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Abstract

Rahilly families of pre-difference sets have been introduced by Rahilly, Praeger,
Street and Bryant as a ool for constructing symmetric designs.  Using orderly gen-
eration, we construct Rahilly families for various groups up to equivalence. For each
eguivalence clags we determine the somorphism type of the corresponding design,
Some designs may be new, whilst othere were already known in which case we identify
them, For each design we test whether it admits as an automorphism group a regular
extension of one of the given groups. If this is the case, the pre-difference set for the
given group 1% also a difference set for the regular extension. We prove that there are
examples of designs with a Rahilly family of pre-difference sets for a group which do
not admit a regular extension.
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half-regular automorphism group.
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1 INTRODUCTION

Difference sets in groups can be used to construct svmmetric designs admicting a regular
group of antomorphisms (ef. [1, VI Theorem 1.6]). We say a group & acts half-requlorly
on a set {2 if it is semi-regular on ¢ with exactly two orbits. We call a symmetric design
half-regular if the design admits a group of automoerphisms acting half-regularly on the point
sett. It is well known that such a half-regular group of automorphisms alse acts half-regularly
on the blocks.

Rahilly, Praeger, Street and Bryant [10] introduee a method for constructing half-regular
symmetric designs. They define Rahilly families of pre-difference sets within groups. These
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families generalize the concept of a difference set in a group. We present a brief summary of
Rahilly families in Section 2. By construction, a Rahilly family for a group & gives rise to a
syrmmetric design admitting & as a subgroup of its automorphism group acting half-regularly.
Rahilly families can thus be used to obtain certain symmetric designs,

In this article, we describe a computer search to construct Rahilly families for small groups,
Starting out with a putative parameter set we choose a group & of feasible order acting
regularly on itself. Using the technique of orderly generation, we compute Rahilly families for
such a group. We describe the method of orderly generation in Section 4, and in Section 5 we
apply this strategy to construct Hahilly families as subsets of the given group. In addition, we
consider Rahilly families up to equivalence, as introduced in [10). As Rahilly families in the
same class lead to isomorphic designs, we are only interested in finding one representative for
each equivalence class, The equivalence classes can be described as orbits of a larger group on
the set of all Rahilly families. Our algorithin is able to construct one particular representative
of each class, which is called the canonical representative. It 18 the lexicographically least
Rahilly set in its equivalence class. Moreover, we determine the group of auto-equivalences,
that is the group of equivalences of the Rahilly family with itself. This group plays an
important role in further investigations of properties of the corresponding symmetric design.
In Section 6 we present our results, We construct Rahilly families for groups of order 18 and
20 leading to 2-(36,15,6) and 2-(40,13,4) designs. In addition to the equivalence classes
of Rahillv families we determine the ispmorphism types of the corresponding designs, Fur-
ther properties, including the action of the (Tull) automorphism groups, are also presented.
Whenever possible, we identify previously known symmetric designs, We find half-regular
gymmetric designs which do not admit a regular group of automorphisms. This proves in
particular that the set of designs which can be obtained from Rahilly families of pre-difference
sets 18 larger than the set of designs obtainable from difference sets [Theorem 6.1).

2 SyMMETRIC DESIGNS FROM RAHILLY FAMILIES

In this section we recall the basic definitions from [10] and summarize the results which are
important for our purpose,

2.1 RaAHILLY FaAMILIES

Let T = (V,B) be a symmetric design with parameters 2-(v, k, A). Thus the point-set
V =1{p.pa.... P} has cardinality » and the block set B consists of v blocks, By,... , B,
say. Each block consists of k elements of V' and every pair of points is contained in exactly
A blocks. The design can be described by a 0/1-incidence-matriz. This is a v ® v matrix
whose (i, j)-th entry is 1 if p; is contained in B; and 0 otherwise.

