M(n
\ i -_-_'I"r —
| | [{N) number [
Ja 4y Y set, partition
P .-"". I ] {qﬁ}h'--h_____ | __.-"'- .
¥ — |
unordered / e
ordered partition LI{N)

Figure 1,5: The Eight Types of Partitions

Omi={(p1,....p- 0 |re®, el pp =1fori=1,....rl,
T[ﬂ]:{”ﬂ,...,||'.J_.-||—|"iI|FEH pEeM pp=0blr i=1,...,r}

Mimi=1{(p1,....prdbn|reM peM, pp=0fri=1,...,r}

1.3.2 Example [2,4,2, 1]isin TSy, |4, 2, 2, 1] is this partition in standard form.,
(24,2, 1) s in TIO9). [2, 4, 2,0, 1] is in T (99, [4. 2, 2, 1, 0] is this partition in
slandard form. (2, 4, 2,0, 1) is in TT*(9). <

For set partitions, we also distinguish four types, A set partition & =
(P P ENa P =P, . P N s called proper if 7 &£ @ for

i = 1,....r A sel partition, whose parts may be empty is called peneralized.
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In particular, the class of proper set partitions also belong o the peneralized set
partitions, The sets of proper unordered, properordered, generalized unordered

and generalized ordered sel partitions are

TN :=[[P..... PN |reh, & £@0for i=1,....r}
NN :=[i(F,....P9FN|reM, P £0ori=1,....r ]
0N =[[P..... P EN|rel],
NN I =[(P,.... R EN|reM]

133 Example [{2, 3}, {1}, [4]] is an unordered set partition (i, e. belongs 1o
IO, 2,03, 400, (2, 30 {14 {4 s an ordercd set partition (i. . belongs o
T, 2,3, &b, H2, 38 @, [11 @, [4}] i an unordered generalized set partition
(i e belongs 1o e 120304 00, (2, 31, @, {1}, @, [4]0 1s an ordered generalized

sel partition (i, e, helongs o TT%({1. 2, 3. 4} O

The length of a pattition is the number of parts. We wnte £(p) or £0.7) for
the length of a number partition p or the length of a set partition 7. The sct of
partitions with fixed length r is denoted using the above notation [or the partition
and indicating the length r in the index, So, 11.(N), T (W, T im and 11, (#)
denote the set partitions (number partitions) of & (of n) with exactly r parts. The
overlined partition symbol stands for the unordered versions of the partitions.

For a number partition g, the sum of all pards is the weight of g, writlen as
|p| = E:[:'T] .

Let us consider Fig, 1.5 again, in any of the three dimansions of the three-
space, we have a projection mapping. These mappings goin the opposite direction

as the arows indicated in the figure:

i) We can map every ordered partition onto its vnordered form by forgelting

about the ordering. Thus we have two maps

TN = TN, P = (P, ..., P P =[P..... Pl
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TiTm) = TR, p= (... el b= F=1p1, ... ol

(ii) For set partitions, the sizes of the classes form a noumber partition whose
weight is the cardinality of the partitioned set. We consider this number
partition as ordered il and only il the original partition was ordered. So, For

aset N of cardinality », we get two maps

[l -1 : THN) — Tlim), P =P, ..., Bl = 0[P, ..., F,
) THAN) — THim), P = [P Pl e (P[P
which we call the fype maps,
i1ii) We can map any generalized partition onto a proper partition by forgetling
about emply sets in sel partitions or zero parts in number partilions, respec-
Hvely. In casce that the original partition was an ordered partition, we simply
delete the empty parts and keep the ordering of the remaining parts. Thus

we have mappings

£

STIYING — TN, P P,
I ﬁ‘[:"v':l — TI(N), P P,
i O%n) — i), p b,

DT (m) — Tlin, P p.

All three dilferent kinds of mappings play an important role in the prools of
this section,
Set partitions are useful to study mappings between finite sets. Any mapping

foN — KwithN =1{1,... n}land & =[1....,r] gives risc 1o a scl partition
FPr=iP(fh. . .7 i1.6)
of & while putting

Pl fy= YD fer i =1, .0
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The ordered set partition ¢ deseribes the mapping § uniquely,

1.3.4 Example The mappinz § @ {l,... .4} — [l,...,5} with /(1) = 3,
fi2y =1, f(3) = 1, and (4] = 35 has associated with it the set partition
Py o= ({2, 3} @ {1}, 8, {4} N

L35 Remark 7y is properif and only if § is surjective,

We can consider sel partitions and mappings under the action of groups. In
particular we have the action of the symmetric groups Sym,, and Symg. Acling
with Svm g, we may identily the orbil of a partition Py with an unordened parti-
tton, i e. with a multset, For the corresponding orbit under Symy,. the type of

the partition is an invariant.

It is sometimes vselul to draw partitions in form of a diagram, the Ferrers
dicigram. Let p = [, ..., ] be an unordered number partition in standard
form. We draw a diagram with boxes aligned in rows and columns. The i -th row
represents the part p; and consists of py left aligned boxes. Thus, the partition

P =15, 3, 3. 1] has the diagram

The conjugate partition is obtained by reading the diagram column by column.
In other words, the conjugate partition is obtained by transposing the Ferrers dia-
gram of the partiton at the diagonal from the upper left comer to the lower right
corner. We denote the conjugate partition of p by p'. For the above partition

p= 5,3 3. 1] we get the transposcd Ferrers diagram
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describing the conjugate partition p" = [4,3,3, 1, 1]. Mote that the length of the
conjugate partition is equal to gy, The i-th entry of the conjugate partition is the

number of parts of p which are of sizc i or largers
(p"e = |17 = €p) | p; = it].

Leta = [ay, an, ..., ap] be a partition of the number n € M. The multinonal

()= ()=

is independent of the ordering of the parts of the partition a. The next lemma

coefficient

shows that it is a natural number as it describes the cardinality of a sel.

LA6 Lemmg Lef a € 1 in) and let N be an n-clement set, The number of
possibilifies lo decompose the sel N into r ordered dasses of sizes aq, ..., ay 15

I[z}l fn other wonds,

1
[[AETL(N) : Al =al]|= (‘”)

1.3.7 Example The number of ways to write the word MISSISSIPPL in arbitrary

arder of its letters 15
[
) = AdHA0.
[,4, 4,2
&

Our next aim is to determine the number of possibilities to partition an n-

clement sct into unordered classes of prescribed size. Let [ay, az, o oapm] €
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g withay =ax = ... = ey The ordered partition
Agi=la) —axdx —ay. .. . 8¢ai—1 — Scans e € N ag)
is called difference partition of a.
1.3.8 Remark Leta & TIim). Then
(Aa'y = |[f = Ela) | a; = i}

The partition Aa’ is also called the evele fype of a. Itis |Aas'| = £(a) and
Yolyic (Ad') = al.

1.3.9 Example Take the partition @ = [5.2. 2, 1]. The conjugale partition is
a’ = [4.3.1. 1. 1]. The cycle type is Aa'=11,2,0,0, 11 II*&fa)). Moreover,

LA10 Lemma fef a & T and et N be an n-element sel. Let v = Fla).

The number of possibilities lo decompose the set N into wnordered elasses of size

1 {lﬁ:a"l) ||:!|)
| fr”[! M’ a )
liz]
2]

], d3, ..., dp I¥

Proalz According 1o Lemma 1.3.6, there are |: ) sel partitions A4 = (g, ..., )
of & with [A;| = a;. Then A= {4y, ..., oA} s a set partition with unordered
classes, According to Remark 138, every set partition & with |[2&|| = a has ex-
actly (Aa'); classes of size {. Every permutation mapping these classes to them-
sclves docs not change the type ||| of the partition. All set partitions with the
same unordered partition A are obtained by such a permutation of the classes of

the partition . Thus, the number of unordered set partitions of type @ equals

1 (fi)_ | (lﬂm"|) (|“|)
]_l;-”:]iﬁﬂ".lf! al  Eal Hat af
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1.3.11 Example (Continuation of Example 1,3,7) The number of ways to decom-

pose an 1 1-set into unordered classes of sive 4, 4, 2, 1 is

al_ (JT_) | (J«Jill |) - _I_ (at,:z. 1) -

isincea’ = [+, 4,2, 1]'=[4,3,2, 2] and Aa" = (1, 1,0, 20 Ch

Often one is interested in the overall number of partitions of an g-clement
set into r classes (independent of the type of the partition). This number can be
determined by noticing that the map || - || yiclds an vnordered number partition
ol m with exactly r classes. Running through all such number partitions, we can

obtain the requested number of set partitions by application of Lemma 1,3.10:

L3122 Lemma The monber of possibilitier fo decompose an n-element sel N inte

r unovdered ofasyes v
I r T —
Sain, r) = — = |T1,. (N1
an )= ) (M,)(H) T, (V)|
aellyirl

This number is called Stirling number of the second kind,

1.3.13 Example [et us compute £-05, 3. There are exactly two partitions of the
number § into 3 parts: a = |3, 1, 1] and & = |2, 2, 1], The conjugate partitions
arc e’ = |3, 1, 1] and &' = [3,2]. Thus, Aa’ = (2,0, 1) and A6 = (1,2). By

Lemma 1312, we get

28,4 = %((2 S I) | [17 ,)* (I,?E) | (E. ; J))

1
= — - (604 90) = 25.
&

<

"

r=n S2ln,r)

Tahle 1.1 displays the values of $1(n, r). The number Bin) = %
is called Bell number
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dalnor)r =
alnl 23 4 5 6 7 8 9l0l B
glro o 0 0 0 0 0o o o0 1
L1 0 [l 0 [ [ o0 00 |
2{0 1 I i i [ 0 o0 060 2
Aol 3 ] ) [ 0 o0 00 A
{1l 7 i ] [ 0 o0 00 15
S01 15 23 10 1 0 0o o o0 52
G001 31 90 63 15 | 0o o o0 203
TIOL 63 301 350 140 21 Il O 00 BT
01127 9as6 1701 1030 266 28 1 0 0 4140
O 1 255 3025 77T 6951 2646 462 36 1 0O 21147
100 1 511 9330 34105 42525 22827 5880 750 45 1[113973

Table 1.1: Stirling Numbers of the Second Kind §20n, r) and Bell Numbers 8 (m)

1.3.14 Lemma The number af surjective fimetions af an n-element set N inlo an

r-elemtent sel is

r i it
. faln.r) = E = = [N
rl Faln,r) (ﬂm’) (”) Z (ﬂ) [T (N

_ &y =1, ]
aelly (m) e

T
Progf: (CI. Kerber [13, page 81] or Halder and Heise [11, prool of Satz (4.13])
let & = {l,... ,n}and & = [1....,r} be sets of size » and r. According 1o
Remark 1.3.5, any surjective function [ : A — K defines an ordered proper set
partition o4 ; of N, whose parts are the preimages of the elements of K under f.
Thus A = TT{N ). On the other hand, the surjective function £ is uniquely deter-
mined by the pre-images and thus by the partition o ¢ This means thal there are
as many surjective functions @ N — R as there are partitions in [T (N). Now

maps the partiions TT, (N surjectively onto T, (&) and every unordered partition
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of 11, (&) is the image of exactly r | ordered partitions, Thus by Lemma 1,3.12
= 1
-5:(]'?, rl= |].-.[_|-|:J"|'I:I| = —I|].-.[I.-I:J"|"J|.
r!

Multipying this equation by r! yields equality of the first two and the last terms
of the stated equality. In onder to verify the comectness of the third term we note
that the type of the partiion o4 is an ordercd oumber partition of » into ¢ parls:
Al = (@, .o a) € Tem, ey = 1.0 a0 = Land ¥ 1y = n. By

[emma 13,6, For cach such type there are exactly [:;'l sel partitions of A O

We denote the number of (unordered) partitions of » into r parts by B, . The
maltrix (F, 1 is lower riangular with ones on the diagonal, The total number of

partitions of the number n1s £, 1= EE:I P

L3NS Lemimia Let r and n be natural mummbers with | = r = nand let N be an

n-sel. Then

(i) |11 (W)| = rt- Sa(n, ),

-

(i) TN | = Fho () - k- Sain k) = o,
fiii) [T, (M| = San, r),
fiv) [TIHNY| = 35, Sain, k),
o || = (720
(il || = 2hs (0 - (229)
(wi) [T im)| = Py,
fviii) [T ()| = ey Pas = Py
Proof:

(i) Lemma 1.3.14.
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Each partition .4 € 1I7(N) has a certain number, say &, of nonemply parts,
Removing the empty parts, we get the proper partition A of g (V). For
A

each such partition, there are exactly L::.] = [1] ways 1o place the n — &

emply parts to obtain an clement of TT7 A )L Ueing (1), we et

" )
. n ol ny o .
|rv| =% (A_)|m.m =% (1) k- Eaim, k)
k=1 k=1
FEvery partition of T1T{A ) can by (1.6) be coded in form of 4 mapping [ -
N — R =1{1....,r}. As we consider gencralized partitions, these maps
are nol necessarily surjective (Remark 1.3.5). Thus there are exactly »" such

functicns and this equals the number of clements of 1IN
Lemma [ 312
Follows [rom (i1,

In the nonnegative part M » B of the integral lattice & « &, we define for
any partition @ € I.(»n) a path leading from the point (0, 07 © the point
(r, ), Initally, we put Fy = (0,0}, Fori =1, ..., r, define new points (J;
and P by (; =i — 1, Ej.=| i) and P =i, Ej.=| el The sequence of
points Py, 0, P, s, .0, O, P delines apath from Py = (0, 0 o P =
(r, ). This path resembles a staircase. where the pairs of points € and P
together form just one step (el Figure 1.6). As all parts of a are nonzero,
the height of the points # increases strictly, Figure 1.6 shows the staircase
obtained from the partition (1, 2, 1, 1), Projecting the y-coordinates of all
points Py, ..., P_j onto the v-axis, we oblain an (r— 1) subset of the set of
numbers [1. ... .# — 1}. On the other hand, any such (r — 1)-subset defines
a unigue path from (0, ) to (r, 7 ) which is a strictly ascending staircase, We
can recover the comesponding partition @ € Tl (r) from this path uniquely.

Thus, [T, (n)] = ("~}
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Fy

Figure 1.6 The Partition (1, 2, 1, 1) as a Staircase

ivi) Any r-partiion a € T1'(m) with & nonzero parts can be turmed into a k-
partition @ & [ () by removing all zero parts. There are {” possibilitics

to obtain the same a & Ty (n) from dilferent a € 17 (e ). This yields

|| = i [D|mm]| = i(i)(:: JI)

k=1 k=1
(vil) By definition, |TT-(n)| = P, ..

. . .. —
iviit) Removing the sero parts of an generalized vnordered partition a & T1_(n)

. L= . . . . —
vields an element of Tlgin) for some & = r. Thus, |r[,m]| =% 1_1 Puk

O

1.3.16 Theorem | Midtinomial Theorem) Let ne,n € M Then in Elxy, ... . 1

n
(X)X 4 ... 151" = E ER SRR
) o WLy e gty -

E:b | =
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-y ¥ (") X I

AP o :
=l .||:"|.-.-.,- }'I. |....r.u. J'I_I

L:.- I|II L P

[Fpaeeny I

I pﬂr.ri':w.fm'.

- 20

welly ia)

Proaf: (Cf, Halder and Heise [11, Satz (1.19)]) Each term in the product (x; +
x4 oo+ ay ™ is a word of length n in the indeterminates xg, ..., xp and
cach such word appears exactly once (if the ordering of the ™ letters™ x; is pre-

served). As the indeterminates commule, we may rewrile every word in {15 stan-

dard form x{'x3% . o with nonnegative a; satisfying 30 a; = n. Thus,
a = lay,....a,) € [} in). By Lemma 1.3.6, for fixed a there are exactly (")

ways o arrange the letters af this word in different ways. Each such reamage-
ment oceurs onee when multiplying out the prodoct on the left hand side. This
proves the first formula. In the second formula, all nonzero parts of the parti-
tion are collected. The second sum allows to distribute the nonzero parts over all

indeterminates xp, . .., Xy (I

For n € M we define the falling and raising factorials:

[¥]lpi=xix = 1) i lx —m 4 1),

[x]" i=x-ix+ 1) (x+n—1).
with [x|o = [x]” = 1. The three polynomial sequences
[x% [n =0k A{lxle [ n =0k {lx]" [n = 0]

form three hases for the space of polynomials over the rational numbers. Lel us
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collect some properties of the Stirling and the Bell numbers:
L3017 Lemma Ler n, & M. Then,
(i) S200,00 =1 and $2(n, 0) = S2000 k) = 0 forn, k =0,
(i) S2im+ 1, k) = Saim, bk — L)+ k- Saim, k) forn = Dand k = 1,
(i) S2im+ 1,51 = ':.=U [_"::]-Eg[j,.f; — 11 forn = Dandk = 1),
fiv) x® = %7 S k) x ],
Proaf:
(i) Follows from the definition of the Stirling numbers of the second kind.
(ii) Siche Halder £ Heise [11, Sate (4,37, Seite 57
(iii) Siche Halder f Heise [L1, Sate (4.4), Scite 57]

(iv) Siche Halder f Heise [11, Satz (4.1, Seite 56

The sighless Stirling numbers of the first kind for n, & = M are
rin, k) = |{g € Sym,, | cig) = k}|.

where efg) 1s the number of cyclic factors of the element g £ Sym,,. i e. the

number of orbils of (g} on the set [1.... .1}
1.3.18 Lemma
(i) Farn = Oand & = 0 the rectirsion
rin+ 1.kl =rink—=1)+n-rin k)
is satisfied. The initial values are

rl, =1 and rin,O=ril,E)=0 jJor n k=10
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(i}
J'.

