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Abstract

The first 572,68, 1) designs with automorphism group PEL(Z, T1)
have been found by Mills (8], We enumerated all 5-(72,6, 1) designs
with this automorphism EXTHLfH There are 926209 non-tsmmorphic de
BIgnS.

We ghow that a necessary condition for semiregular 5o, 6, 1) de-
biE‘:ILE with automorpbism Eroup RS ir.l:i: r— 'I] b exist = v = 84, 228
{1 EE[I]. There are exactly 3 non-isomorphic ur.:rl:li.n,-gula.r 5-[3-1., i, 'I]
designs with automorphism geoup PSL(2, 3.

There are at least FHM) non-lsomosphic 50244.6, 1) designs with
automorphism group PLLI2, 35).

1 Introduction

For the construction of ¢-(v, &, A) designs the approach of Kramer and Mes-
ner [6] has been very successful: First, 7, a group of automorphisms, is
prescribed and the incidence matrix Afﬁ of the orbits 1= caleulated. Then,

a design baving ¢ ag a group of antomorphisms corresponds to solutions &
of the Diophantine linear system

AEJ: TE= :
A
where x i a 0/ l-vector. The solving of this system is a NP-complete task,

Finally, isomorphic designs have to be identified. The first two stepe can be
done with DISCRETA [1], a software package developed by the authors.

Steiner systoms with ¢ > 3 are still rare objects. It is not known whether
any exist for £ > 6, and for § = § only a few parameter sets are known.
All known Steiner 4-systems are derived from Steiner S-systems. 5o, we
continue the search for such objects.



In the scarch for Steiner systems with large £, 1. e, 5-{v,k, 1) deosigns,
a fruitful approach was to further cut the search space by restricting the
incidence matrix "lfk of the aorbits to orbits of k-subsets which do not have
length equal to group order, These orbits usually are called short orbits,

The values of » for which 5-{v, 6, 1) designs are known, are 12, 24, 36, 48,
T2, B4, 108, 132, 168. Apart from the recently found 5-(36, 6, 1) design [2]
they all admit some PSL{Z q) as a group of automorphisms, where g = 3
mod 4, Their oumber of somorphism tvpes was koown only for o < 48
completely and — restricted to short orbit-designs — also for v = T2, 84,

For 5-(72,6,1) designs with automorphism group FPSL(2,81) we could
drop this restriction and enumerate all non-isomorphic designs having this
gEroup as automorphism group.

Moreover we tried the opposite restriction to use only long orbits to re-
duce the search space. Such Steiner systems then are semiregular designs.
Since most orbits usually are long orbits, one would expect a large num-
ber of solutions. But it is easy to see that already divisibility conditions
heavily restrict the possible situations where such designs might exist, We
give a necessary condition for the existence of parameter sets of semiregu-
lar Steiner 5-(v, 6, 1) designs with automorphism group PSL(2, ) for some
prime power g and consider the smallest possible case, i e, v = 84, Surpris-
ingly, there only exist exactly 3 isomorphism types in this case. The next
smallest parameter set for a semiregular Steiner 5-(v.6,11 design would be
5-(228,6,1).

Since already in the case of the famous Wikt designs the full automaor-
phism group of a Steiner 5-design was much bigger than the corresponding
PSL(2,p), we also used a bigger group to find 5-(244, 6, 1) designs. A bigger
group as a rule reduces the size of of the Diophantine linear system whose

solutions are the designs in the oomber of rows and in the number of columns
roughly by the factor of the index in that group.

2 5-(72,6,1) designs

There had been some snceess in prescribing that only short orbits should be
contained in the Steiner systems, 5o, the number of possibilities was greatly
redueed and the full number of isomorphism types with this additional prop-
erty could be determined. The first 5(72, 6, 1) designs have been found by
Mills [8] using this approach, and up to 8 designs with thie parameter set
consigting only of short orbits are known since B. Schimals [9].