Any relabelling of the points results in a permutation of the rows of this matrix (and any
reordering of the blocks corresponds to a permutation of 1ts columns). The antomorphism
group, Aut(D), of this design consists of these permutations of the points which preserve
the incidence matrix up to a reordering of 1ts columns.
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Assume that T admits a regular group & of automorphisms. Then any block B € B can be
chosen as a base block in the sense that any other block is the image of B under an element
of G. A (v k& A)-difference set A for a group G of order ¢ i3 a k-element subset of 7 such
that each g € GY{1} can be expressed exactly A times as ed ' with ¢, d € A. It can be shown
that the blocks of a symmetric 2-(v, &, A) design with regular group 7 of automaorphisms are
exactly the (v, &, A)=difference sets for ¢, On the other hand, each (u, &, A)=-difference set A
for a group & gives rise to a svmmetric 2-(v, &, A) design admitting & as a regular group
of automorphisms. The blocks of this design are obtained from A by putting B, = A%,
By = A% ete. where gy, g2, .. Tung through the elements of .

Rahilly, Praeger, Street and Bryant in [10] consider half-regular symmetric designs T ad-
mitting a half-regular group & of automorphisms with orbits V), and Vs on the point set 1,
As mentioned above, & acts hali-regularly on blocks, with block orbits B, and B;. Hall-
regularity enforces V)| = V| = |B)| = |Bs| = |7| = §. Choose a point p; € W, for i = 1,2,
and call p; the base point of V;. Any other point of V; is the image of p; under some element of
(=. As & acts regularly on both, ¥, and Vs, we can identify V; with the set {g = {1} | g € G},
fori=12

Choose blocks B, € By and B, € B,. Define four subsets Ay for 1,5 € {1,2} of & such that
Vi B; = Ay x {i}. (2.1)

Then ky = |Ayl for 1,7 € {1,2}. Moreover, kyy + ko = kg + ks = k and kyy = ke and
kyz = kg (see [10, Proposition 3.1]). These four sets are examples of what Rahilly et al. [10,
Definition 2.1] call a Rahilly family of pre-difference sets:

Definition 2.1 Let v, k, A be positive integers with & < v and v even. Let 7 be a finite
group of order T and let A fori, 7 € {1,2} be a subset of G of size kj; such that kyj+kaj = k.
Then A = {Ay | 4,7 € {1,2}} 15 called o Rahilly family of pre-difference sets for G wnth
parameters (v, &k, A) if

fa) for each g € G\{1} and i € {1,2} there is an integer A(g) such that 0 < M{g) < A
and g can be written exactly A;(g) times as od ™" with ¢, d € A;; and eractly A — A(g)
times as ef~' with e, f € Ayi, where {i, j} = {1,2};

(b} for ench g € G and {1,5} = {1,2} there is an integer A(g) such that 0 < Ag(g) < A
and g can be writfen exactly Aijly) times as ed ™! with ¢ € Ay andd € A and eractly
A= Xjlg) times as ef " with e € Ay and f € Ay,

Rahilly families are useful for constructing half-regular symmetric designs: Given a Rahilly
family A of pre-difference sets for a finite group & of order £ we obtain a symmetric 2-(v, &, A)
design T = (V, B) by putting V' := G = {1,2} and defining

By ={(g.1)| g g Au}U{(e.2) | g€ Ay}

for i = 1, 2. Then ¢ acts half-regularly on V via (x,1)? := (xg,1) for all (x,¢) € Vand g € G,
(see [10, Proposition 2.3]). This action vields two orbits on blocks, namely B, = BY and
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B, = BY. We put B := B, UB; and denote the design constructed in this way by D(A).
It is a half-regular symmetric design by [10]. As mentioned before, half-regular designs give
rise to Rahilly families of pre-difference sets via Equation (2.1). If A is a Rahilly family
of pre-difference sets obtained from a half-regular symmetric design D in this way then the
syrmmetric design D(A) 18 equal to D (see [10]).