1 {|Aa’]y fn ) )
rin k) = Z E(.ﬁﬁ"')(ﬂ') l_ll_f:,; — 13k

gellpinl i=1
Proaf:
i1} Kerber [13, page B2].

(i) Let W = [I,....n] and let & T (m) be a fixed cyele structure for an
element in Sym,, with exactly & cycles, According 1o Lemma 1.3,10, the

number of set partitions P of N with & unordered classes of size a; Mur

a e Tlgin is J._II{I::::I} IE] Within cach class of # of size a;, we can arange

the elements in (a; — 1! wavs 1o different cveles. This proves the stated

number of elements in Sym,, with & eyclic lactors.

The Stirling numbers of the firsi kind are
&, k) = (=11 r g, k)
1.3, 19 Theorem

(i} The Stirling numbers af the first kind £ (n. k) satisfy fork = Oand n = 0

the recursion
Sin+1LEN =8in k=11 —n.  Sin, k.
The initial valiwes are

S0 =1 and Sin =80, =0 for n k=10
(i)

WL AV L
S1im, k= (=17 Z r,( &‘,)(‘)niﬂs— 1.
— l i i

aelliiml i=1
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fifi) Letn = M. Then
]
=3 S10m, )
E=0

{iv) (Stirlings inversion formula)

" Ll
N Eiin i) Eali k) =3 Si(n, i) Eali k) =3,

=i i=kK
FProaj:
(i) Follows from Lemma 1,3, 18 (i),
(i) Follows from Lemma 1,318 (il

i1ii) (Following Halder and Heise [11, Sate (5.3)]) For n = 0 the stated equation
is trivially true. Thus let n = O, We put [x], = ¥ §_qs'(n, k1x* wilh
unknown coelficients s’ (5, £ Orbwiously, ik =0 = &)(n, k) fork =
n. Hn = 0, the constant terms in [x],47 and [x], are zem, sos' (a4 1, 01 =
sin. M = &in, 1 =0, Thus

n+1

Ea.-“r_u + 1, kx® = [x]p

k=1

=(xr —n)-[x],

[ Ll
= Z.ﬁ"[n, kit — ZH . 5'in, kit
k=0 k=1
u+1 mt+l
= Z.'."'fn, k — ]:I.r"' - Z nesin, R:I.'L""
k= k=l
u+1

= (s'im &k — 1) —n-s'(n, & jl}_r"".
]

-
Il
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Comparing cocfficients on both sides we see that the 5%(n, £) fulfill the same
recursion formula as the &1(n, k). Equality of the initial values implies that

sin. k=& n, ki foralln, k € K

iiv) (Following Halder and Heise [11, Sate (5.4)]) By Lemma 1,317 {iv), " =
::I=|:| Sain, kKi[x g for m £ W Together with (i) this implies that the ma-
trices (&) (n, &) and (Fa(n. £)) are mutually imverse. Together with the Fact

that hath matrices are lower trianguolar, this yields the equations.
(I

Table 1.2 shows the Stirling numbers of the first kind &)(n, &) for small »
and £,

Sim kL k=
n |0 I 2 3 4 5 6 7 B’Q
i1 0 0 0 0 0 o 0O on
1|0 1 0 0 0 0 o0 o0
210 —1 I 0 0 0 o o o0
30 2 —3 1 0 0 o 0o o0
4|0 —h L1 —i 1 0 0 [ 0
3|0 24 —30 35 —10 | o o oo
B0 —120 274 225 By —15 I o o0
FioooT20 =174 1624 T35 175 =21 | 00
B0 — 5040 13068 — 13132 G769 — 1960 322 28 110
910 40320 —108584 118124 —67284 22449 — 4536 546 —36 1

Table 1.2: Stirling Mumbers of the First Kind ) (0. &)

The following useful result can be found in Adgner [ 1], We will need it later.

We mention it here, even if it has nothing to do with partitions.
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L3220 Lemma Ler B = (b ;) with by, = {-r'] for 0 = {, | = n be the marrix
af hinomial coefficients. The the inverse mariv B~' = ibl i fas the coefficients

'h;.j = f—l]‘;"'lil:'_*lf::lfurﬂ =i, J=n
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Chapter 2

Intersection Numbers of Designs

[n this chapter we present the theory of intersection numbers of designs. Sco-
tion 2.1 discussses ondinary intersection numbers, in particular results of Mendel-
sohn (Theorem 2,1,1) and Kéhler (Theorem 2,1,2), The equations presented by
Kiihler in the latter theorem may be used to prove the nonexstence of desipns For

certain parameler cases.

In Scction 2.2, higher intersection numbers are defined. We present resulls of
Tran van Trung et al. [28] which generalize the resulls of the previons section For

these more peneral kinds of numbers,

In Section 2,3, I present global intersection numbers of designs, These num-
bers are ohtained by generalizing the higher intersection numbers. The main rea-
son for introducing these numbers is that they are vseful as invariants for designs
and thus may help classilying designs with respect 1o isomorphism. For technical
reasons, wo different kinds of numbers are introduced, However, it turns out that
there 15 a close relation between these two kinds of numbers which is given by the

Stirling numbers of the first and second kind.

3l
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2.1 Ordinary Intersection Numbers

Already in 1971, inlersection numbers of designs appear in Mendelsohn [22]. In
thiz section, we present the two basic results of Mendelsohn and Kiéhler,

Let T = (W, B) be a r-design and M < V' with |[M| = m. Let
wiM) = |{BeB: [BnM|=i}|

be the number of blocks of the design intersecting M in exactly | points, We call

ci; (M the §-th infersection nmuber of M owith D, The vector
i M) = {ani M), ap (M), ..., a,(M))

is the imtersection Ivpe of M with T IF M is a f-subset of V., then ap (M) = 1
is equivalent 1o M = By € B, In this case a; (o) 18 the {-th black intersection
number of By and o By) is the block intersection fype of By,

The following result of 1971 is due to Mendelsohn [22], It describes an im-

portant relation of the interscction numbers of a subsct M among themsclves:

2.1.1 Theorem (Mendelsohn [22]) Le¢ D = (V, B) be a t-(v, k, L) design and
let M C Vwith| M| =m. Then, fori =0,1,...,1,

i "
E(‘?)rf‘,-lM1=(_)}.;. (2.1
L I
=
Proof: We count the tuples

M
|LH:|E(_):=:H: FTCBOM
i

in bwo different ways: Choosing the sct [ £ I::'}I and determining the number of
hlocks containing I we gel the right hand side of (2.1, On the other hand, for
J = i....,m we may choose exactly o il M) blocks intersecting Af in j points,
Within these j-sets we can choose j-subsets [ in I[-Ir] different ways. This is the

left hand side of (2,17, o
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The coelficient matrix of the equations on the left hand side of (2,1) has a
special form: In its first (f + 1) columns, the matrix is upper triangular with
ones on the diagonal. These columns correspond o the intersection numbers
atM), oo Lo (M. To the right, this matrix 1= extended by some additional
columns belonging to the intersection numbers a, (M0, L, o (M) We have

the following result of Kihler [ 18],

2.1.2 Theorem (&Kdhler (18]} Let D = (V. B) beay-(v, k, o) design with M Z W

and |M| =m =, Then, jori =0,1, ... .1

[
LAY
(M) =Y ji—lf‘“(_)( )lk
. i SNk
=i
m—i—1

. PRk =i+ R4+
4 =]y Z ( A )( ,i )u,+,|,+|h'|-f]. (2.2}

h=0

Kiihler proves this Theorem by induction, We omit this prove as we will later pet
a shorter prool from Theorem 2.2.4.

The equations of Kdhler are uselul for ruling out the existence of some de-
signs, The following example can be found in Kihlers article:
213 Example The parameters 13-(32, 16, 3) are admissible, Assume there is a
design T = (V, B) with these parameters. We may choose M © V withm =
M| = 15 Then by (2.2,

o [JH:' = 105 — |4-|'.-|'|_1|:J'l':ir:| — .IEJF'I'.!'L‘:.[JHJ.

It is pomsible to choose A in such a way that at least one block of the design fully

contains M. Thus o581 = 1. Then
UM 4 Tde g TM 19550 M) = 105,

which is impossible as a (M) and o4 (M) are nonnegative integers, Thus, a 13-

(32, 16, 3] design does nol exist. o
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2.2 Intersection Numbers of Higher Order

[ntersection numbers can be generalized as deseribed in the article of Tran van
Trung ct al, [28],

In this section, we generalize the concept of intersection numbers of designs
as seen in the previous section. Let again D = (W, B) be a i-(v, &, &) design with
B ={&, ..., 8} the set of blocks, For M C Vand any integer s = | we put

el (M) = H 1B, ..., B,}e (ﬁ) : |ﬁ B, M .w| =i ”
1) E—l

1. ¢. the number of s-subsels of B intersecting M together in i points. We call this
number the i-th infersection munber of order 5 of the set M with the desien. The
veclor

a (M) = {r_r,;"'lle],. - ,r_rl,l"l'l[M])

is the intersection tvpe of order 5 of M with the design D. We have u'rfl" M) =
ci; (M) for all i, 0. e, the intersection numbers of higher order generalize the ondi-

nary intersection numbers naturally.

In addition, we consider refinements of the parameters A; ; of a {-design, Let
fand 4 be disjoint subsets of VW with |[f| =7 and | 7| = jand i + j < . Then for

any integer 5 = | we put

B & .
[ . £
.i'.r._J._HHS,-I,...,B,-:}E(H) NE AV Ny H

k=l

where J° = ¥, J is the complement of J in the set V. Sctting 5 equal to 1 gives
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Py = i Il = 1and j =0 we wrile ; = }_f_'n'. In particular. & = &, .

221 Lemmay {Tran van Tring, Qin-rong Wa, Dale M, Mesner [25]) Ler D =
(W, By be a t-(v, k, &) design. Let I € {':'?] and J € [1:?] be disjoint subsets of 'V af

cardinalities § and j where i + j < 1. Then for any integers = 1 :
v Py it
I R i+
My =2 =0 (”)( . )
w=0

In particilarn, the numbers .i'.::‘; depends only on i and j but not on the choice af

the subsers I and J with the required properries,

Proaf:  (following Tran van Trung et al. [28]) Call an s-subsct of blocks

[T | P = I:jﬁ admissible if
1 (B, c e
=1
holds, In order to determine the requested number of admissible s-scis we distin-
guish two different Ly pes:
type i) There exists a block which is disjoint to 7, 1. ¢, there = an b = & with

g, g =@

type i) Mone of the blocks By, ..., By, is disjoint [rom J, i.e. By, 11 J # @ for all
h=1,...,45

Let us first determine the number of admissible y-sets of hlocks of type i), Let u

be the number of blocks of the s-sct which are disjoint from J. 5o,
w=|{hell....,s1| By "J =8} =1

Then there are 5 — i hlocks intersecting J non-trivially. We determine the number

of possibilitics to choose blocks B 2 7 with BN J £ @ Put & = BN J. For any
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fixed R # @ with |R| = r there are 3, . blocks in the design containing 7 and
intersecting J exactly in £. Thus, the oyerall number of blocks # with 7 < & and

frd # P equals

J .
- ) Iy - .
N= Y |[BeB|ICB BnJ=gl|= Z(r);.,-ﬂ._j_y = ki — R
PR r=1
where the last cquality follows from the fact that & is the oumber of Blocks con-
laining I which are not disjoint from J. Thus we determine the number of 5-

subsets of blocks of type i) to

i (ﬁ.;.j)(.:.,- - ﬁ.,-u,-).
=\ 5 —H

We now determine the number of admissible s-sets of blocks of type i), All
the blocks of such an s-sel contain £ but no element of J is contained in all of
them. We determine this number of s-sets of blocks vsing the principle of inclu-
sion f exclusion (Lemma 1.2.3)0 Let 22 be the set of s-subsels of blocks which all
conlain 7 but none of which is wtally disjoint from J. So, [22] = |[:“]| = |['*I—_H"I-f;'|.

For vy ¥ we pul
&
Ay = I[ﬂ,-,,.. L Biten ‘ ve ) u,-b] .
h=1
For Y © 1YV ={v...., vl let
[
Ay = [ A
=1
The requested number of y-sets of type ii) is the cardinality of

=0y A,

yet
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which by inclusion / exclusion is equal o

;
9] =2+ =1 Y | RENE
=l =

where FE:I Ay, is a set of s-tuples of blocks which all contain I and # Turther
points of J. The cardinalily of this sct is I[A':HZ “}, and this number docs not depend

on the choice of the polnts vy, ... .y, S0 we gel
S VRN V| P fhis
O — = -'._r)_l_ |—|]“-( ) [ n-).
143 ( 5 ”ZI [T} 5

Putting the results for the number of admissible s-subsets of type i) and i1} to-

gether, we oblain

. 5 N b — e b — b 1 AYEN
2 (7] i, J i i - L) E wfd itu
L = (=1
"'J._r E( u )( - )+{ 5 )+ :I {H)( ¥ )

=1 =1
L] _.I' . -
=2 () ) e () ()
i F—H i Ly
=0 w=I
Uzing the following formula for binomial coefficients from [12, page 1429
i(ﬂ)( m ) B [J? -I—.I':Ii)
AT r
§=0
wie gel the stated result:

4= () 5 ()C)

— ii— | w(i)(}":‘").
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The next steps will be devoted to generalizing the theorems of Mendelsohn
(Theorem 2.1,1) and Kéhler ( Theorem 2.1.2) for intersection numbers of higher

order. Let us make some definitions first, then we come back to this lemma.

Let A = (a; ;) be a O0f]-matrix with & rows and = columns. We label the
ronys and columns by natural numbers using the index sets W = {1, 2, ... . u} and

C={12..., v}
i Let J =141 ja, oo jub €. Then let
FF'=liceR laij =aip=...=a;; =1l R

be the set of indices of rows, which have an entry one everywhere in the
columns indexed by elements of J.
() Letf =i i3, ..., i) © K. Then let
'={jeCla j=ay,;=...=a,;=11CcC

2.7

be the set of indices of columns, which have an entry one everywhere in the

rows indexed by elements of £,

2.2.2 Lemma {Tran van Trung, Qiv-rong Wu, Dale M. Mesner (28] )Let A be a

0 L-mratrix with w rews and v columns, indexed by sets o = {1, 2, ..., u] and
C=1[12...., v}, Then, for all m, n  H:
Z (If’l) B Z (I-f’l)
n m
() Te(®)

Proaf: If one if the numbers s oand #» is zero or il m = & orn = v then the
equation is rivially true, We may thus require | < m < yand 1 = »n < v. For
I Rand J < Clet Ay ry be the ([f] = [ )-submatrix of A, Formed by the

clements lying in the interscction of rows indexed by clements of § and columns
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indexed by elements of 7. Then, with 1 the (m = #)-matrix whose entries are

=,E (|:|) ¥ (”;l)

=(h re(t)

all one,

@) o+() lamner

0O

The next theorem generalizes the equations of Mendelsohn (2.1) to intersec-

tton numbers of higher order:

223 Theorem (Tran van Trung, Qiw-remg Wa, Dale M. Mesner [28]) Ler D =
iV, B be at-iv, k, i) design. Let M C V with |M| = m. Then, for any natural

nmber s = | and forall i with) < § < ¥

- AT o my A -
;(f_)u}. (M) = (f)(&) (2.3)

Progft Let N = in; ;) be the incidence matrix of the design. Asin Lemma 2.2.2,
letd = {1, 2, ... . b} be the index set for the columns of &, We consider A g 101
the (m = b)-submatrix of A which consisis of the rows of A belonging o the
elements of M. For any j-subset 1 = [xy, ..., ;)] © M, let I' be the set of

column indices of blocks containing £, 1. e
P=ljlo=sj=b:ng j=1for h=1,._,i}
[n the same vain, for any set J = [y, ..., ¥ S C let
J=lxeM [ g = 1Hor R =1,...,f}

For any [ [":f] there are |[§'] = A; blocks incident with f. From this set of
blocks, we zet I[Ifl] s-scts of blocks containing { in their intersection. As we have
(") possibilities for I < M, we gel

) £ ()

el
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which by Lemma 2,2.2 i= equal to

-2 (1)

1e(¥)

and by counting the set (7, {B; . ..., B b (M) = (¥): TS MO[_, B, in

two dilferent ways we get

The following theorem generalizes Theorem 2,12, The proof 1= a generaliza-

tion of Bolick™s prool of the Theorem of Kohler [7].