Grannell, Griggs and Mathon [5] found that there exist exactly 4304
isomorphism types with blocks from short orbits only.

In this paper we could drop the restriction to short orbits and get the full
set of all momorphism types of 5-(72, 6, 1) designs with antomorphism group
PSL(2,71). There exist exactly 926299 isomorphism types. The order of



the proup PSL(2,71) 15 equal to 1TEF20. The mcidence matrix of the orbits
has 79 rows and 982 columns.

3 5-(84,6.1) designs

Grannell, Grigge and Mathon [5] showed that for short orbits there are ex-
actly 38717 isomorphism t¥pes, There will e much more isomorphism types
if we take into account orbits of arbitrary length. We already enumerated
at least 348512 somorphism types. So, we look at the other extreme of a
restriction, i. e. to use only orbits of foll length.

If a design admits a group of avtomorphisms & then its set of blocks
conaists of a collection of orbits on k-subsets. The smallest possible number
of orbits is achieved if each orbit is as long as possible, i. e. it has the length
[F]. W call these designs semiregular under .

Theorem 1 If there erists a 5-{g+1,6,1) design which is semiregular under
the aufomoerphisrm group PSL(2.q), ¢ odd, then g = 83, 227 mod 360,

Proof Assume, a design with these properties exists. Then the mumber of
Blocks b must be divisible by the group order. Thus, we obtain that the
following fraction represents a natural number.

b _ (i
PSL{Z.q)] g+ l)glqg— 1)/2
where v =g+ 1, k = 6, and ¢ = 5. Therefore,

(g — 2j(qg — 3)
589

must be & natural oumber. But since g is a prime power, § — 3 cannot be
divisible by 9. (g — 2] and (g — 3) are coprime, so 9 has to divide (g — 2).
Similarly, 8 divides {g— 3). Lastly, 5 divides either {g — 2} or (g —). By the
Chinese remainder theorem we have a unigque solution modulo 589 = 360
in each case. So, 227 and 83 are the unique solutions mod 360, respectively.
O
For the smallest case © = 84 we have used DISCRETA [1] to find all
G-{84,6.1) designs which consist only of orbits of length |[PSL(2, &1)| and
found exactly 6 solutions, These are grouped into 3 Bomorphic pairs under
the action of PGL(2, 84) such that there exist exactly 3 isomorphism types
by [3]. Such a semiregular 5-(84,6,1) design has exactly 18 block arbits, 'We
list representatives of these orbits for each of the designs.
Degign 1 and degign 3, respectively design 2 and design 3 are pairwise
digjoint such that they can be combined to designs with A = 2. More-
over, sinee the group PSL{2, B3] acts 3-homopeneously, each orbit of these



semiregnlar designs is a 3-(84, 6, 60) design. This means, each Steiner sys-
tem can be partitionsd info 18 3-designs. The designs can not be parfitioned
into 4-designe with automorphism group PSL(2, 83).

We used the following generators of PSL(2,83), its onder is equal to
2HGELE:
(1B2)(241)(355)(4 62)(5 33)(669)(7 71) (8 31)(0 46) (10 58)(11 15)(12 76)
(1350 14 TT)( 16 57) (17 39)( 18 23)( 19 48){ 20 20)( 21 79 (22 49)( 24 38)(25 73) (26 67),

(141 51)(2 55 407(3 62 54)(4 33 61)(5 69 32)(G TL68)( T 31 70)(5 46 30)(9 58 45)
(1015 57) (11 76 14) {12 51 75)(13 77 50)( 16 39 56)( 17 23 38).