2.2 REGULAR EXTENSIONS

Let D be a half-regular symmetric 2-(v, &, A) design admitting a half-regular group & of
automorphisms with Rahilly family of pre-difference sets A = {4, &yz, Az, A} A group
it of automorphisms of T with (¢ < i and which is regular on V is called a regular exfension
of &, It can be shown (see |10, Proposition 7.3|) that if such a group exists then there is an
element v € / such that Ay U rhy 18 a difference set for R (in the usual sense).

Now let A and A be Rahilly families of pre-difference sets in a group & and let D{A) = (V, B)
anc] D{ﬂ.] = [ij, ﬂ'] denote the m:rﬂ'ﬁ].rmuiing symmetric designs with parameters (v, k, A).
As & acts half-regularly on V' and V, we can identify both with G x {1,2}. In [10], the
authors investigate isomorphisms between D{A) and D(A).

We begin by quoting some definitions and results from [10]. An element 7 € Sym,; fixing
G = {i} setwise for i £ {1,2} induces two bijections from G onto itself, namely the maps
mi, where (g™ 1) = (g,1)" for all g € &. The permutation = induces an isomorphism from
DM A) to another symmetric design. It is said to tnduce an automorphism of 7 if for some
w € Aut{)

=a; - g¥

holds for all g € & and i = 1, 2.

Definition 2.2 An isomorphism « from D(A) to ‘D[fj.] for which there erxists € Aut()
and elements (aq, @z, 01, 02) € G such that
7t (g,1) > [a; - 9%,4)  and ﬂi-.ﬂ}}—ﬁﬁ-cj

for all 1,7 € {1,2} is called an equivalence befween D(A) and D(A) with associated auto-
morphism ¢ and associated translations {a,, ag, e, e3).

The following theorem [10, Theorem 5.1] shows that equivalent designs are isomorphic amd
states a criterion when a permutation in Sym,, induces an isomorphism between designs.

Theorem 2.3 Let A and A be two Rahilly families of pre-difference sels in a group G with
parameters (v, k, ). Let D(A) and ’_D[i]l denote the corresponding symmetric 2-{v, k, A)
designs with block orbits By, By and By, By, respectively. Suppose that the permutation © of
G = {1,2} fizes G x {i} setwise for i € {1,2}. Then 7 induces an automorphism of G, and
an izsomorphizm from D(A) fo D(A) which maps B, to B, and By to By if and only if 7 18
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A corollary of this theorem [10, Corollary 5.3] shows that if # is an equivalence then w fixes
the base point p; if and only if a; = 1. Let E{&) denote the subgroup of Ny, p(i) fixing V)
and Vy setwise. Clearly, the set of all equivalences is a subgroup of E(G) of index 1 or 2. It
was shown in [10] that these two groups are in fact equal.

We are interested in constructing symmetric designs defined by a Rahilly family of pre-
difference sets admitting a half-regular group of automorphisms . When searching for
designs with a given set of parameters one is generally interested in finding these designs
up to isomorphism. In our case however we construct half-regular symmetric designs up
to equivalence as their equivalence classes can be used to determine whether or not these
designs have regular extensions.

The conjugate Rakilly family of pre-difference sets for @ is the family A defined by A, =
Aas, Ajs = Ay, Ay = Ayp, Am = Ayy. The design F[i}l is called the conjugate design of
D(A). The designs D{A) and D(A) are clearly isomorphic, as we are only rearranging points
and blocks. By (10, Theorem 6.3, they are equivalent if and only if Nayp(G) is transitive
om 1,

For a group &, the equivalences of a half-regular symmetric design with itself are called
puto-equivalences. Theorem 6.4 of [10] shows that the group of aute-equivalences coincides
with E{G).

The existence of regular extensions for DA is related to the existence of certain equivalences
batween DAY and D{A).

Theorem 2.4 (10, Thearem 7.1] Let D[A) be a symmelric design with holf-reqular group
s and Rahilly famidy A of pre-difference gete. Then & has a regulor ertension if and only
if there erists an equivalence m from D{A) to D{A) with associaled outomorphism 8§ &
Aut{G) and associated translations (1,2, 0~ u® - z) such that 2* = z and 8% is the inner
automorphism of G induced by z.