2.2.4 Theorem (Tran van Trune, Qiw-rong Wi, Dale M. Mesner [28]] Ler D =
iV, B) beat-iv, &k, A) design and let M Z V with |M| = m = . Then, jor any

integers = land foralli =01, ... &

i

AW AN
i) _ Bti i
o (M) = E i—1 (')(h)(")

fi=i

m—t—1

. h—i o+ 1
+I:_|:Ir-|-r+'| Z (I +l||: !)(I'l‘ ;+ )r:::;lj;+|[;'bfj.

h=0
(2.4

Proaf- Let @™ (M) = {ur'f]r_M]- e u,!,.:']r_M]] be the intersection type of M
§ e L Loy T L L :l'\-' - H
and let ) = (v, ..., ¥ be the vector with entries v; = LH-.}I for 0 = j < f.

Rewriting equation (2.1} in terms of matrices and vectors we get

Bpo. o.M =g
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Splitting the vector e M) into two pants, and indicating the set of selected in-

dices in the index, we get
4l ) = (O, .oV ).
holding the first (f + 1) clements and
o M) = (e e M),

containing the remaining coefficients, Then (2,1) yields

51 e T ix) T, T
Bio,.. o, o1 gy WM = =B k) g g O+
(] T _ —1 (s T
— U, |':M] = _£|n.....r|.|-:n......n| B, Lk "'-*'|,|+I.....A|r-"1’f:'

—1 T
+ Blo, o.M

where B! = r,h;d.] is the inverse of the matrix B. By Lemma 1.3.20, this malrix

has the coelficients |r.:'::__|; = |—]:|r."'-'. [j] In the i-th row we get for 0 < § <

= $ S ())arons S (L)

fi=i+1 j=i =i

=:I"_'.||
We consider Cy more closely, using the following equation of Knuth [17]
| fn—1 o
ZL—JJ =i—1] . (2.5)
o i
We oblain

o = L))

=l

N J._Zf[_“j(j:ré)(,fi:)

_|'=I'_I
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B *Z"':[_]]J-r.jﬁ]! !
n = ijr (g itih — §— i)
i Ly ih =i 'J'r)
= | — _—
=0 flih—j—i)t (;
“Z‘“: ”,(h—;) (h)
| j=0 / f

(2.5) (.fa ]) (h)
="i—1 . .
F—1 I
. ]],_,-(n—ﬁ—l)(h)
- h—t—1J\i})

Inserting this expression for O, we get the stated equation after a shift of the

index:
"'mﬁ
— Z [ — -I-I.'—.'( - |' —_ I) )uj'il[lw.l + Zr .'+II ( (ﬂ?) lill-k
h—r —1 ! k 5
=141 hi=i
T =T+ h 1
=|:—J:|r+ll+l Z ( I )( i ) !l:'l;'l.r'l'll-M:l

k=0

L)

Choosing 5 = 1, this yiclds a prool of Theorem 2.1.2

2.3 Global Intersection Numbers

In crder to obtain invariants of the design we define global intersection numbers,
We extend the theory presented in the previous sections to the new kind of num-

hers:
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Let again D = (V, B8) be a ¢-(v, k. &) design, For any integer v = | and any

=,-”_

i, &, the number of s-subsets of blocks of the design intersecting in exactly §

i & M weput

(D) = H [Bj.....B.le (B) : || | By,
L
k=1

points, We call this the i-th global inrersection number of order 5 of the design
. Obwiously, er.""]fﬂ] =0ford = & and r_r:_"'" (T is 0 for s = 1 and b otherwisc.

The wector
T = |[n-r[:]|'ﬂ1, e rl'éﬂl'ﬂ:l)

is the global intersection tvpe of order 5 of TV,

We are interested in guickly determiining the global intersection numbers of
a design. We will present an al gorithm o compute these numbers later in Sec-
tion 5.1). The computation of a slightly different kind of numbers tums oot o be
simpler.

Fors = land i € B, we put

.
el = Hmj,, ... Bj)eB": |ﬁ Bi|=i H
k=l

i. ¢, the number of s-tuples of blocks intersecting in exactly 1 elements, We call

this the ¥-th glabal intersection muowber of s-tuples of blocks of the design. We

have u}”'[‘ﬂ] = 0 fori = k. The vector
allipy = (:rll;lfﬂjl, ,ﬂ'l_lfll'ﬂ:ljl
is the elabal intersection tvoe of s-tuples of blocks af T,

The connection between the oD and the a*1(D) is given by the Stirling

numbers:
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2,31 Theorem Ler D = (V. Bl bea t-(v, k. L) desion and ler 0 < 5 € W, Then:

.
" Dy = E“! Eais, 1) T

=l

el

.I L]
(o) oy _ & li]
(D) = 3 Z S, ) ™D

) w=I

Progf: We consider the power set (V) which [orms a semigroup with respect 1o
the composition M. As M O M = M for all M C V. all elements are idempotent,
Let (EZ[TP V1], M) be the semigroup ring over TV with integral coethicients, The

clements of this ring are of the form

a4 = Z ay - M.

MR
The multiplication within this nng 1= defined by the intersection of the clements
of PV Thus we write the symbol M for the multiplication The sum and the
interscction of two clements a = E-’-FE‘-].![W“H -Mund b = E-“E‘fj.':[lh by - M in
FEIaV] are

a+ b= Z (aaar + bar) - M,
Mefhy)

allh = Z E lcapg - bpr) - WL

' LT T
W) ' .x!'mu'

We consider ZHV )] as a E-module, Another E-module is the space of integral
row vectors W, = B = len. ... gylg. We define the following mapping,

which we call the weight map

i SRV — A E apr - M — z Aug - BM|-
MePV M eV
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This map is a F-module homomorphism, The space W, is called weight space,
The mapping & is useful for computing intersection numbers: Let H, ..., By be

the set of blocks of a design T = (W, B). Then, for any integer s = 1:

D) =« ( 3 r] B, ) (2.61)

|J'-.I|-I e .E'I::JEE"' h=1

and

"D = ( Z m H—'-'.:)' (2.7)

.1'.- [-I. I.a.-J_ j=1

[E RIS |

By the Multinomial Theorem 13,16 we get

(2.6 !
alpy = ( > ﬁfm)

|J':||'I .---.-5'_:,1EE' k=l

¥ h

= «(NXH)

i=l1

2l .r( 3y (”h m)ﬁﬂﬂ):m.

g -0, =y D

g o=
0
using the corvention that m &5 = VW lor any set 5. MNow in the sum over all nonneg-
abive ey, ..., ap with E::=| ay = 5, alot of the ay may be zero. Let e, ..., oy
be the non-zero terms of this sequence with 375 e = 5. We may thus split the
sum by firstly choosing the set of positions [, . .., x,} where the ay, are noneern,

This gives

w=x(X > or (0 )ﬁmﬁr)=.m

e
=l xs | e _:l- [ P j=1 5.

X '||....|_| L.l: LEh -
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where we can exchange the two inner sums, In the rightmost intersection, we
can neglect the exponent ¢; as long as it is greater than zero (by idempotency,

MroMno.. .M = M1 We continue with

> Limes
¥ [
'**]_H(E E ( ' ) Z mB_TI.)=|*H=a=1.
S =] Claess ol . |:-""|""' :I =l
Lt 1= Ea] v cu]

MNow the inner sum is independent of the partition ¢ = (e, ..., 0y ). We thus can
lake out the sum owver all partitions as a scalar factor. Note that by Lemma 1.3.14,
this [actor is equal to w! - S2(s, w). Using the E-linearity of & and (2.7), we arrive

al

(k%) =« (Z_:( E (:-. : :)) Z ﬁﬂrl)

LTES TR o, J=l
I !

r_.l,l | k=T

S xm)
5 i
= E Wl Spis m)-x ( Z m 1'3,,_,)
=1 ¥ |: i, '-' J. j=l1
| -=.1.-
[”]E ul - B2 (s w) - @D,
=1

which is the first stated equality. The second equality follows by combinatorial

inyersion using Theorem 1,319 (iii). Both equations are equivalent, O

2.3.2 Lemima et T be a t-iv, k, &) design. Then for any integer 5 = 1 and any

integer i with0 = j =g,
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and

i .
Ry SN
(¥ Ty TN =k
ST = —1
ey (LY E (—1i (ﬁ)(h)(s)

h=i

E—i—1 .

. F+h—infr+h+1
-I—i—H”"HE ( i )( ; )U.IL:-IﬁH[D]'

fe=0

Proaf: Putting M =V we gel

[ors = 1 and i & M. The stated equalities then Follow by Theorem 2.2.3 and by

Theorem 2,24 with m = v, O
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Chapter 3
The Construction of Designs

[n this chapter we construct designs with a prescribed automorphism group. In
Section 3.1, we present the method of Kramer and Mesner and discuss some small
examples, The progmm package DISCRETA [3] developed by the author and
colleagues from the University of Bayreuth around Prof. Dr R. Lave may be
used to construct designs in this manner. In Section 3.2, 8-(31, 10, &) designs
invariant under PSL.( 3, 5) are presented, Section 3.3 is merely a list of f-desipns

with large 7 (i, e, r = 7) which haye been found by applying this method,

3.1 The Method of Kramer and Mesner

t-Diesigns with large ¢ are difficult to construct. The following theomem of Kramer
and Mesner [19] is a uselul tool o construet designs with a prescribed automior-
phism group, This problem is transformed into the problem of finding the solu-
tions of a system of diophantine equations. Thus, choosing a non-trivial group
A simplifies the problem quite a bit. However, only designs which are invariant

under this group can be found.

ALLI1 Theorem (Earl 5. Kramer, Dale M. Mesner [19]) Let t-(v, &k, L) be a puta-

tive design parameter set (we may reguire if fo be an admissible parameter set,

49
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ferinstancel, Let V = [1.. .., v} be a v-clement ser and ler A = Symy, be a
permuiation group. Lei ﬂ#—w.*.u be the serf of 1-(v, k, &) designs on V invariant
under A. Assume A hax £, orbits on t-subsets of ¥V and £ orbils on k-subsets.
Let O, .0, Oy, and Opq, ... O g, be the set af A-orbits on [1:"} ard ﬂj}
respectively. Let Oy ; € O ; be representing sets of these orbits fori € [1, k) and
| = j = §. Fori = fand j = L, put

m; ;= |[K €O ;| O S K}
We form the matrix
JI-{;'?* = L ).

Ler &4

(kA be the set of solutions af

MY =5 (3.1)

) l!_, w1
withx € {0, 11, Then, the mappings

S A ;
ek d) gy D=V.Bl— 18

with
mijl =1 &= O ,; C B, and 0 otherwise

anid
fl—iu.ﬁ.n - I';L—l;u.k.i'.]’ Fr Dy =V, By

with

£y
BI= U EJ.'I.._.I'
=1

ELi=1

are mutially inverse bijections bemween II';"'_“,I k) eahd ,E;'l_[l,l A
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Proaf: We first have to prove that the numbers s, are in fact well defined, 1, e,
independent of the choice of the representing set @ ; € (2, ;. In order to stress the

representing set, let us call the number in question
Hi'.;__l:[ll".-'] = |[K & 'Iﬂj;:l_l: | @& = K},

where the argument indicates which set 0 € €, ; has been used in the definition.

Mow, for any a £ A,
m i f}r”ﬂ;:l =|[K & 'ﬂi.j | 0. < K}

=K €0, | O
=K €Oy ;| h; = K}

K7y

1™

= ml’._,i':ﬂl.f-h

where we used the [act that Iﬂ;_-_li = E:':__r- as it is an orbit under the group A, This
shows thal the numbers of the theorem are in fact well defined.

We now prove that for T = (V. B I'f"—u-,a.a.'- the mapping B — g with
Epifl =14 ;€ B & O ; © Bis well d:.‘['l;'lf..‘d. with image conlained in

A

(e kA First, we note that as A = Aut(D), & ; € B implies UI_‘_J. e B for all

a € A Thus, O ; cither is fully contained in B or B0, is empty. This means
that B is a union of whole orhits of A on k-subsels. The veclor gg simply records

which k-orbits are contained in the desizn:

ipijli=1 & ;S8 &< O ;€8

We now show that the vector pg lies in EI‘,"_“,J' 3 by showing that it is a solution

ol (3.1). Let 1 be a number less than or equal to £, Then,

£) £
Y mpgormiii= Y [[KeOu| 04K}
i=1 cljl:lu

=K eB| 0, = K]l
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= A.
Thus, .-'l-{;h -:E =& 1 .y whichimplies g ,'il;‘_

A
F—le, kA

[v,&,4]°
Om the other hand, let p € £ ) b a 0/ 1-vector of length € with ..'ni:h_ .

T =i 'lr‘,x (- We must show that the block set 5; defines a t-(z, k., ) design
ﬂ.! = (V. BI] with A = .I"tuifDF]. Let T be an arbitrary f-subset of V. Then there

isan index i = £ and an elementa € A with T € O, ; and T = 2, ;. Then

Sk
b= Zm,-_j-;rl_’j]
i=l
i
= 3 UK €O | 0 <K}
F'I:-'II'

£y
S K €Ol 07 K7
-

;l.-fl i

i
= ) HKeO; =0 | T K]
=1

Fifl=1

£y
:HKE | GLJ-W«;K”
j=i

Fifl=1

= |[KeB | T C K},

which implics that B; is the block set of a r-iv, k. &) design. Being a union of
whole orbits under A, the block set 5, is invariant under this group. Thus A =

A
AutDg)and Dy e D 0
In addition, one easily verifies the equations

'BHI' =8 and s, =I

This implies that the stated mappings between the sets ﬂ:i_[”_i 2 and

ﬂf‘_w ¢ oy are mutually inverse bijections.
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Because of [19], the matrix .#{;ﬂ of the previous theorem is called Kramer
Mesner matric, Equation (3,1) 15 the Kramer Mesner system, An efficient algo-
rithm for solving this system is deseribed by Wassermann in [29]. A program
package for the constraction of designs with a prescribed automorphism group
has been developed by the author. The program DISCRETA [3] is Ireely avail-
able over the Internet, Due to it graphical user interface it is casy to use, It runs
on all Unix systems, especially on Linux, The program provides a lamge set of
groups wheh can be requested by pressing buttons. Croups can be combined and
modified in various ways 1o oblaine new groups. The system is able (o compule
the Kramer Mesner matrix [or reasonable parameters. The program of A, Wasser-
mann is integraled into the system and can be used for solving the diophantine

equations,

ALLL Example Consider the three dimensional cube with vertices numbered as

in Figure 3.1, We are looking For designs with parameters 3-(8, 4, 1) where we

(5 B
_ ) / | =000 5 =001
@ @ 2100 6 =101
L ‘/B 3=010 T =011
-ﬁ‘f Y 4=110 &=111

Figune 3.1: The Three Dimensional Space € F(2)° as Cube

take ¥ to be the 8 vertices of the cube. The designs we are looking for shall be
invariant under the group of the cube. This means that we choose the group A as
the group of otations of the group isomorphic o Sym, generated by the following

LW perm utations:

e = (1302, 3, 5306, 4, TR,
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g=11,2,4,3)(5.6,8,7).