Dwesign 1; Design 2: Degign 3:

{1,2,3.4,5, 38}
{1,2,3.4,6, 20}
{],2,3,&,?,]1}

{1,2,3,4,5.51}
{1,2,3,4,6,9}
11,2,3,4,7.12}

{1,2,3.4,5,15}
{1,2.3,4,7,77}
{1,2,3.4, 8, 40}

[1,2,3,4,9,62}  11,2,3,4,8 20}

{1,2,3,4,10,46} {1,2,3,4,10,72}
[1,2,3,4,12,44}  {1,2,3,4,14, 65}
{1,2,3,4,14,29} {1,2,3,4,15,43}
11,2,3,4,17,47}  11,2,3,4,22, 63}

{1,2,3.4,10,54}
{1,2,3,4,12, 68}
{1,2.3,4,13, 72}
{1,2,3,4, 16, 48}
11,2,3,4, 20, 34}

{1,2,3.4,24,42} J1,2,3,4,23,53}  {1,2,3.4,23, 76}
[1,2,3,4,22, 27} 11,2,3,4,31, 62} {1,234, 24, 66}
[1,2,8.4,31,68} {1,2,3,4, 4476} {1,2,3.4, 35,84}
11,2,3.4,35, 65} 11,2,3,4,45,54}  {1.2.3,4, 37,63}
{1,2,3.5,6,13}  {1,2,3,5,9.52}  {1.2,3.4,45 62}

{1,2,3,5,9,52}  {1,2,3,522 25}
[1,2,3,5,16,21}  1,2,3,5,23, 70}

{1,235, 10,22}
{1,2,3.5, 26,56}

{1,2,3.5,24,59} {1,2,3,5 24,57} {1.2,3,5,49, 60}
[1,2,8,5,96, 32} J1.2,3,5, 26,63} {1.2.3,6,9, 34}
{1,2,3.6,7,42y  {1,2,3,6,7.27}  {1,2.3,6,41, 70}

4 5-(244,6,1) designs

There are only finitely many 5(w, 6,1) designs known, see [4). As the §-
(36,5, 1) design shows, v — 1 need not be a prime power. So, the existence
of an automorphism group PSL{2, v — 1) cannot be & necessary condition.
It is also not sufficient, since no 5-(28, 6, 1) design exists with automorphism
group PSL{2,3%). We remark that also no 5-(82,6,1) design admitting au-
tomorphism group PSL(2, 81) exists. The next power of 3 that is congroent
to 3modd is g = 3%. We find that in thie case there do exist Steiner §-
designs, they even admit PEL{2, 3*) as a group of automorphisms in which
PSL(2,3%) has index 5. The order of the group is equal to 35871660, the
matrix then still has 196 rows and 7940 columns, So we restricted the search
as usual to short orbits only and ended up with M4 columns. This led to at

d



least 120900 solutions, The isomorphism types are determined by the action
of PTL{2,3%) on the set of the designs. So, they fall into orbits of size 2
under this group. The solutions found represent 645() Bomorphism types.

It seems inbercsting to notice that this s the first case of a Sieiner 5-
{v,6,1) design with an automorphism group PELI['E,p-r]I: whore f = 1, and
the first parameter set of a 5-(v, 6, 1) design where v 8 ot a multiple of
12, Further, this spems to be the first known Steiner H-designs defined on
more than 20 points, So, the number of points is the largest of all presently
known Steiner G-designs.

We used the following generators of the group PEL(2, 3%):
(HREIP AT E2 19T 106D 113077 166 179 193 133 43 33 14244 B6 1T4 2538 135 TG 50 1T1 74 10
192 240 162 TH 196213 156 153 TREI 6201 201 241 55 194 186 156233 107 535 209 | 54 66 146 L&
BT X2 R0 90 EH 056 S86 121 1E2 ITE 48 221 18076 11788 172 200 239 188 102 22727 5B 118 204
DAE 170 101 13 100 14 166 130 129 145 181 201 122 150 1532 98 92 12 20 156308 157 49 114 151 45 60
14520778 144 7188 34 119 15 137 1783 11]
(4 D12 124 432 1400 1H0°TH 224 100 20024 138 234 B1 64 108 T7 170 103 120 232 54 61 356 88 386 129
12720551 141 154 208214 52 54 52 168 157 126 60 143 10020F 131 176 154 120 230 1902092531 115
41 168 4T 720 5 165 287 242 10B6T 116 07 30 299 53 £T 148 12695 175 198 16.30 222 163 206 104
17321 218 36 B FEE 344 215 105 14T 235 217 21 185 1&E2E2 111 5] 161 99 66 T26 16 79 37 195 160
46 196 G 16T 183 234 28 191 23 164 20),