3 Comruring RasiLLy Faminies 1

Assume that 2-(v, k, A) is a valid parameter set for a symmetric design with 50 ki, Fizy o,
K3z, A satisfying the numerical conditions of Section 2 for a Rahilly family (with &y +&s = £).
We want to compute all possible Rahilly families for these parameters using & given group &
of order 5. We fix a labelling of group elements gy, go, ... . 9y and let ¢ denote the left-regular

representation of G oon itselfl
G
¢ E .
4 (ﬁa;)

for 1 < 1,7 = 2, satisfying the requirements of Definition 2.1. These sets are constructed
via a backtrack-search using the methods described in this and in the following section. We
apply & four-fold backtrack search, starting with constructing all possible &4y, For each

Our aim 1s to list all subsets
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possible Ay all admissible Ayp are computed, and these in turn are extended to admissible
Ag and finally the search tries to complete the Hahilly family by listing all possible A,

The computation of the four subsets has to be done with respect to the action of the group of
equivalences E((7). It turns out that we can reduce this problem to the task of determining
orbits of a group on subsets, which we call the subset orbit problem. We discuss this problem
in the next section. Inm Section 5, we return to Rahilly families and describe how we can
apply the technigques of the subset orbit problem to the computation of equivalence classes
of Rahilly families.

4 THE SupseT OrBIT PROBLEM

We consider a group 7 acting on aset W = {py, ... ,py}. Assume that there is another action
of (7 on a possibly larger set X induced by the action of & on V. We might, for example,
consider the action of & on the set of subsets of V, i.e. we take X = P{V). Another example
15 the action of & on k-subsets for some & < v, Here, X = I:::I For the remainder of this
section, we consider the general situation of a group ¢ acting on a set X. We call X a (7-set.

The action of & imposes an equivalence relation on X by 5 ~gy <= dge &G 2% =y for
r, i € X. The equivalence classes of this relation are the orbits of ¢ and the orbit of 2 € X
is denoted by =%, For x € X, the stabilizer of x in & is the subgroup G, = {g € G | 28 = x}.
For g € (5, the set of points fixed by g is X, = {x € X | 2% = z}. The set of orbits of & on
X is denoted by X//G. A transversal is usually written as T = T(X /&) indicating that T
containg exactly one element of every G-orbit, For A C X, the pointwise stabilizer of A is
Ga={9€ G |a* =aforalla e A} and the setwise stabilizer of Ais &gy = {g e G |a¥ €
Aforalla e A}

A fundamental problem is to determine the orbits of a group, for example by computing a
transversal. If & acts on Voand X = T(V) aor X = I:E]I for some k < v, we speak of the
subset orbit problem. We shall discuss this problem in some detail here,

In the remainder of this section we discuss two important concepts which affect the efficiency
of the algorithm we use for searching for Rahilly families.

Firstly, in Section 4.1 we introduce a lexicographical ordering on X. This allows us to
define a canonical form for the orbit representatives of & on X as the lexicographicallv least
element of the orbit. In Section 4.2 we present the algorithm “Orderly Generation" which
solves the subset orbit problem by determining & transversal consisting of canonical elements.
Originally, orderly generation has been invented as a tool for constructing graphs. Propably
the first references are the articles of Read [11] and Colbourn and Read [3]. Canonical forms
of graphs are discussed by McKay in (8]

If the action of & on V is intransitive, we can improve on this strategy even further by
employing the concept of a G-morphism. This is a surjective mapping of the set X (the
k-subsets of V, for example) to another G-set ¥ which is in some sense compatible with
the action. We discuss this idea in Section 4.3 and apply it to the computation of Kahillv
families in Section 5.2. The morphism principle has been used by Laue for the construction



of soluble groups in [3].