We now compute the orhits Ii’_:',-_l; of this group A on i-subscts. We find the Fol low-

ing number of orbits: &0 = 1, £ = 1, £2 = 3, £3 = 3. £4 = 7. Table 3.1 shows the

O {lzaa

Dz [1.2,3,4bs
EJI.I: {1}s.8 [ ]
S Oy {1238}
Orar {L 2ba2 Ous (123 6]
4,3 L2 3 6l
E]:.:Z 11, 8la.a
Myar (L2372
Oaar L d}a 2
D450 [1L2.3. 5]
ﬂ]ll: 'I|1:1:"'}|_:,|. -
o 1,2, 71 Qe {1.2.7. 8L
e h My {146, THaa

Oz {1, 4,6}38

Table 3.1: The Orbits of the Group of the Cube

orbits and their representatives O ;. The order of the stabilizer and the length of
the orbit are indicated in the index. We compute the matrix .-'I-'f_f__} which is shoan
in Figure 3.2. For each row and column of the matrix, we show the corresponding
orhit on 3- and 4-subsets, In addition, we show the representing set as a subset of
the vertex set of the cube for any ¢- and E-orbit. The system .-'.{{1__1 . FT = 15, has
exactly four solutions 5; € [0, 1}7, forming the sct E.Jl:l—i!r.-i. I

Fo=(0,0,1,0,0,0,1)

Fa=(0,0.0,1,0,0,1),

ra=(0.0,0,0,1,1,0),

py =010, 0,0,0,1, 1.
From this set of solutions, we get the corresponding designs Dy = (W, B ) for
i =1...., 4 forming the ﬁ':lﬂiii—i'ﬁ.d.h:

(=] = L

Dy =V.003u0sn = =[]0k A
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- =t a r1 - - i
- = ri ri i o -
- ] ey - F ] o
e
e i el el =l i -+
AA LA AA LA LT A L
-:an.-"'"F -:-:-"'"P nc:ﬁ s'F : -:sF-"'"F F‘.--""JD -c-;-
LT A
R 1 1 1 [ [
& )
[1.2.3}14
ey
i i 2 1 ] 0 1 0
[1.2. 7} 12
AT A
ol 0 3 0 0 0 1
(1,4, 6}58

Figure 3.2: The Kramer Mesner Matrix ""'{i*,.L

1 A

Dp, =iV, 04 U0y 7) = (W 208 L2 A,
A7 AT
Dy, =(V, 045U Oy = (Vi 2 0A 2 A,
W Wy

I:_tq =i, E]_1I| I C:'.;_g,l::'q.-,-] = rv-n "';_):'. o _.*l",-"'; Al
&
Some of the most prominent (-designs have a Methew group as group of auto-

morphisms. They were constructed by Wit in [31]. Here the large Witt design for

the Mathicu group Moy :
A L3 Example The group My is penerated by the permutations

(1234567821011 1213141516 17 18 192021 2223),
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(3171079413 14 195108 1811 1223)(15202221 143,
(12430223503 12304 16)(5 121 (6 100(T 200 (8 1430 215 11 171713225115 19,

anc has 244823040 glements. One checks that the parameters 5-(24, 8, 1) are
admissible, The orbits of this group on subsets of cardinality less than or equal 1o

8 are as lollows (in the index we have the order of the stabilizer):

O-orhits : G=0rhits :

L: [Fot4mz30m0 1L 2,3, 4, 5, Blaim
1-orhiis : 2241, 2, 3,4, 5, 85

L: {1} inzommean T-orbits :

2-orhits : 1,2, 3,4, 5,6, Tl

12 [1. 2}ss7040 201,23 4, 5, 8, 11 e
J-orhits : 8-orbits :

1: {1, 2. 3} 2000 1:01,2,3,4,5,6,7, 8w,
d-orhits : 2:01,2,3,4,5,6,7, 1 Tl
L2 {1, 2, 3, 4l23mun A1, 2,3, 4,5, 8, 1L, 1350056
S-orhits :

L: 1.2, 3.4, Slsvea

Wi obtlain the following Kramer Mesner matrix, The rows and columns are

labelled by orbit representatives:

& & g7
& P
S LS
o Y
) R,
Fun
™ T

MY = 112,34, Shsmoaasos (840 128 1)
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The system .#{fi" x| = (1) has the obyious solution g = (0,0, 1), i, e, the

759 elements of the orbit (% 1 form a block transitive 5-(24, 8, 1) Steiner System

which 15 iovariant under 4oy, w

As every (-design with 1 = 1 is also a (¢ — 1)-design, we get the [ollowing

result from Theorem 3.1.1.

A L4 Corollary ferx = *E;L—n-k..i] be a solution veclor jor a 1-lv, k, L) design

with prescribed awtomarphism group A, Then, fori <1,

Ml e =10 (3.2
n ather wonds,

re E?—:.-.ﬁ.:._:] for i =1 (3.3

3.2 Construction of 8-(31, 10, ) Designs

In 1998, the existence of 8-(31, 10, &) designs could be proved (cf, [4]), These de-
signs have been constructed using the method of Kmmer and Mesner by prescrib-
ing the group PSLI3, 5). We take the 31 elements of PGi2, 5) : Let us describe
the procedure briefly:

L 210,07 a0 07 15203, 1L, 07 22203 "7 20I24, 17
22i0,1,m7 goi2,0 07 Ieli4, 1,07 232013 07 awmiiz4 T
1201,1,m7 o, 07T 172w, 0T 24I2.3 07 34 nT
42i2,1,mT 240,07 122,207 25232 07

SZi3, L,mT 122001, 10T 1922,2, 17T 262041

G, L,mT 320l 1, 17 20232, 07 27200.4

TIino, 0T 422 1L, 0T 2024,2, 07 282014
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The group PS1.(3, 5) acts on these elements as a permutation group of depree
F1. The gronp is generated by the following elements:

(126345 B 121611272817 20 IO2224) (1321 153123290014 26 1930 18 25),

(125400215 1823 2800 19 20 14 24 1025 1530201011 31 2621 1G],

(1456308210 18 16)(9 3029 20010 14 1524 11 23 26 28112 17 2T 221013 313019 25).

I72Ta 211 E 922 1504 10 12 1958 1723015325 18 143016 3120 X124 29]).

The group is of order

(37— 15— 5157 — 59

5 - = (5 454 115 — 11(5 — 115" = 372000,

Table 3.2 shows the numbers of orbits of A = PSLI3, 53) on {-subsels of PV =

PGi2,5) for ¢ = 10, The following table shows all 10-orbits of A on 1. We

i lo 12345 6 7 8 9 10
# i -orhits of A ||1 1 1 2 3 5 12 22 42 92 174

Tahle 3,2 Mumbers of Orbits of PSLI3, 5) on i-Subscets of POGE2, 5)

givee the lexicographically minimal representative within each orbit. The stabilizer
order of the representing set is indicated in the subscript. The orbit length is the
index of the stabilizer in A. Each representative starts with the sequence of natural
numbers 1, 2, 3, ... For reasons of space, only the last element of this sequence
is shown, the beginning is abbreviated by the symbaol ... 7. For instance, the set

[1.2,3.4,5. 7, 16, 20, 24, 28] is displaved as {. .., 5, 7, 16, 20, 24, 28},

L0-orhils: 7., 5 T B, 12, 14, 25} Lde [L.. &, 12, 14]y
L[, 5,7, 16,20, 4, 28] 5 Bl 8, 708,09, 13,17} LAz [ By 12, 19

L., 100 9., 56913, 3} L [... 57,89 12,13,
l....57,8122] 25 10:]...,5 7.8 12,13, 21}z 1%L, 57,89 12,2
..., 12 11: ..., 5 7. 8912 21} 18: ..., 57,5 12, 14, 18],
.., 5781218 200, 12: ..., 5 7,809, 12 29, 1% [... 57,5812, 14, 25,
G ... .5 7,8 12, 16 2413 13: ..., 8, 12, 13lg Ax (... 57,89 13, 16
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SEEEER AN EYE YRR E

ARG ERANCEERSEAES

SEEE

5 TR, 9,13, 38

... 58 12,13, 300

.. 57,89, 12,34)

,5, 7,89, 12,174

AU T P e . . 1 Y
.5, T,8,9,13,30)
,5,7,5,9, 14, 18]
L5789, 13, 15,

L5 TLE, 12,14, 19

., 5 7,89,12,23)
L5708, 9,12, 141

., 5,7,8,9,12, 18]
L5789, 13, 323)

L5, T, 8,9, 13, 14

. 5,789, 13, 77)
5T 5,9, 14,3,

5, 7,89, 12,27)

L. 5,T7,8,9, 13,23,

L5 T.E,9, 10,1211

L5 TLE D, 10, 15],

L 5,7,8,9, 4, 192

L5, 7.8,9, 14, 2Ty
LR TLE D, 14, 15],
L5708 1A 15, 2

L AT, 8, 12, 16, 20, 28]
LA, TLE, 12, 16,0, 4],
4,7, 8, 12, 16,21, 25,
LA T,8 12, 14,25, 39
L A4,7.5,9,12, 19, 36,
,4,7,5,9,12, 19, 28],
L ATLE 12,13, 2, 9
S, A,7,8,9, 12,18, 240,
L 4,7,8,9, 12, 18,30,
LA TUE D215, I8, Mg
. 4,78, 12,21, 25, M
L AT E, 12,16, 30, 2],
, 4,7, 8, 12, 16, 20, 25]
L AT, 8, 12, 16,20, 212
LA, TLE, 12,15, 19, 39
, 4,7, 89, 13, 20, 26]
L4, T8, 9, 12,20, 29
L 4,7.8,9, 13,30, 21
,4,7, 8, 12, 15, 19, 23]

L 4T E 912, 06, 3

h T

T
4T

4,7,

T
T

4,7,

Y A
T
4T
Y A
T
4T

4,7,

T
T

h T

4T
b T
b T
4T
T
4T
A
T
4T

4,7,

T
T

4,7,

I
T
LT
I
o7
R
4,7,
-
R

4 7,

T
R
4,7,
LT

V512,13, 208,
, 12, 1o, 19, 29}
W12, 10, 23
W12, LG, 1T
B A B e
LB 12, LR, 20k
, 12, L6, 19, 20},
L1215, 13, 20}
L5, 13,20, 24}
L0123, 20, 2k
LB LT, 20
, 12, 19, 20, 23}
L0132, LR, 208,
L 12, L6, 19, 23},
, 12, 16, 21, 28}z
L0 12, LR, 26}
L5 12, LR, 200,
LB, 17, 208
V512, 18, 31}
L%, 12,20, 24}
12,13, 20, 24
L8 12,18, 31
LW 12,13, 200,
CEOLD, Lo, 10
, 12,13, 21, 24}
012,13, 18
L 12,13, 21, 26},
L5 12,21, 24}z
L5 12,15, 29)
L 13, 17, 28},
LB, 1S, 20
, 12, 14, 28, 29}
L0132, 10, 200,
L1314, LK, 20}
L5, 17, 20, 25},
4,9 132, i, 28},
4,5 12,13, 17},
4,9 17, 19, 23},
d,% 12, 15, 27},
A% 12, 18, 19},
A 517, 1K, 2otz
4,9 12, 17, 20}
A, % 17, 19, 26}
#5012, 15 28

(4, 7,8, 9,12, 15, 21],
LA, T, 8,9, 12, 19, 24
4, 7,8,9, 12, 18, 27)
(4,7, 8,9, 17, 20, 23,
AT E 912,15, 1T
4,7, 8,9, 12,20, 21
(4,7, 8,9, 12, 210, 28]
AT E 912, 14, 30
L, 4,7,8,9, 13,21, 27
4,7, 8,9, 12, 28, 1],
AT E 912, 19, 210
C AT, E,9, 12, 14, 19
4,789, 12,21, 30
(4, 7,89, 12, 15, 18],
4,708,913, 14, 17
4,789, 12,13, 19
y4, T, 8,9, 14, 17,254
LA T8 12, 14, 25, 28]
C A, T, 8,9, 12, 14, 28]
A, T B, 13, 20, 24
LA TOE 912,17, 18]
A, 7,8,9, 12, 18, 23],
.4, 7,89, 12, 27, 28]
LA TE 912,13, 5]
A, 7,8,9, 12,15, 191
A, TR, 12, 14, 18]
(4,7, 8,9, 12, 19, 2T,
L, 4,7,8,9, 12, 18, 21
S A, T8 12,13, 30,21
(4, 7,8, 12, 30,21, 28],
AT E 913, 0T, 210
S AT E 12,14, 18,25
4,7, 8,9, 13, 18, 20],
AT E 93 14, 20
4, 7,8,9, 13, 15, 20]2
A, TR, 12,14, 24, 25,
(4,7, 8,9, 12, 14, 21],
CA, T8 12,15, 18, 2112
CoA, T8, 13, 14, 18]
v, T8 9,13, 15, 1T
LA TE 12,13, M, Xy
CL A, T, 8,9, 14,17, 18]
VA, T8, 9,12, 13, 2T
Lo A TR D205, 19, )y

i
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153: | 4T RS 13,05, 27], Il 4., 4, 7 R, 0, 13, 14, 2T, LE% | PG A M B I, Y e
L5 0., 4, 7,5, 12,13, 20, 300 G2 .., 4, 78,9, 14, 17, 2115 7o L. 2,7,8, 12, 14, 21, 24, 23]
LF5: ... 4, 7,59 12, 13, 15]= 1534, 4,7, 8,9, 12, 14, 27}, e[, 3,7,8 12,14, 21, 24, 31,
L5 | 4T RS 13, 15, 24] . Ik o 4, TR, 12, 14, 18, 19], 172 | VTR L2 DR 19, 2L, 26] .y,
57 L. LTRSS L M U6, 65 4 TR0 12,14, 15: TR L. 3 T8, 12,14, 18, 20, 15
158: [... 4, 7,89, 12, 16 275 166: ..., 4,7, 8,10, 13, 18, 251y 174 [..., 3,7, 5, 13,21, 24, 28, 30 |1,
15% (... 4, T,8,9, 12, 13, 16&], 167: 4., 4,7, 8,0, 13, 14, 15};2
LGl [, 4, 7,89, 12 13, 14), 1681, 37,8 12,15, 19,70, 23]
Teles . i , PRLI3,5)
lables 3.3 and 3.4 show the (42« 174)-Kramer Mesoer matrix W, o7 In

order to display every entry with just one character, we substitute numbers larger

than % by small letters:

a=10, b=11, e=12,....
The numbers 40, 60 and 120 are represented by capital letters A, B and C, respec-
tively,
We find designs for &4 = 93 and & = 100, More precisely, the solution scts

have the following cardinalities:

A
18531, 10,03 | = 138,

A —
I'EH—[ﬂl.IIJ.1EIJ]| = 16358,

Any solulion vector p & ﬂ;}_m 10,4) gives rise o a design Dy = (V. By in the
way described in Theorem 3.1.1, We specily the designs by simply listing the set

of indices [ with g 7)1 = 1. The first three designs in the case & =93 anc:

Dy, 01,25 7.9, 12,13, 14, 16, 19, 24, 25, 29, 30, 33, 36, 39, 42,
43, 46, 48, 52, 53, 55, 57, 60, 64, 65, 72, 75, Th, B, B3, 84, B3, 9],
02,094, 96, 98, 103, 105, 107, 109, 113, 114, 116, 120, 124, 125, 126,
128, 131, 132, 136, 138, 139, 141, 147, 148, 149, 130, 152, 159, 162,
1657, 168, 172,

D, 0 1L,2,5,7,9, 12,13, 14,16, 19, 24,25, 29, 30, 35,36, 39,42, 43,
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46, 49, 52, 53, 55, 57, 60, 63, 69, 70, 72, 75, T8, 80, 84, 85, 90, 94,
95, 9%, Lo, 101, 103, 1od, 105, 110, 116, 117, 121, 122, 125, 128,
30, 134, 135, 137, 138, 139, 143, 147, 1458, 149 152, 156, 159, 163,
167, 169, 170, 172

Dy, 1L 20508, 11012, 13, 14, 17,19, 24, 25, 28, 20, 33, 36, 39, 42,
43, 46, 47, 48, 52, 55, 58, 60, 62, 64, 66, 71, 75, 76, 77, 78, 81, 85,
BRE, 00,94 97 98 105, 109, LLL, 113, 116, 118, 119, 120, 125, 125,
127,131, 132, 133, 136, 138, 1440, 145, 146, 149, 151, 152, 1539, 167,
169, 172,

63
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3.3 List of t-Designs with Large ¢

[n this section, some existens results for f-designs with large 1 shall be collected. 1F
nothing else is stated, the resulls have been obtained in the research group around
Prof. D, K. Loue at the University of Bayreuth,

At the beginning, we need a list of permutation group of moderate degree.
A list of primitive groups of degree up to 50 can be found in the section “Finite
Giroups and Designs™ of Chouinard I, Jajacay and Magliveras in the “Handbook
of Combinatorial Desipns" of Colbourn and Dinite [9, pages 587-614,

Another source for groups is the ATLAS of group representations of Robert
AL Wilson et al. [30].

paramelers group A, [A], sz r.'.nl',."'p"lf‘ll, solutions for
B-(40,11,1440) | PSL4, 3), 6063280, 33 = 569, (AL = 40)
B-(36,11,1260) | Spi6, 2), 1451520, 79 = 694, (Al = B4)

8-(31,10,2) | PSL(3.5), 372000, 42 = 174, k= 93, 100 [4] (AL = 1)

B-(28, 14,00 | ASL(3. 30+, 151632, 48 » 352, 4 = 14040, [B600 (Ax =
F0)

B-(28,13,0) | ASL(3, 3)+4, 151632, 48 » 330, & = 5832, 7080, 7128
(AR = 24)

B-(27,13,) ASLI, 3), 151632, 31 « 176, L = 3204, 3240, 4608, 5076,
148 (AL = 18]

B-(27,12,0) | ASL(3,3), 151632, 31 = 154 4 = 1296, 1932 (AL = 6)
B-27.11.432) | ASLI3.3), 151632, 31 = 121 (AL = 3)

Table 3.5 B-Designs With Prescribed Automaorphism Group



The Constroction of Designs

paramelers

aroup A, |A|, slie ::[',H;"I,L, solutions for

65

T-(40,11,4)

PSL4, 3), 6063280, 24 = 569, » = 82530, 11220, 14190,
14850, ITR2Z0 (AL = 330)

T-(40, 1047

PSLi4, 3), 6063280, 24 » 263, 4 = 560, 1008, 1208, 1296,
1568, 1656, 2304, 2504 (AL = 4)

T-(36.11.4)

Spin, 23, 1451520, 37 = 694, L = 3360, 4200, 4536,
4935, 5040, 53271, 5376, 5775, 38R0, 6l11, 6216, 6615,
6720, TO56, T35, 7360, 7791, TEO6, 82935, 8400, 8631,
BT36, 9135, 9240, 9471, 9576, 99735, 10080, 10311, 10416,
LTOBLE, 10920, 11151, 11655, LITa0 (AL = 21)