(ZR4)EETIBD 011 12 13){14 15 16)(1T 18 19){H0 21 22)( 23 24 25) (26 27 28] {20 30 31 {32 3334)
{5 36 37) (35 39 40) (41 42 43]{44 45.46]{4T 48.49)(50 51 52)(53 54 55)[56 57 58)(50 B061]{62 61 64)
(65 66 BT)(6E 69 TOHT] TR 73]{T4 76 T6]{7T7 T8 TRI( &0 &1 52)(83 84 A5)(B6 AT HA) (RO Q001 {9203 54)
{05 96 57 )56 59 100)( 101 102 103]{ 104 105 108){ 10T 108 106]{ 110 111 112){115 114 115]{116 117 118)
(19 120 121 1R 123 12410125 126 1275 155 120 1300¢ 131 132 133)( 134 135 136)( 137 138 139)
140 141 LAZH[ 143 144 145) ] 166 147 1485149 150 151 {152 163 1543 1565 156 157)( 158 1565 160)
(181 163 LA 16 165 168167 168 13N LT0 171 172173 1T 175176 ITT I TR 170 180 181 )
(182 182 1843 185 186 15T)] 188 1A% 1003 151 192 1930 104 105 19} 107 198 1940 300 201 20:)
(03 204 J05){ 206 F0T P8R0 20T I12 205 20400215 26 21THE1E 210 T20)0 T2 223223}
(224 205 PUEH[DFT P28 TR0 )20 A1 DE 2D ER4 IR )26 AT 2520 B0 241 ) 242 242 244,

(1 AA)(S 153 124)06 128 84007 53 1548 243 204 0[5 203 164( 10 166 244)( 11 36 34)(12 33 111)

(13 11057004 181 155]{15 15T 511 1650 179 17 220 1950 18 194 410 19 45 232 0 6561 )

(21 60 2181022 220641025 145 116){24 118 81 /25 B0 143] {26 200 1050027 104 711028 T3 201)

{20 18T T5)(30 T4 12031 116 185]{32 55 112338 58-238] {30 237 100)( 40 59 5642 196 223)

(4 109 102] {45 191 21U 46 21T 197047 16T 102)(48 101 177){45 1 76 162)(52 156 150)(53 134 162)
{54 161 148](55 147 135)(57 08 296)(56 62 219)(65 175 BO)(66 81 LOT)(BT 100 | TH)( 68 205 250)
(602221170 200 203)( T 106 DOZI(TE 156 1211077 150 1AL TH 140 1500 T 149 LET (82 117 144)
(&0 122 152 (86 07 04)(8T 93 220) (58 224 05] (00 174 108) {92 56 226] 103 163 1TH)(113 171 188
G114 180 LBEN LIS V&4 17200025 155 130 ){ 136 155 F28)0 127 237 1600 138 240 30T 120 206 235)
10234 BAUH[ 12 158 Z20) 0 156 146 16231358 151 14200 165 212 24:2)( 170 153 150)( 193 104 218)
(204 205 331 b 208 EF0 ZEF),

05 0 D60 D& TE2)06 20 16T 1S3 ER0)(T 31 168 1A3 28118 56 90 83 135){0 5701 D4 156)

(D 5H A9 HE L)1 LT T IR0 2400( 12 18 T 151 5239)[ 13 19 73 149 240)( 14 4 F2 58 117)

o |



(IS5 EXT &0 118006 A6 FRR &1 1161020 25 SO 20T 126)021 24 51 205 127022 25 52 216 125)