4.1 Canoxical Fomrws

Let us begin by recalling the concept of lexicographical order: We assume that V = {p,,
Pas-- s Pt 8 an ordered set, for instance by using the natural ordering p, < pe < ... < gy
We say A = {ay,...,0n} C V is levicographically less than B = {b,... b} € V if there
exists an index £ € {1,...  min{m, n}} such that a; = by, ..., ap—y = by and a; < by holds
or if n is greater than m and {b;,... by} = A. Consider, for example, the three-element
set V = {1,2,3}. The elements of the power set (V) in lexicographical order are

0= {1} = {1,2} = {1.2,3} =< {1.3} = {2} < {2.3} = {3}.

Returning to the action of & on X induesd by the action on V., we may now assume that
the set X itself is an ordered set.

Assume the finite group & acts on the ordered set X, The lexicographically least element of
a group orbit is called the canonical representative. For anv = € X we put

x) == min x?
';JI: ;I el

and call v the canonization map. The elements of the form () are called canonical, The
set of group elements g mapping r onto its canonical form is the fransporier set:

T(r) ={g € G | 2 = p(z)}.
Every element of the transporter set 18 a fransporier.

The following properties of canonization maps are obvicus:
Cl: o* = ¢,
C2: & ~g p(x) forall x € X,
Ch z~agy = pla)=wly) forall z,y € X,
C4: plx) =x 4= x is canonical,

The transversal of X/ consisting only of canonical elements is called canonical transversal,
This transversal is unique. We denote it by T (X//G), where the subscript refers to the
ordering used. We have

Ch To(X/G) = Imagey = {p(z) [z € X}
Let x,y be elements of X, The following facts are valid for transporter elements:

T1: Assume x ~g y. Let g € 7(x) and h € 7(y) be transporters. Then =¥ = @(x) = ply) =
y“ and thus 9 = i

T2: Let g € vx), then Gy = gGg7 "

T3: Let g, i € 7(x), then gh™" € ;. Thus the set 7(x) forms a right coset of G in G,



4.2 ORDERLY GENERATION

In this section, we consider the task of determining the canonical transversal T.(X//G).
According to C5, we might evalnate the canonization map for all k-subsets of V. Of course,
this strategy is unsatisfactory as its cost in terms of evaluations of ¢ 15 worst possible. We
now describe the orderly generation algorithm.

For simplicity, assume that V = {1.2,...,v}. In order to establish a recursive algo-
rithm, we put Té’] = T_:_[l:g};}"f}’] and also compute all Tf" for ¢+ = 0,1,... . k. For
A= {o,08...,0,}) € [:']I with @y < agyy for all §j < & we put A | 1 = {ay,8s,... 0}
for ¢+ < k. The following lemma proves to be useful.

Lemma 4.1 Let G be a group acting on the ordered set V. Let A = {ay,... 0.} be a
cattonical k-subsel of V. Then, for ang i < k, the restricted set A | @ s canonical. In olher

worids,

AETéﬂ = Al E‘]’}m Jor all ¢+ < k.

Proof: We may require the elements of A being ordered a; < a2 < ... < a;. Assume that
A | i 18 not canonical for some i < k. Then there exists an element g € 7 with

(A i) ={by,... b} <{ay,... }=ALi

where we assume that by < b < ... < . By definition of the lexicographical order there
exists an h < i such that b = ay for j = 1,... ,h — 1 and by, < ay. We now show that
A% = {by,... B} u{al,,,... al} is less that A = {a;,... ,a;} contradicting the canonicity
of A. Note that some of the af with i + 1 < j < k may be less than b,. Suppose that this
ig the case and let ! be minimal such that af < by. If af < b then since by < a; we have
A% = A, So suppose that b < r.rf' Let h' be maximal such that by < r.rl'J By assumption
h' < h, and we have by = ay, ..., by = ap, and the next smallest element of 4¥ is af, which
is less than by, which in turn is less than or equal to apey. Hence again A9 < A, Thus we
may assume that all of the aj! are greater than by, and hence by, ..., by, are the smallest i
elements of A7 in order. In this final case also we see that Af < A, O