Tlr't 34:9:l’l :I

PTLIZ, 3204, 163680, 45 =« 345, L =135, 171 (AL =1)

7-(33,10,4)

PUL(2, 32), 163680, 32 « 596, 4 = 600, 720, 840, 880
[ AR = 400

?_I: 3 3 LEJH:II-:I

PTL(2, 320, 163680, 32 = 248, A = 60, 63, 80, 83, 100,
LO&A, 120, 125, 140, 145, 160 (AL = 5)

7-(33.8,10) | PTL(2, 32), 163680, 32 = 97, (Ak = 2)

731,100 | PSLi3, 51, 372000, 22 w0 174, & =480, 744, 800 (AL = 8)

T-(30.89.4) PILi2, 271 4+, 58968, 6] = 307, 4 =105, 112 [5] (AL =
1)

T-129.11LAY | POL2, 2704, 38968, 43 = 647, » =2130, 3465 (AL =
383)

7-(29,10,420)

PULOZ, 2704, 58968, 43 « 391, [5]TAL = 140)

T2, 144

Spih, 2], 1451520, 16 »« 103, 4 = 23040, 30240,32760,
IS2R0, ITROO, IR160, 40320, 40680, 42840, 43200, 45720,
AR240, 307D, 52920, 53280, 55440, 55800, 57960 (AL =
1800}

Table 3,6: T-Designs With Prescribed Automorphism Group (Part 1)
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parameters group A, |A|, size of _.-H:‘:J'_, solutions for

T-(28, 1450 | AGLI3, 314, 303264, = A = 30420, 44460, 51480 [26]
(A = 180)

7-(28,13,0) | Spit. 20, 1451520, 16 s« 101, & = 10080, 15120, 17640,

18984, 20160, 21504, 22680, 24024, 25200, 26544 (AL =
LR

7-(28,13,24780)

AGL(3, 314, 303264, 26 = 241 (AL = &4)

7-(28,10,6300)

PrL(2, 271, 58968, 29 x 257, [5] (AL = T70)

?":2?| ]3 |.I.:'.:|

AGLIZ, 3, 303264, 16 = 127 4 = 10140, 14820,
1710 [26] (AL = 600

7-(27,12,50 | ASLi3. 31, 151632, 17 = 154, & = 1896, 1944, 5832, TORO,
T128, BITA (AL = 24)

727,012,200 | AGL(3, 31, 303264, 16« 114 4 = 2544, 2592, 3192, 3840,
IRRE, 4536, 5136, 5184, 6432, 6480, TT2R [26] (Al = 24)

727,115 | ASL(3. 3, 151632, 17 = 121, & = 540, 675, 763, 810, 840,
QU Q30,945 1035, 1080, LLL0, 1170, 1200, 1335, 1280,
1515, 1650, 1755, 1875, 1890, 2010, 2115, 2250(Ax = 15)

T-(127, 11,8 AGLIZ, 20, 303264, 16 = 91 & = 1215, 1305, 1350, 1440,

1470, 1485, 1575, 1605, 1620, 1710, 1740, 1785, 1845,
1920, 1980, 2025, 2055, 2145, 2160, 2190, 2280, 2205,
2325, 2385, 2415 [26] (AL = 15)

?":2?| ] ] |.I.:'.:|

L4, 20, 25920, 77 = 668, L = 1500, 1860, 2385, 2400
Ak = 15)

?-':2?| ]U.;‘.:l

P2, 2504, 31200, 53355, A =240, 540 [5] (A = 60)

7427104200

L1, 2), 25920, 77 « 458, (AL = 60)

Table 3.7: 7-Designs With Prescribed Automorphism Group (Part 2
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PE.I.'E.'I'I'I.-I:U.'."IS

group A, |A|, siee ::FM;‘{J'_, solutions for

T-(26,8,6)

PGL(2, 257, 13600, 54 131, [6] (AL = 1)

T-(26.9.4)

PrLi2, 25), 312003, 34 = 132, & =54, 63 8] [6] (AL =9

T-(26,11.4)

PUL2, 25), 31200, 34 293, » = 1176, 1356, 1536, 1716,
1886, 1926 (AL = 6)

7-(26,12.5796)

PUL2, 25), 31200, 34 = 379 (AL = 1E)

T-(24.8.4)

PSL(2, 23), 6072, 57 % 143, 5. =4, 5,6, 7, 8 [6] (AL = 1)

7-124,9.0)

PGL2, 230, 12144, 36 = 125, 5 =40, 48, 64 [6] (AL = 4)

7-{24,10,4)

PGL2, 230, 12144, 36 = 196, A =240, 320, 340 [5],[20]
(AL = 200

7-i22,11,3)

POLZ, 19)+ 4, 6840, 49 = 154, 4 =315, 630 (AL = 105)

T-(20.10.4)

B2, 197, 3420, 26 % T4, k=116, 124, 134 [5](Ax = 2)

7-020,10,126)

(PGLI2. 8) x C1) + +. 1008, 111 x 244, (Ak = 2)

Table 3.8: 7-Designs With Preseribed Automorphism Group (Part 3)
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Chapter 4

The Plesken Ring

[n his 1982 work “Counting with Groups and Rings™, Plesken |23] was looking al
groups acting on lattices, or — more gun:::rall}' — on semigroups, He was counling
the number of certain equations within semigroups where the variables should

belong to fixed orbits of the group.

4.1 Groups Acting on Lattices

[ct us start by introducing the general concept ol a semigroup action. Let A bea
group and (M, o) a semigroup. A acts on M i

(xoy) =x"aoy?

for all x, v & M and all @ € A. In this case we calle thr group action of A on M
compalibfe with the semigroup structure,

M perrtial ordering (posct) on a sel P is a relation = with
POy x = x,
(PO2) v = vand v = x = x =y,

(PO3) x = yvandy <z = x =

(]

4
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forall x, v, z € P, A subset M C P all of whose elements are comparable, i, e,
for which either v = v or v = x holds for all x, v & Af is called rerally ordened
or chain. A subset M © P in which no two elementa are comparable is called
anfichain.

A group A acts on the paset (P, <), il

x=y=x" =y

is matisfied forall v, v € Pandalla € A,

Let now i, <) be a poset and let M be a subsetof P An upper(lower ) bound
of M is anclement w withm < w (e = w) forall m € M.

The least upper bound M is an upper bound = with the property that w =< w’
for any other upper bound w’ holds. This element is also called supremm of M.
If the supremum of a set exists then il 1= unigue,

The greatest fower bound of M i= a lower bound w with the property that
w = w' for anv other lower bound w’. This element is also called infimum of M.
[T the infimum of a set exists then it is unique.

If the supremum of a set M exists, we denole it as III'J'Ir.IHI:'H m or ".“." MW weri e
x v for the supremum of two elements x and y. If the infimum of a set M exists,
we denote itas A, mor A M We write x oy for the infimum of two clements
x and v.

Acsel P s called larrice il
(L0a) (P, <=7 is a posel,
(LObY Any two elements of P have an infimum and a supremum.

A complere laitiee is a lattice in which any subset has a supremum and an
infimum. Any {inite latlice is complete.

The [ollowing remark characterizes the operations v and A

4.1.1 Remark Let (L, v, ~) be alattice. Then Ffor all x, v, z € L:
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L1y xvy=yvrxandx A y =y A x (commulalivity),

L2y (vwwylvzi=xwviywvoiand (x A visz =x Ay Az lassociabivity ),
iL3) xvr =uxand x Ax = x (idempotency),

iL4) (xwvwyiax=uxand (x ~ vl v o = x (law of absorplion).

Un the other hand, any set M admilting two binary compositions » and

satisfying (L1)-(L4) gives rise toa lattice:

4.1.2 Remark Let A be set admitting two binary compositions v and A salisfying
iL13-iL4) The M i= a lattice with respect to the partial order

XSy = xWy—y I[ = xAy=ux) (4.1}
forall x, v & M.
summarizing this implies the equivalence
(LOa) A (LOB) &= (L1) A (L2) ~ (L3) (L4

This means that we can specily cither the ordering or the compositions v and ~
of a lattice. We wrile (M, < or (M, v, A,

Aatiioe action 15 a group A acting on the set of elements of a lattice (2, v, &)
which i= compatible with the operators supremum and infimum, i. e. which =satis-

fies
(x Wyl = x% vy and (x Aoy)® =% Ay
forall x, v € Candalla £ A,

4.1.3 Remwark Tet (£, v, ) be a lattice and the < be the ordering of the lattice,
[et A be a group acting on the element of £, Then the following statements are

cquivalent:
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ii) Aactson £ asalattice action, i, e, (x vy )® = x®vyTand (xay)® = a% sy

forall v, ve £a € A,
(1) Aactsonthe poset (L, <) ile.x < v =" <y foralx. vy e L, a e A)
Proaf: Kerber [13, Lemma 5.1.1 1, page 145]. O

Let us now consider the action of the group A on the finite semigroup (M, o).
Let O, ... . &% be the set of orbits of A on M. Moreover, let oy, .. ., o be rep-
resenting elements for the orhits, e, o € i for | =0 = £ For | =4, j, k= [,

wi pul
r:f“r.,. =z, v €0 =05 |x o0y =gl 4.2}

These numbers are independent of the cholce of the representing sets op & .
For, let o) be another element in Oy, then

Hix, y1e O O |xcy=0}l = |{[.1.'._1.'J el =0 | x" oy =|:'.:'J,-H
=|{[.1.',|1.']Eﬂf I :-:[’_:'? I|.'r-:-_1.-'=.:'.l,;:]|
=[{lx, 1 e x| xoy =o}|

=]

=I'.|£'|J'E '

In a finite lattice, the join over all elements is called the one element, and the
meel over all latlice elements is called zero element:
lp = ll'uf X, Op = A X,
xel xel
Adlattice (£, v, A) gives rise to two different semigroups (L, v and (2, A, The
lollowing lemma collects some properties of lattice actions which are in fact ac-

tions on these bwo semigroups:

4.1.4 Lemma ( Plesken [23]) The group A acts on a finite lattice (L, v, ) asa

ferttice action. Then:
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(i) Any twe clements of the same A-orbir are incomparable (i, e. the orbirs

JSerm anti-chains).
{ii) Op and 1 are A-orbits of themselves,
{ifi) The arbiis of A on L form a poset with respect to the ordering
0«01 Ixe, Iyed': x =y.

We can number the orbits ax O, ..., O in such a way thar O; < O;
implies 1 =< J. Such a mumbering 05 called topological numbering. fn thix

numtbering, O = {Op} and Oy = {1¢]).
fiv) Put ”r:'::j = ”.;';,i and ﬂ'j't'j = u-;.‘l.r-fr:.'r i, j = £ Then
“.?:lj =[x el |x=a

crmed

~
W= [[x ﬂj | x = a;}.

iv) We define (F x £)-matrices P(A)Y = I:u-:f'_’j] and P = [u-l;.kj:' which
we call Plesken matrices. et the orbiis be soried topolgically. Then 5
and P are wpper triangular mairices whose diagonal elemenis are all one,

Moreover,

" a

ﬂ',-;=|'ﬂ.i|- iy =1
Sorall ) = w,m = r.
fvi) We have

r_r;':_r. . |lﬂ'j| = |&X| ""'.'_r
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Sorall | =i, j = . Inrerms of matrices, thiv is equivalent o
A D =D PA,
where D = diagi||, ... . D] In particular,

PiAT = b P D

Proof:

i) Assume 7 and 2 = w are two different elements of the same A-orbit on £

1
-

[or some a € A, Assume 1 <= w (otherwise, il w = 7 we have % > 2,

. - [ .
i. e. we can consider the elements 7 and w = % and get back to the first

case), As L is finite, A ker (A) is a subgroup of the finite group Symp, so
it is finite, too, Thus there is an integer s with a® € ker (A ). Then

1 ¥
o @ _d _a” PR S
1=z =z =1 =p...=I = I =

7
07 = 7% =% = ... contrary to the assumption,

(i) We have

(r, = (!"\ .‘c)d = A= Ax=0g

TEL xel el
=]
J‘:':= V.‘r =v.1.""=v.1.'=1,.:
TEL ref xef

[orall @ € A and thus []}_." = 0y and ]E = lg.

(1) (PO is clearly satisficd as x < x for any clement x € & and thus, O; =
. Assume O < O and O =< O for | =i, j = £. Then there exist
x,x e Qyand v v e O withx = y and ¥ = 2", By transitivity of A on

(3, there exists an a € A such that ™ = y, Then

- Al i
X =y= I'I.' =X = E:'.i
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(v

implies x = x"" which by (i) is possible only if ¥ = ™, Butthen, v = x

and | = j which is (POZ2).

In order 1o show (PO3), let £ = Ef'_,- < (M forsome 1 = 6, j. & = £. Thus
x = yand y' =z lorsomex € &, vy, " € O and some 7 € O, Then, for

some a € A, v = v and

and thus x < 7 which implies O = €.

In order to prove that the elements of the posel can be ordered such that
& = Oy implies ¢ = j we make use of a graph theoretical argument: We
can turn the set of orbits into a directed graph G which has one vertex For
every group orbil. Let ¥ be the vertex associated with the orbit £, Let
there be an edge from 1 o V; ird = E:"J- hold in the poset, We wrile
Vi = Vil there 1s an edge from V; to V. The graph & 15 acyclic: I there
were a cycle Vi, = Vi = 00— Vi =V thenforany 1 = 7 <= r
oo 'ﬂ-‘f < (%, which by (PO2) means ll'Jl;I. = ;. Thus the cycle ist
trivial. Now, by a graph theoretic argument (see. Tor example Manber [21.
Section 7,410 any finite directed acyelic graph can be ordered twopologically,
Loe. such that Vi — Vj implies ¢+ = j. Taking the same ordering lor the
arbits of the group, we find an crdering with the stated property. Note that
in a lattice £, all elements lie above Op and all elements lie below 1. Thus,

in any topological ordering 0 = {0p} and & = {10}

An equation x v y = g with x € (0 and vy, 7 € {J; is possible only for

v = z. Thus,

W W .
oy ;= = [[ix, ¥) e O x ﬂ_r' | xv y=ell

=[x el |xve;=al

=|[re|x =a4]
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and

o~ "

o = 'T:i.iu' =iz, vie0; = O |x A y=gl
=[x €O | x roy =0}

=[x e E?J; | & = e},

iv) Let the orbits &1, ..., ) be sorted topologicallv, Assume n'l.‘:'ll = 0 for
some § = f. Then there exist v € O and z € O with v = 7. The
topological ordering of orbits implies ¢ < j, contrary o the assumplion.

Thus #(A)Y is an upper triangular matrix. Morcover,
afy =llx € Oy | x =opll =Ilof)] = 1.

according to (i), The properties of (A)" are proyved similarly, For 1 <

=

w ;= lx e [Del | x =e;)=1.
ale =xe @ | x = 1l =04,
"-"ﬂf =[{x =0 |0 = x}| =105,

afy =[x € [1e} | o = x} =1,

ivi) Consider the bipartite graph Qr-_l- whose vertices are the two classes of ¢le-
ments of the orbits & and Ef'_,-. An clement x € & is joined by an edge 1o
another element v € & il x = y holds in the lattice. Double counting the

edges of the graph G;; gives

#oedges = Z Hy € @ |x = ¥l

Z ey = 10| ey

xelh D=l
=Y xedlx=yll = ¥ of, =10 -a;.
vell; vell;
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Figure 4.1: The Dodecahedron

4.1.5 Example Take the Dodecahedron (Figure 4.1) and let the sels of vertices,
edges and faces be the elements of a latbce (Dade, ). The lattice 1= defined by
inclusion, =0 an cdge is contained in a face il the edge is one of the faces bounding
edges. We need two more elements Lo let this set really become a lattice: the
emply sel is contained in all elements, and the Dodecahedron itsell contains all
elements, The Dodecahedron has 20 vertices, 30 edges and 12 faces, Let the group
of rotations of the Dodecahedron act on this lattice. This group, isomorphic 1o
Alls, is transitive on vertices, edges and faces. So, we have five ocbits O 5, O,
021, a1, Oy 1. commesponding o the elements @, the vertices, the edges. the
faces and the Dodecahedron itself, Mote that exactly two vertices are contained in
an edge, that every face has 5 vertices and that the Dodecahedron has 20 vertices,

Moreowver, every face contains 5 edges and there are altogether 30 edges. The
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Dodecahedron has 12 faces, This yields

(1111 1y
01 25 20

FPUiDader = | 0001 5 30 |. (4.3)
0001 12

00 0o ].-‘l

By Lemma 4.1.4 {vi), with

D = diag(|Dol, ..., 1Oui]) = diagil, 20, 30,12, 17,

{1 20 30 12 1%
01 3 3

P Dade) = D PYIDodery- D =00 1 2 1 (4.4
D001
V00001
&

4.2 The Plesken Ring

Let the group A act on the fnite semigroup (M, o). Let &, . .. . @ be the orbils
of A on M with representatives o; € &, For 1 = i, j.k = £, lel uf;i,.. be the

number defined in (4.2). Plesken defines the following ring:
4.2.1 Definition The (M, o, A)-ring is a ring with £-basis by, ... | b such that
byob, = Enﬂib* for 1 =i, j ={&.
k=1

Mote that the (Af, o, A J-ring comes together with a distinguished £-basis, By
definition, this ring is unique up 1o isomorphism. However, it is not at all clear

that this ring really exists. This is the first result of Plesken in [23]:
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4.2.2 Theorem The (M, o, A)-ring exisis,

Proaft Lel (E[M]. o) be the semigroup ring of (M, o) over E. We have an embse-

ding ¢ : Piadf) — M. X = (X)) = Z - ;. We can extend the action of

meX
A on M toan action on (E[M], o) by putting

iT
(Z .1';.-;.!“) = E Xt *

e nT e AT

[ora € A, xy £ E.