PG TT 12035 F2R)(2T T U30 36 221 )(25 TO 128 37 2231032 106 105 141 235)(33 154 106 142 235

(34 105 104 140 24H[A5 | 725 206 53 244035 173 224 54 242) 40 174 220 556 243) (41 208 138 208 111)
(A2 200 158 206 L1 43 200 137 20T 1100047 1B0 20584 120]{48 188 203 85 131 543 189 204 85 119)
(52 144 181 195 LAXH[62 145 179 197 133) (64 143 180 198 130) (65 U6 162 166 028166 5T 163 164 236)
(6T A5 161 165 257|{68 123 74 108 104369 124 75 10 10570 122 T6 101 1 15) (&80 156 103 150 220)
(E1 LT 190 160 DUAMHE |55 152 158 210) (86 146 21008 10T) (8T 147 214 59 102)[82 148 202 100 1Y)
(152 186 LTT 171 2000155 18T 178 172 211 154 185 178 170 208)

Here are the orbit representatives of one 5-(244,6, 1) design, the indices
give the arder of the stabilizers of the orbits.

-[1,2,31 4.5, 2-'13]':1
{1:2b3b41 11:-61]'!
{-]-lﬂﬂli! 3, b %]'!i
1,2,8,5,9, 169},
{1,2,3,5,12, 66}
{1,2,3,5,13, 35},
{1,2,3,5,14, 38},
{1,2,3,5,15.60}
{1,2,3,5, 16, 30}
{1,2.3,5,17, 242},
{1,2,3,5,18,16T}5
{1,2,3,5, 19,190}
[1,2,8,5,20,85)
{1,2.3,5,21,61}
{1,2,8,5,22, 186},
{1,2,3,5,25, 80},
[1,2,3,5,27, 2281,
{1,2,3,5, 28, 68}
{1,2,3,5,29, 219},
{1,2,3,5,33, 104}y
{1,2,5,0,34. 138}
{1,2,3,5, 36, 168},
{1,2,3,5,37.99},

{1,2,3,5,41, 130}
{1,2.3,6,42, 52}

{1,2,3,5,44,81}2

{1,2.3.5,45,173}2
{1,2.3,5,46,47}2

{1,2,3,5,53, 218},
{1,2,8,5,54, 121}«
{1,2,3,5,55, 120},
{1,2.3,5,64, 180}
{1,2.3,5,69, 131}
{1,2,8,5,70, 187}
£1,2.3,5,77, 156}
{1,2,3,5, 78, 236}
{1,2.3,5,86, 100}z
{1,2,3,5,90, 154}
{1,2.3,5, 108,210}
{1,2,3.5,111,199}
1,2.3,5,123,192}
{1,2,8,5,125, 216},
{1,2.3,6,155, 208}
{1,2,3,5, 166,217},
{1,2.3,5, 187,222}

{1,2,3,6, 7,147}
{1,2,3,6,11,172}
{1,2,3,6,19,85}:
[1,2,3,6,22, 210},
{1,2,3,6,32, 223}
1,2,3, 6,33, 10},
{1,2,3, 6,36, 140},
{1,2,3,6,38, 98}
{1,2,3,6,39, 66},
11,2,3, 6,45, 236}
{1,2,3,6,47, 145}
{1,2,3, 6,56, 87T}
[1,2,3,6,74, 178}
{1,2,3,6,89, 146}
{1,2,3, 6, 206,221},
{1,2,3,7,18, 43}
11,2,3,7,34, 141}
{1,2,3,7, 35, 145}
11,2,3,7,37,74}s
{1,2,3,7,53, 207}2
{1,2,3,7,102,214};
{1,2,3,11,51,137}5

For the solving of the ophantine linear systems we implemented a solver
after Mathon's algorithm spreads (7], as part of DISCRETA. The first §-
(244,6,1) design with automorphism group PEL{2, 3"} was found with a
randomized version of this algorithm by the third author,
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