We call a set B with B | j = A an extension of the set A. From Lemma 4.1 we conclude
that each canonical (7 + 1)-set can be obtained as an extension of a unique canonical j-set.
5a, in order to construct 'Té“'\" from 'Téﬁ we consider each set 4 € T{Lﬂ and construct all
sets B of size j + 1 with B | j = A, We may write A = {ay,... ,8;} with a; < a;4 for all
1=10,...,7—1. Then, B = {ﬂh... ,ﬁj,ﬂj”} with djp1 = 4 [for otherwise B | 7 would
not be A). The elements a;4y which we have to consider for extensions are

Ext{d) =W\ {12,... ,a;} ={a; +1,...,v}
With these elements, we can form the candidate sets:

Cand(A) := {A U {a} | a € Ext[4}}.



The canonical transversal of (7 + 1)-orbits can be obtained in the following way:

THH = |J {B e Cand(4) | B is canonical }.
AeTH"

Using this inductive construction of canonical sets we obtain a tree, the generation tree:

The generation tree for T-((}) //G) has the canonical i-sets T = T((5)/G) for 0 < i <k
as its set of nodes. The elements of Tf‘l form the nodes at depth § in this tree. ‘]I"::l_n:' =Pis
the root and the sets of T2 correspond to leaves of this tree. A set B is called descendant
of a set A if B is an extension of 4, ie. if B | |4) = A In this case, A is called arcesfor
of the set B. An immediate descendant is a descendant B of A with |B) = |A|+ 1 (in this
case, A is called tmmediote ancestor of B). Two sets A and B are joined by an edge if and
onlv if B is an immediate descendant of A, If B is an immediate descendant of A, the node
B is labelled by the unique element of BY A, The set associated with a node of the tree can
be reconstructed by following the path from the root to the node and collecting all labels
encountered along this path. Moreover, by the definition of extension sets the labels along
this path are lexicographically increasing.

We arrive at the following general algorithm to construct representatives of group orhits.
Let the group & act on the finite set ¥ = {1,... ,v} and let k& be a number less than or
equal to |V| = v. The output of the following recursive algorithm is the canonical transversal
TR — T-((3)//G). Initially, we put T .— B, The input consists of the group @, the set
V and the integer k. The integer 1 determines the depth of the recursion and should be set
to 1 for the first call. The i-th element of the set A iz addressed as a;.

Procedure CANONICALTRANSVERSAL(G, V, &k, A, {)
ffmow A={ay,... ¢}
if i = k then add A o T,

else
compute E = Ext{{ay, ...  a;-1});
for each ¢ ¢ K do
a; = a

if IsCanoNicaAL[ AU {g;}, @) then
[/ A is canonical with respect to the action of &
CANONICALTRANSVERSAL(G, V, k, A, i+ 1);
endif;
etd;
endif;
end [of CANONICALTRANSVERSAL)

A few comments are in order:

1. If i =1, we put Ext{{}) ;= V, otherwise Ext({ai,... ,ai—1}) = {ai— +1,... .o}



2. The function [3CANONICAL( A, (7) checks whether the set A is canonical with respect
to &, We call this a test for cononicity, It involves a backtrack search through the
elements of G to test whether there s a g € @ with A7 < A If this search does not
succeed, i.e. if there is no such element, the canonicity of A has been proven, One such
backtrack algorithim, the partition backtrack algorithm, involves the use of partitions of
the set V. An exhaustive treatment of this topic has been given by Leon in [6] and [7).
Recently, partition backtracking has been used by Theiflen for the computation of
normalizers in permutation groups [12].

3. The complexity of the algorithm is determined by the most difficult step which is the
canonicity test. In order to compute the running time in terms of the number of calls
to ISCANONICAL we note the following: In the i-th step, we extend all sets belonging
to T2, Each such set has |V| — Ali] candidates. Thus, the work in the i-th step is
bounded above by (73] - [V]). A rough estimation for the overall complexity can
be obtained by bounding all |72%| by |72%|. This vields O(|T2)% . &) for the overall
running time of CANONICALTRANSVERSAL in calls to the procedure ISCANONICAL
(we may leave out the computation of ",".im which is done in a constant amount of
time). However, we will show below how to avoid much of this work.