Let (E[M]4, o) be the subring of A-fixed elements in (E[M], o), 0, e
EIM)y={ucEB[M]|Yaecd: u' =ul.

[etw = Z X & T M4 with x,, € & forallm € M. By definition,
e M

Z Nl = 1 = 0" = Z Ty = Z X a1,
med mel maeM

which implics 1, = X - for all @ & A, Thus, the coefllicients of the clements

|.i|r

i £ T M4 are constant on the orbits of A, On the other hand, all orbit sums

by = (O = Z m

mell

lic in (E[M] 4. o) which shows that

ElMla =il |i=1.... .00

bl = x
T-EI:]‘.

=2 2 =

€M 20,120,

We have
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=Y Y e, ye@ =0 |xoy=:zllz

k=1 zelh
. oy i
.
— &
k=1
using the fact that the number ), is independent of the choice of the element
z € O, C

We call the ring defined in 4.2.1 Plesken ring.

We consider the case when M = £ is a lattice. Then £ admils two semigroups
(L, ) and (L, A0 Plesken proves that the £, v, A)-and (Z, A, A)-rings are in
this case isomorphic to a free E-modole with £ penerators equipped with an addi-
tional multiplication which comresponds to the multiplication in the Plesken ring,.
Thiz multiplication iz the Hadamard product of vectors, 1. e, the componentwise
multiplication of the entries of the vectors. We donole the Haramard product by

the symbaol 2.

4.2.3 Theorem ( Plesken [23]) The proup A acts en the finite lattice (£, v, ~). Let
. ... . be the orbits of A en L. Let 0, € O be representatives of the orbits
Jorl =i <= £, Assume thay the orbits are sorted topologically as in Lemma 4,14,
Ler :1";1 Tl ”ij‘t be the structure constants of the (L, v, A)- and (L, », A)-rings
RY and R, respectively, with E-bases (b, ... B Vand (b, ..., B]). Then:

(i) The (L, v, A)-ring R is isomorphic 1o (EE o, 4. The map

RY = (B o+

. T .
|r.1'l; = hr. =)

W,

o

jpfer 1 =i j = £ s an isemorphism

wirh r.4'|3:|, =[x |x =l =u
af rings, " i5y understood o be the E-linear extension of the given mapping,

In particular,

£
bY @by =% alby.
k=1
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{ii) The (L, A, A)-ring R is isomorphic to (E', @, +). The map

RY = (B o, 4
.
. L,
‘Pﬁ. B o= BT = 'J
g I
"".'r_":‘.'

with r_;l;"-j =|[y e Ef'_l- | ¥ = &} = Lr;':.r. forl =i, § = £ isan isomorplism
af rings. @™ is understood 1o be the Edinear extension af the given mapping.
In particular,

£

o o nOp
b ok = Z“.ij.'.hi'
k=1

Proaf> We only show the first part of the theorem, the second part follows by a
similar argument, We verify that ¢ is a homomorphism of rings, By definition,
it is a homomorphism of the additive groups. Let us compute the /-th component

of b @ b} in Z:
ahyel, =llx e x=all-llyeQ|y=all

=[x, vie O = O |ixvy) =gl

=3 ey €O x 0 |xvy=uwl

wi
W ||_|
;
= Z E [[1x, ¥l e ﬂ,i M 'Iﬂ_r | xw y = w}
=1 wedly _
v =ik
’
J— W
=D a2
=1 ey

¢
_ W W
= E“.i_,i.l.- N
k=1
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Thus we get

@ b1 (b1 =8 @b

Mote that

A

and

Frar”

; W
=1 .
s 2 ..I'..-I'I_Ill....

o W w
== L. ..I'.-I'I;I|| 'I'.-I"I'_Il... :

¢

. o W

=l “E_.i.l.-'“k..h---
k=1

i
= Z“’ut'[--- L FIRERY

k=1
i
' !
=D e bi
k=1

i
=3 a0 )
k=1

=o' (Lo
k=l

e qul'r { J'.'.';"l W f?lli:].

¥

W
o

AE L,

.
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g

ot i-r.f
(4.5

ety g

o)’
: (4.6)

iy

By Lemma 4.1.4 (v), #(A)" 15 an upper triangular matrix whese diagonal ele-

ments are all one. In particular, it is imvertible over &. The given homomorphism
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@" thus is surjective and injective, proving that the rings 8" and &' are isomor-

phie, O

4.2.4 Example In the latlice (Doade, ©) (cl. Example 4.1.5). the Plesken rings
(Dade, v, Alts) and (Dode, o, Alts) have five basis elements b, ..., b} and
Be .o, by Under the maps @ and @ of Theorem 4.2.3, these correspond to
the five rows of the matrixs P¥(Dode) and o the five columns of the matrix
P (Dode) of (4.4). In the Plesken ring we compule the product 53 A by Ac-
cording to Theorem 4.,2.3, we pet

(a0 [ 12 BT

3 3 9
ek = 1 @] 2 | = 2 = 240-b5 +3- b +2- b7,
0 1 0

|.k ] J \ ] jJ \ 0
which shows, for example, that one can obtain every vertex three times as the

intersection of an edge and a face. ]

4.3 Groups Acting on Ranked Lattices

Let (£, v, ») be alattice. A rank function for £ is a mapping vk : £ — M, x -
tkix) satislying

x =y = thix) = tkiy) 4.7

for all x, v & £. Here, < is the ordering on £ induced by the lattice as defined
in (4.1). A ranked lattice (L, v, A, rk) is a lattice admitting a rank function rk.
The condition (4.7) implics for complete lattices

minrtkiz) = rkillp) and maxrkix) = rkilg).
el xXE
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In case that a group A acts on a complete ranked lattice £, we require

rhix™1 = rkix)

forall v € £ and all @ € A. Here are some examples for group actions on mnked

lattices.

4.3.1 Examples

(i)

(ii)

Let & be a finite group, L0671 be its laitice of subgroups. The ordering of
the groups in the lattice is the usual relation of inclusion, The supremum of
twior groups &7 and Vis the group which is generated by all elements of L
and all clements of V, Lo U w V== U, V). The infimum of two groups
L5 and Vs the intersection, Loe. U7 A V= U M V. A rank function can be
obtained in the following way: Let U be a subgroup of 7 of order | [7_, p".
Put th(L') := 30, m;. Any group A = Aul((7) acts on the lattice of
subgroups, Often one considers the action of (7 itself by conjugation. 5o,
an element g € G maps U € L0G) to UF, Then | US| = U] =[T_, J,.:'_"f
implies tk(L7%) = k() = ¥ 1_ m;. Another pessible rank funktion is
kil =L

Let V be a finite set. Consider the lattice of suwbsets (0V, 1,710, The
ordering is given by the usoal relation of inelusion for subsets. The supre-
mum and infimwm of two sets is the union and antersection of the sets,
respectively, A rank function is rk : V) — M, X — |X|. Any group

A = Symy; acls on this lattice by
A PV — POV fa, X x4,

Thenrk(X*) = | X7 = | X| = ki X).
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A rank function induces Jayers on the lattice, The i-th layer consists of the

elements of rank §;
Ley =[x e L] tkix) = i}.

For the rest of this section, let £ be a finite (and thus complele) ranked lattice with
a group A acting on it

We need o extend our terminology For the orbits of A on £, Put 0 = rki(0g)
and r = rkilg). Then, for 0 = § = r let O, .., ;4 be the set of orbits of
Aon L'NL), Frur 1 = j = £, let @i ;€ (% ; be representatives of the orbits,

Then, for 1 =i, f, b =landw = L v = £ and w = £ we pul

S
r'r.::lll..l.-r.-ful = |{ix, = E}I'.a' x ':jj.l' | x v ¥y = agwlls (48]
T
wd! = ix, y) € Oy % Opu [ 3 Ay = arull. (4.9)
and
Yt Y - (0 = o; 410
S g = e - |[l’ SR T | = ﬂ.l'-"H‘ (<. 1L
R R
u'L"I'I-!-' = u'-['l.l.-:-r.'.-:-'l = fx e Qo x = a4l (411}

For 1 <= m,n =< r, we have (€, = £, )-malrices

O 0 )
ﬂ"'_’.'.'.-..'.'["'.’-' S [r'rf._,i i fs

A e
ﬂ"'_’.'.'.-..'.'["'.’-' = ["-l'l'_j di, f

Putting these matrices together, we get block matrices

PLAYY = (P (A Vi e

.?:'I.."lllﬂ = |-g-"_||-;__|||:-"i:|n:|m.ﬁ"

LUp 1o a possible reordering of rows and columns, these matrices coincide with

those defined in Lemma 4,14, Let us collect some propectics of these matrices:
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4,32 Lemma Let the group A act on the vanked finite lattice (L2, v, ~, 1K), Let
0 =r1ki0p) andr =rtkilg).

(i) The LY L) are anti-chains for all i < r.

(ii) &g = €, = 1 and Oy = [og} with on| = Op and O = [o, ] with
a1 = lg.

{iti) Let I,'IL. be the j-th row of the i-th row of block matrices P (A)Y. Let EJ‘!“'j
be the j-th column af the i -th column af black matrices P ;(A)Y. Then

r’h‘,i] 3
b
P = :

W
E]i A

\ by, )

erned

PA)" = (h,;jl

vy h," hf)

Farl =i j=ru=¥fandv=E;wehave

r &
i

E.'lrrr & EI_.;I:I' = }:: ul!:rr.l{u':l B:.:-."
k=0 =]
r &

\ ; i

EI;L.rr & B_l?:l' = E Z "':'I:[rr.l{u':l Bi:.:-."

k=0 w=]
fiv) et ) = n,m = r. Then
ru';r'."l:l.r.l[:-l'l"-:'--'II = ll:-c-':n" .Fnl_.||:.|"!.:|"" = Elﬂu,Il, fa g |G.l|,£',‘.|:|-

P (A = (O] o [ |) Ty P (AN =1

= Al
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(vl LetO=n <m=r, Then

Py nl A = Py (A =100,

Xkt

ﬂ.'.l..'.'.l':""’:lf = r.'.'.r.'.":-"lll:lp = Iy

fvi) Let Dy = diagi | 4], ... , |II:J,-_,=I|'|_,|'E'J."[] =i =, Then
Prual AV = D Py () - Dy
Sor 0 = m,n = r. Equivalently
PA =D P A D
with D .= diag( Dy, ..., D).
Proaf:

i) Letx, v £ LAyey. Then x = v = rkix) = rkiv) contradicting rkix) =
rkivi =i.

{ii) By the propertics of the ank function, L™ = [0z} and LY = {1¢]}. By
Lemma 4. 1.4 {ii}, these two elements form two orbits of length 1, 50 Oy =

[0g)and O = [1¢].

(iii) Rewriting the result of Theorem 4.2.3 with the new indices, we get the two

equations [rom the Plesken ring structure,

iiv) Let j = &£, and i = £, Then,

(o,

|:-":'I._li = H.I' = {[]f—} | X = I5"'J|._|i}| =1
= FelAl =1,
(e, _
1" =[x € Oy | x = 1gH = Ol

= Pl A) = (Ol O
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0,

|:'-':|._I-' =|[-T‘:_:ﬂrr.j |t3[]E]|=|ﬂﬂ_‘||
= ?U.JII:"JI':IA - I:ll:“-.':lr.'.l |~ - |ﬂr.'.-'i..|:'~
T 2 x e 1) | x = o] = ]

= 'f'.'.'.r[-"”h =lf,.:-c|'

iv) Il n = m, no element of LY is less than an element of L% 5o

P n LAY = Pyl AV =10,

Mgt

The equation
*?:-.'.'..'.-.'[""’:'.J = *?m,m[-"'t]ﬁ — 'f-':.,-,.

[allows from (1) and from

(rm ™ |n!||'.'.I.|'.'.I_|""' 1
(3 — i -

(o™ and ulm.ﬁ':l'l.'

(vi) Lemma4.1.4(iv) applicd to the o vields
W A
a0, ) = 1O ] e

In matrix terms, this is
.-:I:'n.-l-l_q[a‘q.]..\III r i:l_“ = -:Iijw r I':Pﬁllllﬁll:l'll:l.-‘
which implies the slatement.

O

4.3.3 Example Consider £(5ymy ), the subgroup lattice of Symy (cf. Figure 4.2,
below a table of the conjugacy classes of subgroups). Figure 4.3 shows the w-
picture of the lattice and the Plesken matrix P (Symy). In the bottom line, the
Aoe-picture and the Plesken matrix 7 (Sym, ) are shown, In both matrices, the
block decomposition by the rank function is indicated by horizontal and vertical

lines within the matrices. o
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By

orhit ﬂi-! representative O Lype |ﬂ-’.j| [0 ;| rk O ¢
o {1d) 1 1 0
(I (i1,2)} = Fo & 2 1
a2 (i1, 2,30 ~ Fa 4 3 |
Q3 (0L, 2003, 40) ~ Fa 3 2 1
O {01, 23, (3,43 el R o ) 3 4 2
e ((1,2,3),0(1.2)) ~ Sym, 4 f 2
5 ((1,2,3, 41} oy Y 3 4 2
ha {01, 2003, 4), 01, 3)02, 4)) = Vy 1 4 2
Qs 1,23, 4,01, 30 = D, 3 8 3
o 1. 2003, 4901,2,3)) =~ Aly 1 12 3
(I (L 2,3, 49,01, 2)) = Sym, 1 24 4

Figure 4.2: The Subgroup Lattice of Symy
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Figure 4.3: The Subgroup Lattice of Symy, v picture, Plesken Matrix 2 (Sym, )
(opl, ~ picture, Plesken Matrix 7 (Symy ) (hottom)
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4.4 Acting on the Subset Lattice

[n this section, we consider the action of groups on subset lattices. We oblain

stronger results which are based on the structure of the subset lattice,

4.4.1 Lemma Let V be a v-element set and let A be a penmutation group on V.
We consider the induced action af A on the lattice (R0V), U, M| < |) with rank
Sunction PV — [0, vl X — |X|. Ler I.”]("':[]['I.-’]] = I{]:] be the i-th layer
af the latrice, ForQ =i = v, let Oy 1. ..., Oy ¢, be the erbits af A on Faly ROV

with representatives O ; € O ;.

(i) ForQ =< m < n < v, the following is true:
. n
l]:-ci.., L m 'll:-cf..ﬂ

. v —m
Frw,n(A) 'l—i,.x] = 'lfu:-cl'

R —Mm

(i) ForQ < =< h < n =< v, the following recursion fornidae are satisfied:

(" - '”) Py (A = Py ATy, AT
f—m

n—m . "
( )":Fm.w[.-"ﬂ-]n = m,h[f"'.-'n"?.'],ul:""'.-'n-
k—m

e iVerse Malrices are
HH n! 1y Malrt
-1

{Piﬂju] = I.r_l:—l.lm-l-npm.wl:"'"ju}m..u‘
-1 i
{Pfﬂ]n] = I.r_l:—l.lm-l-npm.r?':""'-'lﬁ}m..u'
(iv) If A = Symy, then £y = £ = ... = £, = 1, i. e. Symy, is transitive on

i-suhsets foralli < v. We have .'.F'm,,,I:.'i}'mp:I'" = {;] and this
Fiﬂymu]"' = (P (Symy) ™) = Bro w0 el
anied Py (Symy ) = () and

P(Symy)" = (P (Symy) .
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Proof:
{i) We show that the elements in every eolumn of P, , (A}~ sum up 1o |::.:.}
For j < £, we compule
Fay £y

/8 U —
Zﬂ.::._; = ZHI € Om,i | X < 'r'j.ll._f}l

i=l i=1

r

'I:.ll

= HJ:.' = Uﬂm.i | X < '!‘-',-“-.I;}I

i=1
— —r

=L V=1 |]
— (
m .

We show that the sum of all elements of as row of P, , (A1 s equal to

{L::] Forall i = £, we have

£

'l:ll
i
¥ ot = Y Y €O | Ong SV
i=1

j=1

Fl'l

=¥e | JOuw; 0w ¥l
et
=
=rEgivn=( "

_(v—m
N (-’i‘ - rri-)'

(1) (Following Schmalz [25, Satz 2.3.5, page 40] ) We first prove the correctness
of the second equation involving the Py, (A", On both sides of the er|ua-
tion, we have matrices whose rows and columns are indexed in the same
order by m- and n-orhits of A, Let v ¢ be the (0, £)-th entry of the left ma-
trix, and lel "‘-.:.1 be the (i, k)-th entry of the matrix on the right hand =ide.

— i IRl

-
Bv definition, x; p = (7 o . We compule the comesponding matrix
] ik . L P P &
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entry on the right hand side:

i
im0kl
.T:IJ. = Eﬂ'i._l' '”H-‘
i=1
(411) i A

wd [N im0 i)

- E i B AN
=1
£y

= Y UHeO) | O S HY-IIN€Ouy| O, = N
J=1
L

= 3 i:H,N: €O % Qg | Opi € HC N”

_II'=|.

i)
= Hnﬁ,me L)@ xﬂn_klf:rm.szﬂzfv”
i=l

I'|_—_\.\___—.ll'
==Y

- Y He (‘J) | Ows < H S N}
Nog h

Doy i
. Z (" — iﬂ)
Ne, o i —m
oy 2
H— M |
— . ﬂ!l:’..ll:l
h—m h
= ik

Using 4.3.2 (vi), we get the recursion farmula for the 2, oA

" — IR " —m
(,u - m).sﬂ,,,_,,m,” =D, - (n B m) Py oA D

= Dy P (AT - D Dy Py A) D]

= Py (A1 Py (A
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(iii) We prove by induction on the difference n — m that the ioverse matrix

|[.“F"|:.-t]"']_| has the form ((— 1™ . P(A)- ) Recall from Lemma 4.3.2
(iii) that P(AY = {-‘F[:"‘I]:;I:I#} 1= an upper triangular blockmatrix, This
means that A ]r-l_-:.rr = 0 forn = m. The diagonal matrices are identily
matrices: P(A), . = I, . Denote the blocks of the inverse matrix by
|[:F"|:.-t]"']_| =P ). Then P! = 0forn < m and P

moaet —_ L = f'l:l.l."' L. &

the formula 1s vahd form = m ore — m = 0. Mow let us determine .'.”l'_-'“':', "

forn —m = 0. As (P (AY) [?i.-‘l]"']_l = { we get in the mi-th row and
si-th column of the block matrices

Ll
Z ?-'-'«'-i'-'l:"“- ! '!F:':.'.' = Hl'._.,:-c-':..
=0

M
— E ﬂ'l'l'k['-l'!]u ’ I':i-.::lli.ll.' = Er'“?h""

h=m

il
— :f.u ) 'lFr:r.w + Z f’-‘-‘.l’-'[""’:lu' F.';.l.l = ﬂl"“:-c-'f.l

fe=m+1
"
R Pa = = 2. Pual)- P,
h=m+1
and by induction
B
|_|
Fpn == 2 Puald)-F,
h=uw41
[
= = ¥ R A) By (A
fr=m+1
T n—m
= (=" i—n"*-( )-ﬂw.ﬂ-im"'
o — m

— I_'I:In'-'+| (E['_ I :Il'.'|'+||] . (ﬂ ;m)) ) .':FM,I"[..."‘ ]LI
hi=1
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J —=IK
= [— 1)t ( [Zi‘“* ' (” ;"’)} —J) P (AN
fe=0

=0

= (=1 e, A
The proaf for [.F‘[.-'l J'-h']l_I is done in a similar way,

itv) The group A = Symy, is transitive on {-subsets of V. Thus, each layer

holds exactly one arbit (, | with a representing set €3, 1. Then

a1 = |[X € O = (:) X € 0na]| = (:)
v —m
B (u —.l.r.-)'

MNote that the statements (iii) and (v) wgether yield another proof of Lenima 1.3.20,

anil

at"" = ||¥ € O = (::) | Oun =¥}

O

i, e, of
1 P . ] ; \ |+.|| .-r
B =k 7 with &K ,=i(=1) )
i i i
There i=s a close connection between the Plesken matrices for the action on
subsel lattices and the results of Section 3.1, By definition, the matrix ..-H;*k of
Theorem 3.1.1 is just one of the matrices in the block matrix decomposition of

P

4.4.2 Lemma The group A actsem the set W = {1, ... ,v]. LetD =1 =k = v be

integers. Then
A =",

if bath matrices are indexed in the same order by the §- and k-orbits af A.
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Chapter 5
Classification of Designs

In this chapter we shall describe a way 1o compute the intersection numbers of a
design with a known group ol automorphisms, The method nses knowledge abont
the orhits of that group A on suhsets. Background of this method is the Plesken

ring of the action of the group A on the subset lattice.

5.1 The Computation of Intersection Numbers

We consider global intersection numbers e "D and el*D) of a design T for

integral 5 = 1. We put

A (u"l-'i'D]T|

r:"'"['D]T)
and
Al = [;rr“ll'ﬂ':lT| |::r|"'||ﬂ:|T)

and call these matrices the malrices of global imersection Rumbers,
Let Vo= {1... ., v} be the set of points and let A = Sy, be the preseribed
automorphism group, We assume that we know the orbits of the group A on -

subsels of Vlori = & Let &4, ... Oy, be the i-othils of A Tor ) = § = &

e
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let @3 ; € O ; be representatives of these orbits, For D = m.»n = & we have the
Plesken matrices &, (A1, which together form one big ((k+ 1)« (k+ 1)1-block
matrix P A = [Py A I Let E':‘_-I_r' b the columns of this matrix. The Plesken
ring [P1A @, 4 ds gencrated by the columns of thie matrix over £,

We make use of the weight function & @ Z[(V1] — W, intoduced in the
proof of Theorem 23,1, where W, is the free E-module of rank (v+ 1), generated
by the um vectors gy, . . ., €. Restricting to the A-fixsubrimg | V)] 4 we obtain
a mapping

g (EREV a0, 4+ — W, E dpg - M E ag - € |ag)s (5.1)
MCV MV
where all &y, are integers and EH;U dyy - M is fix under A, which means that the
coelficients ayy are constant on the orbits of A.
Let v be the following weight function from the Plesken ring iFir’l]n,@, +

to W, This mapping v shall be the distributive &-lincar extension of
v PLAT @) = W, B (85 - e (5.2)
The connection between & and v is the following:

S Lemma Lot A be a growp acting en V., and ler O ... D¢ be the
arbiis aof A on i-subsets. Let (0 ;) = Exet}._: X be the sum of all ele-
menis in the orbil E?,;__,- as an element af the .l.'ﬂn.ﬂ[,lrr:lu;,l ring (EPOVI]a, N, +).
Let & 0 (BRI 4.+, — W, be the mapping defined in (5.1), and let
(P, @, ) be the Plesken ring with weight map v @ (P (A7, @, +) — W,
as defined in (3.2). Then

k=vag

where @ ix the map defined in Thearem 4.2.3, sending the j-th orbit sum il )
EII_I
4]

. ) . il &.n
oito the basis element h?} = : with h;' = (rr%ti” e ,HH_'; ]T_j"ﬂr

Elr.l
h=10... ..
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Proaf: We yerily the stated equaltity for the generators of the ring
(BT 14, 0, +0, Loe, for the arbit sums (00 ;)

._-[g“:]r-_jjj =k'|:: E E:I = Z :IEI = |':]|_I'|:| = 1"|:E|:,-IIJ.}

Hell Beld ;

={va wn} (i ;0.

MNext comes the main result allowing the computation of global intersection

numbers of designs:

5.1.2 Theorem Let D = (V, B be a t-(v, k., L) Je-ngu with A = ﬂul[’ﬂ;l Letx

be the solution vector af the design, i. e. B = B, = U (]! - Lel § = Z I:
1

]
Fii=] :|_|| I
We splir the vector § in the following way:

with 3 =

Fi}
kN i,

b L

Let :E“IT,_l__H.IUL__JLI be the ((k + 1) = (k + 1))-matrix whose (i, j)-th coefficient
i i—]]"ﬂ'{ﬂ, which by Lemma 1,320 is the inverse of the matrix of binomial
cogfficients. Let &) be the (s = x)-matrix af Stirling numbers of the first kind
81 = (100, j)) and let D = diag(7;, &1, ..., T). Then,

AT = B AL 1), (5.3)
Al — g lsl _5;" i, (5.4)
Al = ’ELTJL by " L (AT 8D (5.5)
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with the (k + 10 = &) -maprix

( (0% = (o) )

()2 o ()5

ZiApii= | P23 0 P20 |- (56)
Popo 1A @y o Pop AT B e

Proaf: Let Oy ; be the j-th orbit of A ond-subsets, for 1 = j = £, Lel PlA =
{Pm_,,[.-‘{:ln] be the Plesken matrix for the action of A on the subset lattice of 3
for the layers 0, ..., k. Let E':i_lj for ) =g = kand 1 = j = £; be the column in

the Plesken matrix corresponding to the f-th orbit of A on {-=uhsets.
ji= Pl gl (3.7}

In the Plesken ring, we may decompose

£

%= 3 o8, (58)
1

i=0 j=
with unknown coeflficients _1_,:! ";I! £ E (in fact, these coefficients are nonnegalive as
they describe a certain number of orbits). We get a vector

|=] ]|

g ¥ii
|%] .!"'l
pltl = t']—' with ! = "’“_-- for D=i<4k (5.9
X Ix1
l].l.-l _ -‘-"r'.ll.r,-
Then

=1
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By Lemma 4,3.2 (v) and Lemma 4,4.1 (iii), the matrix
AT = (-1 R A7)

is an upper triangular block matrix, Thus, we obtain
gl = Z[ DR (A @, (5.10)

ford = 0. 1., ... L We now compule

ey = K ( Z h H_.‘.u.)
(8, By e k=l
X b
= [ ( mE 'E_f )
i=
— ,.-( 3 > B
j=1 Belh
Fi=
5 iy
= s (m E Y )
=i
=1

by Lemma 5.1.]. & = vy, sowe pel

5 ik '
L (NX o)

‘F.-I_I 1

which is an element of the A-fixsubring Z1P0V) ... and by Pleskens Theorem4.2.3 (i),

the ringisomorphism |;|'.In maps Lthis expression onto

4.2.3 (i) '(O Eh )

.F||'| 1
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= v(©]

(5.5) ii g
i =

k

= Z 1[E|'ﬁ']

i=l I
i=0 =1

By Lemma 4.3.2 (iv), P A = (..., & 50, Using (5.9 we can rewrl le

the inner sum as a matrix product:

4.3.2 (iv]
(5.5 *
= Z'ﬂi]rl""] lTM'i!.i
i=0
(5.10) E{E i+ o
(SR T VTV VPN N TH BT
i=0

=(41# ;140 = A g T

and with Lemma 4.4.1 (i) and Equation (5.7 we oblain

44—][|L] E{Z 1]"'"-'(_) ]n'@'\.{fj,l':"i-:'ﬂ';-r:]l"t-"

i=f
By Lemma 4.4.2, 7, (A = JH'.'_’r-'f'=L is the Kramer Mesner malrix.  As overy
i-design is also a j-design for all j = ¢ we get by Corollary 3.1.4

4.4.2
t

3.1.4 & A
= E{ Z[_”llﬂ(-")?':"-'[ﬂ]n JONPE; ']—-‘-;ﬂ]

+ Z‘ aH(J)ﬂn.;iﬁll“-Ef".!u'

J=t+1
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Lk
+ [—11'“(“_)%.;‘[#‘:)“ - E“r‘rT] -8,

using the fact that by Lemma 4.3.2 (v) 7y (AN = fy, 1= the identity matrix. As

ris a [0, 1}-vector we get &'r' = ¢, and thus

[y i .
e [0, 115 %
Felidl Z[Zi—ll“”“(':)%.J-im“-L.m-*}
i=n ' j=i

=[I|']
[ _.'.
+ Z i—l1"+"(!_)-'-”i:l_‘.-|.-1:|n KON T
_|i=.l-|-|
I+ k (-
+ =1 gAY x S
i ——— o —
=kg=h

By Lemma 4.4.1 (i), the row sum of the Plesken matrix is knows, As Fp (A )
I . o i _ fv . . Al T _ 3.
15 one-rowed, Py (A7 lr.l_x | = {J}I Moreover, 7, (A ' = kg = b so by

Corollary 3.1.4

4.4.101),
314 k t S
= E[ » -1 ]”f'('{)(L_) e
i=i0 i=i ! I
kol Lo , k
+ Z I:—| :II+"I (..)'ﬁ],_f':-"'t-ln . 'E:'l'l.ﬁ_,l' + (- | J.--l-J.() -f.?] &
i=r+1 [ i

Writing this cquation in matrix form, we arrive at

¥ -1 . \
Al — Bl ko - ELAE

where Z, (A, ) is the matrix defined in (5.6), This proyes (5,3). Equation (5.4)
then follows from Theorem 2301, and both equations together imply (5.5). This

finishes the proal. (]
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Let us apply the result to an example:

5.1.3 Example We shall examine the 5-(24, 8, 1) Will design which is invariant

under M=y, The parameters 4; ; fori + j =t = 3 an

gli=0, 1, 2, 3 4 s
i=0] 759 s06 330 210 130 78
1 253 176 120 A0 52
2 7756 40 28

3 20 16 12
4 5 4
5 |

Recall that we put &; = & 0. The values of I[‘I] = I:-':I+}| ford =0, 1, ..., 5are:
(1,24, 276, 2024, 10626, 42504 .
We choose v = 3 and oblain

AT = "E|_u:u.1..3|.|c1..sa| c B Moy, 1 -5||T|..._x|.||...3| -

f1-1 1-1 1 —1 1 —1 1%
o 1-2 3-4 5 —f 7 —8
0o o 1-=3 a—1io 15 =21 28

o0 0 1—-4 10=-20 35-56
=10 0 0 0 1 -5 15-35 70
oo o oo 1 -6 21-56
o 0 0 0 0 ] 1 -7 2=
oo oo o 0o 1 —=8
WO 0000 0o 0o o 1)

1
cEa My p) - |0 1 =3 | - diagi—, —, =



105

LTS XLIBJY USSa]] AL 1]C SR

I 0 i 0 0 0 0 i 0 0 o o joflErtrretetere il
(VI 0 0 0 0 0 0 0 0 o o joflirreeett el
0o [ 0 0 0 0 0 0 0 o o joflRLeetereial
T Al 0 [ 0 0 0 0 0 0 o o jofliresseoo
0z 1 0 I i 0 il 0 ] o o fofleeetrieTil

I Zt (il [4 ol 1 0 il 0 ] oo fof=ECyiETl

0o Al cEl 0 Rl 0 1 i 0 0 o o jofBreyeTtl

I HTI  (H £ ®91 £ a1 [ 0 0 o o joflk+eTal

N 11 TN i S I o ol I A 4 091 07 1 0 o o |ofiteToul

1T 9¥0C  OFQLl | S0l 08RS [orz oZir |0l | It I o (ool ezl

Li OSBG DROFO | Z9F TLRSD | SSIT 0919 | okST (1€ (T |1 o ol

ECT PRECE OISTIT | [LL] OL166G | €lts Qe | SoBR | [ei] | esT |2 |1 [of {1}

GEL TSlLG (OSLED | TLOD  TEOOFE | TETIT HHEEIT | H0ST | 0700 | #T0T | Qi | +T | 1| {]

o

Classification of Desions

'J.I'.E"I:II"II.ILEE.IE 'H.
FT DS I]I.I[I.
I'l:lfﬂEE'i'l'I'i'.'“.

SZ001 OFDES [1_-. I'I‘; 'E ¥ [ I_
FOOT OWOE | [.E- T I_

B N A

At N i R

EII]'J'EEEI]I‘.“-I gk EIEI[I‘
EE'EIIFE'EEL.IL'Q g o ,E--E-[I_
H"‘E‘EII'E’JIE{E. o ,E--E-[I_

L TR A I A |
I]':IEJ'.';'H'L-E{[H-L '|;| R T .”

e [ e T e



[0 Chapter 5
Here,
' 24y . 24,
( E[]]"‘(IJ {n]"g WIl
2y o | T
E:.[r’l.,:t,;:l — ["-I]"Il':‘-l {."'ljl'r';
- FhaiMa)" @3 P, siMay ™ D6
Fo(Ma)" @' Fo7(Ma)" &7
\ b b /
{739 STA0R1 437.245479
GOT2 1536216 JBR.G6264E
21252 1636404 126003108
42504 BU25R4 1R T44264
= S3130 265650 1.3282510)
42504 42504 42504
¥, 10F) Ve, 2 () Pl
¥7.10K) ¥ .20x) ¥7.alE)
739 759 759

with numbers y; () = Fy i Moy ="y, depending on the salution yector via

3= EFHI. | EIQJ-. Asp = (0,0, 1), this reduces to g = hE.i' i, e,

Fiji=l

3= (739,253,77.21,5, 1,0, 1,0, 1,0,0, 1)

Splitting the vector § into pieces we get

o =750T, 5 =0251T,
j3=02107, 34 =(5)7,

W= 07, =m0, 07,
]"-h:xl o ST FlLI.l'..‘

pule) = (113344 21252 ) - G*(0, 1)

A =777,
35 =017,
e =000, 117,

T 21252 for w=1273,
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¥elE) = { IHE2 6072 ) c@fio, T = 6072 for ow=1,2,3

and ohtain

{0 11385 26179175 )

i 0 31282944
0170016 12.751200
0 0 2266880
AR = 0 106260 106A260)
i (i (i
0 il il
0 i) i)
\ 759 i 0 )

<

The result of Theornem 5.1.2 may be seen as an extension of Lemma 2,3.2 The

notation shall be as belfore.

514 Corollary Let D beat-(v, &, &) desipn with preseribed automorphism group

A and with selution vector . Then fors = 1:
By, g0, A" = E (A -8 D (5.11)

In particalar we gel the equations of Lenvna 2.3.2 back jrom the first 1 + 1 rows

of this lnear syslem.

FProaf> (5.11) Follows directly from (5.5). In the first ¢ + 1 rows we get

=1 i
o " "Il'l:l ian )

Bpo,... o1.10,... &) - A" = di:g{([])' o (r)) | N R
FLEE 1
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nsing Lemma 1.3.19 (iii) which implics

- . o L. Aj
E-’-;-ﬁ'lfu,h-—l=—|#|y= s
! ! i

k=0

fors =0, ..., randu =1, ..., ¥ we get:

= : : . (5.12)
"y b WA
(r)07) G
Reading out the s-th column of (5,12) yields the first statement of Lemma 2,3.2,

L

5.2 Classification of 5-(31. 10, 1) Designs

Let us try to classify the 8-(31, 10, &) designs from Scction 3.2, Recall that we
have 138 designs with & = 93 and 1658 designs with &4 = 100, The group
which we preseribed was A = PSL(3. 5) on 31 points, We consider the Tollowing

submatriz of the Plesken matrix P40

g =42 fg =92 £ = 174

fg =42 Iy gl i g qol A i

o =92 ] oo Fa nlA )

fin =174 0 0 f174
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The matrix Py (A" has already been displayed in Tables 3.3 and 3.4, We show

Fe gl A in Table 5.2, Tables 5.3 1o 5.5 show 4 niA)" split into three parts.

Recall that we replaced the numbers 10 and higher by small letters a, b, e, .. ..
We first consider the 138 designs with & = 93, We label the solutions of the

Y&l
Paaol AV g =93 Loy,
by i, ... . F13s. The parameters A; are:
hp =16 303365, s =435240, i =4630,

Jq =5 7259150, by =108810, by =744,
Ja =1 577745, 5s =24180, S =93,

The values of {¥) = (%) for0 =i = & are
1o31,465, 4495, 31465, 169911, T362R], 2629575, TEEETIS,

Acceording 1o Theorem 51,2, Equation (5.5), we compute the matrix of intersec-

Hon invarants 4% in the following way:

1 1 1
(3 1 T ,
A = Bl o), o.ao) " S lAE) S Ay 'd'EE(__' 3 _}

1
(1-1 1-1 1 -1 1 -1 1 —1 1)
0 1-2 3-4 5 -6 7 -% 9 —10
0 o0 1-3 éd-10 15-21 28 —36 45
00 0 1-4 10-20 35-56 B4-120
0000 1 -5 15-35 T0—126 210
=lo o oo o0 1 -6 21-35 126-252
o o 0 0 0 ] Il —7 28 —84 210
o o 0 0 0 ] ] | —8 36 —120
00000 0 0 0 1 -0 45
00000 0 o0 0 0 1 -—10
00000 0 0 0 0 0 1)
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Table 5.3: Py 1o(PSL(3, 5107, Left Part
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Table 5.5: P 10(PSL(3, 5107, Right Part
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| -1 = | (i
CEafAg)- o 1-3)-]odo
001 0ot
Here, #E50A, 1) is the matrix
al .,
( {u]l':"rl {n]"g A
_ al iy,
mam= | GpL (4
Pool A @lge o PoolAl 2%
\ b coa b Y,

{ 16303365 265 799710323225 4333 4296594 293805 1521 25\1
163 033650 BST7 418420 397500 4509 292085 633512 125000
TIF651425 1157 514867 536625 1826 263294 681572410625

1956403800 B51 505189912000 3706091 18 857298 880000
23 TO6650 FT2533520586500 40535372 3T5017 065000
= | 4108447980 99 342272 156400 2402096 140741 752000

3423 TORGBI0 159200235 922500 TAOZ9 O9TOAD B2S000
1956403800 1455564 42720X) I0R2 939933 B36R00
TI36R51425 GE220 582525 6345351 174825
19,108 ) Vo, 20K;) 19,30K)

l& 16303365 16 303365 Jﬁ?l[]?lﬂﬁﬁjj

with integers

VoK) = Fonidl™ - 0" gaig)
= Py i) I:er"l:ﬁ_u_l[fi:ln 'Ll:l-r] for 1 =w =3,
Only the numbers g , (1 | depend on the specific design, everything else is deter-

mined by the parameters of the design, The vectors Py (A - ;r;r fori=1,2,3

i L
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i =102,2,9,911,6,99 7, 4,897 11, 10, 18,9,5, 7.7, 9.7,
12,8, 8 10,8 8 8 4, 5,6 8 9 8 5 8 8 10, 10,8 8 9, 10, 10, 12,
8.9,9 8 12,99 8 8 7,8 9997 10,7 8 11,9 64,69 3,7,
TA.0.6, 10,9 9 8 T 8,9 77,5, 7. 10,6, 12, 100, 9],

Folkz) = (2, 2,99 11 6.8 11, 7,408, 9. 7.7, 14, 18,9, 5, 8. 7. 7. &,
9,9, 8 8 7,8 87,7,9,9,7,10,7,9,8 7,6 809 0 10,6 12,8 10,
LR 12,8, 8,6 7,7 10,9 7 10,79 9 5 6 8 7 6,6 7 7,949
13,7018, 7, 11,008, L1, 6, 13,9, 7.8, T8, 9, 1, 10,9,

Folrs) = (2, 2,99 11,6, 7.8, B, 7,8, 9.6, 15, 100, 18, 8,9, 9.6, &, 8,
126,08 10,7, 7, 8,8, 7T R TR B 8 7, 1006, 7,9, 8 10,8 12,7,
1o, 106,99, 10,6, 10,89 8 6 11,8 11,6,7,9,9 11, 10,7, 7,8 5,
TR 77,67, 8,9, 9 5 9 10,7 13,97, 4,6, 10,6, 9]

Thus we get

vt Mo wlxp) r.r,l;']fﬂn i
I 163033650 0
2 1369201800 | 603 04075
3 LIBa3610100 | 1347 012000
Dp,: M (E2) rrll;,ml Dy
l 163032650 0
2 [3TT ABSB00 [ 60T 176075
312092018100 | 1380 982000
Dot Mo lE3) r.rll;ufﬂ'n]
l 163033650 0
2 1367 341800 | 602 154075
311903600100 | 1354 607000

As the values of r:é,']['ﬂzll are always different, we deduce that Ty, Dy, and T,

.
are pairwise nonisomorphic. Mext, we display a table of all “é._]['ﬂp i for 1=
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{ = 138, The tables displays the sorted values of u.gz'r_ﬂ'n:l. The indices i of the

designs Ty are indicated afterwards.

591 366075 for [25} G0 739075 for [7, 36, 68]
503 226075 for [110] GO0 BS2075 for [ 106, 131]
594 342075 for [95} 601 131075 for [101, 103, 105}
595 830075 for [111] 601 224075 for [ 10]

506 BSUITS for 27} 601 317073 for [40]

597 039075 for [102] f01 503075 for [127)]

597 225075 for [107] 601 629075 for [39, 120, 137)
597 A1R07S for [23, 128] A1 TR2075 for [69]

597 504075 for [5. 35} A1 96EOTS for [62, 53]

597 507075 for [15, 46} 602 154075 for [3, 18, 45, 94)
597 969075 for [2] A2 433075 for [13. 109}

598 248075 for [126] A2 526075 for [66]

598 341075 for [14} G026 19075 for [93, 133}

598 434075 for [118, 132} f02 712075 for [34]

508 527075 for [96} 602 BOSOTS for [56, 57, 67
598 BOGOTS for [79} G2 B9EOTS for [50, 61, 90]
598 899075 for [32, 70, 112] B2 991075 for [51. 86]

508 Q02075 for 97, 100] 603 084075 for [1, 21, 54, 77, 108, 113}
599 085075 for [48] f03 177075 for [72]

500 643075 for [40) GO 270075 for [12, 59, 124}
599 829075 for [44, 119] G003 36307 for [81, 117}

599 922075 for [64} A3 456075 for [54]

GO0 015075 for [41} 603 549073 for [63]

00 LOROTS for [43} A3 642075 for [91. 115, 116]
600 201075 for [16, 122 B3 735075 for [ 104]

GO0 480075 for [75} G0k 014075 for [22]

00 ST3075 for [29} fi0k 107075 for [26]

GO0 GEEITS for [134] 604 3B6073 for [11, 76, 129}
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G4 479075 for [31, 55] 607 641075 for 14, 6}
60U 663075 for [9, 136] B0 199075 for {114}
fi04 TSEOTS for [29, 37 (IR 292075 far {38, 74]
04 044075 for [958} G608 IRS07S for J99]
f015 223075 for [47} (OB 4TRO7S for J52)
605 316075 for [20} B8 STLOTS for {83]
G015 408075 for [28) (IR BELOTS for J24, 42
A5 595075 for [33, 73, 123} (OB 315075 for J20)
GO OETOTS for [E0} GO BTA0TS for {27)
f06 153075 for [19, 92] (10 152075 for {78)
(06 339075 for [53, 82, 85, 135 (10 803075 for {58]
606 525075 for [125] 611 175075 for {63]
A6 618075 for [17, 121} (11 268075 for {71, 138}

GG B9TOTS for (GO}
BOT 176075 for [2, 130]

We get the following sises of classes: 1%, 2% 319 42 6l Another classifi-
cation is obtained by considering s = 3. This classification is discrete, i e, no
two designs have the same inlersection maltrix AT Thus, all 138 designs are
nonisomorphic, As an example of how the classes of the v = 2 classification split,

consider the largest class of size 6:

[ID}”

All designs have Lr,:.,:"[l'?h:l = BO3084075, The tuples [u,:.,hlfﬂh '|,u,§|1']fﬂn i for

De.yy Dowys Dy s D

pr7s Driges Dl
these designs arc:
(BOF084075, 1341757500 for Dy .,
(EOF084075 0 1347012000 for Ty,
(E03084075 , 13502360007 for D
(OOF0R4075, 1353382500 ) For T ..

(EO30840TS . 13609930000 for Dy,
(GOF0S4075, 13624190003 for Ty,
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The 1658 designs with & = 100 can also be classified by their intersection num-

bers for s = 3.
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[x|%, see raising factorial
[ |z, see falling Factorial

[ - [, see type of a partition
loyae g )+ see multinomial coefficient
=), see Hadamard-Produkt

+, se¢ parlition

| - |, see weight of a partition

3-18, 4, 1) design, 53

2-115, 3, 1) design, 3

5-(24, 8, 1) design, 56, 104

B-(31, 10, &) designs, 57-63, 108-118

group ring, see semigroup ring

A pee matrix of global intersce-
lion numbers

Al see matrix of global intersee-
Lion oumbers

ctl By, see block intersection ype

et (B, see block intersection owm-
her

e (MY, see inlersection numbers

n:l:"" (M, see Intersection noumbers of

higher order
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n'r!ﬂl ), see global intersection num-
ber of a design

ur!"'l (1), see global interscction num-
ber of a design

u;.’J.A, 72

”llrl:.:'l':.-:'f: B5

“llrl:ll'!:..:'rl‘.- RS

ald" 85

alrd” &S

absomition, 71

admizsible parameters, 7

anti flag, |

antichain, 70

aulomorphism

of designs, 2
automormphism group

of a design, 2

B, see design
B, see malrix of binomial coellicients
binomial coelfcients
malrix of the ~_, 29
block, |

~ intersection number, 32
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~~ inlersection type, 32
block size, 2

hound, 70

chain, 70

complementary design, 6, 10
complete design, 6
conjugale partition, 16

cvele tvpe, 18

1, see complementary design
decomposition, 11
der, D, see derived design
derived design, 7
[Design

one-block ~, 6
design, 2

3-(8, 4, 1) ~, 53

2-(15,3, 1) ~, 3

S-124, 8, 1) ~, 56, 104

B-i31, 10, 20 ~e, 5763, [OB-1 18

automorphism, 2

automorphism group, 2

hlock intersection number, 32

block size, 2
complementary ~, &, 10
complete ~ &
construction of ~s, 4957
derived ~, 7T

index, 2

intersection numbers
alobal, 42-47, 99
of higher order, 34-42
ordinary, 3233
intersection type, 32
1somorphic ~&, 2
parameters, 2, 5-10
parameters Ay ;.9
point regularity, 2
replication number, 2
resiclual ~, 7
Sleiner system, 2
supplementary ~, &
trivial ~, &
with respect to smaller ¢, 6
Wikt ~, 35, 104
diagram
Fervers ~, 16
difference partition, 18
DISCRETA, 53
An, T

D = [V, B). see design
emply design, &

factorial
falling ~, 7, 24
raising ~, 24
falling factoral, 7, 24

Ferrers diagram, 16
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flag, |

global intersection number of a de-
sign, 43

group aclion on posct, 70
Hadamard produkt, S0

e, 79
incidence matrix, 1
incidence relation, |
incidence strocture, 1-3
anti flag, |
block, 1
design, 2
flag, |
incidence matrix, |
point, |
inclusion f exclusion principle, 9
index, 2
infimum, 71
intersection numbers, 32, 99
computation, 97-108
global, 42-47
matrix of global ~ 97
of higher order, 3442
ordinary, 32-33
intersechion type, 32
isomorphism

of designs, 2

i, see weight map
k. see block sive
Kirkman, 3
Kihler, 33
seneralized ~-equations, 40
Eramer, Earl 5,, 49

EYEY, see layer of a lattice
& see Index
:-.}_*J.. 14
i 5
Py B
lattice, 70
~~ action, 71
= of subgroups, 84
~ of subsets, &4, 91-435
layer, 85
one element, 72
rank function, 53
zero element, 72
lattice action, 71
lattice of subsets, 91-95
laver
of a lattice, 85
Lemma
Plesken, 72
lemma
inclusion £ exclusion, 9
length of a partition, 14

b9
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£(p), see length of a partition

Moy, see Mathieu group
Mathicu group, 55

matrix of hinomial coelMcients, 29

matrix of global intersection numbers,

o
Mendelsohn, 32
peneralized ~-equations, 349
Mesner, Dale M,, 35, 3840, 49
multinomial coefficient, 17
Multinomial Theorem, 23
multiset, 11

standard form., 11

U, see weight function

number partition, 12

) 5. BS
ﬂli._ll.l HS

one-block design, 6

TTiN Y, see Partition
[1im), see partition
FLAYY, see Plesken matrix
FiAY", see Plesken matrix
Paramelers

admiszible, 7

of a design, 2

of designs, 5-10
part

of a decomposition, 11
partial ordering, 69
partition, 11-29

conjugate ~, 16

cvele type, 18

diagram, 16

difference ~, 18

length, 14

number ~, 12

sel =, 12

standard form, 12

type, 15

welght, 14
Plesken, 72, 80
Plesken matrix

PiAY, TR

A T3
Plesken ring, T8-83

of the Dodecahedron, 83
point regularity, 2
poset, G4

group aclion on ~, 70

r, see replication number
raising factorial, 24
rank function
of a lattice, B3
red T, vee design with respect to smaller
I

replication number, 2
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res o T, vee residual design Theorem
residual design, 7 Multinomial Theorem, 23
rin, k), see Stirling number of the first of Kihler, 33

kind, signless of Mendelsohn, 32

of Plesken, B0
of Tran van Trung, (Jiu-rong W,

semigroup action, 69 Drale M. Mesner, 35, 40
scmigroup ring, 44

schoalgirl’s problem, 3

Tran van Trung. (iu-rong Wu, Dale

sel partition, 12 M. Mesner, 39
signless Stirling number of the first lopological numbering, 73
kind. 25 Tran van Trung, 35, 38—40
&iin, k), see Stirling numbers of the trivial design,
first kind
Sain, r), vee Stirling number of the V, see design

sccond kind v, see design

slandard form weight function
of a multiset, 11 L
v, 98

- . S . LT =
standard form of a partition, 12 weight map

Steiner system. 2 on [PV, 44
Stirling number weight of a partition, 14
first kind weight space W, 45
signless, 25 Will design, 55, 104

second kind, 19 Wu, Qiu-rong, 35, 3840
Stirling numbers
of the first kind, 26 Z44,5), 100

supp I, see supplementary design
supplementary design, 6

supremu, 70

f.see point regularity