The following lemma reduces the number of extensions for a given set A € T{i].

Lemma 4.2 Let G act on the lexicographically ordered set V. Let A be a cononical 1-set with
set-stabilizer Gqy. Fora € V\ A we form the set AU{a}. Then this set is not cononical if
a t8 nof canonicel under Gyay- In other words:

e T((})6), a g Tl A N fG) = Autay £ T, Y )46

Proof: Let a & T-((V A],-’,f'(}'.g,.,}} and s € Gy4) with @* = b < a. Then
(Au{a}) = A" U{a)* = AU b} < AU{a},

showing that AU {a} 15 not canonical with respect to . O

The previous lemma allows us to reduce the number of elements which have to be considered
for possible extensions of the set 4. We mav thus switch over to reduced extension sets:

Ext(4) = T2((V\ A)//Gya) N {max A +1,... v},

According to the previous lemma, the above algorithm for constructing orbit representatives
still produces the correct result but with generally far fewer calls to ISCANONICAL.

4.3 Exrrorriveg MorPHISMS OF GROUP ACTIONS

An important tool for constructing group orbits is the use of G-morphisms, In some 8i-
tuations, & given group action induces an action on a smaller set which is in some sense
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compatible with the original action. The computation of orbits is often easier by first deter-
mining the orbits of the smaller action and then extending the solution to the set of orbits
of the original action. More precisely, we employ the coneept of a G-morphism for a Onive
action as introduced for example in Neumann et al. [9, Chapter 7|. Assume we have two
finite (7-sets X and ¥ and there is an surjective mapping n : X —+ ¥ which is compalible
with the group action, that is,

[x7)" = [2")" holds forall g e G, x € X,
We call 7 & G-morphiam and write
X =g ¥,

We call the actions of & on X and Y compatible.

Example 4.3 Let ¢ be a group acting on the finife set V. Let & be an integer less than or
equal Lo v = |V|. Assume tha! G acls intransitively on V with twe orbits Vy and V.

1. We want to compute the orbits of G on k-subsets of V, s0 we consider the G set
X = (¥). Then, the map

N (:) S POV D DAY,

13 compatible with the action of &, If we restrict the image to the set of subsetz of V|
af size < k, the map n becomnes surjective.

2, Assume we want lo compute only those k-subsels of V which indersect V; in ki poinls,
Jori =12 where &y and k; are fived tntegers weth &) + ke = k. Lef [‘,:,1'"“:] be the set
of k-subsets of V with his property. The map '

v Wi
: : e 1
7 (-'-71.-‘3-1) :r(kl) » DY

18 compatible with the action of G,
We get the following result for the relationship between the G-orbits,

Lemma 4.4 [Morphism principle of group actions) Let X and Y be (7-sets which are com-
palible with respect to a surjective G-morphism 1. Then:

1. Two elements x, and xy in X with =) = 2l = g € Y lie in the same G-orbif if and

only if they he in the same orlit of the stabilizer G
2, A transversal for the orbits X /)G iz

T= |J T /G,y

vETIYfIG)
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Proaf:

1.

Assume that there exists an element ¢ € G with x; = . The G-morphism 1 allows
Lo write

Y= (z3) = ()" =2} =y,

and from this we deduce that g belongs to the stabilizer G, The other direction of
the proof is trivial.

. Let xy be an arbitrary element of X. We must show that there are elements x € T and

g € G with x{ = r. Put 3 := z{. Then there are elements h € & and y € T(Y//G)
with y}' = y. Thus
-1 -1 -1
w=01 =0 =y =n
By the definition of T{X//G), there are elements z € T{y" /G,) C T and u € G,
with x% = x. Thus 2{* =z T.
In addition, we must prove that no two elements of T are in the same G-orbit. Assume
that ={ = 2 with ¢ € G and z),z; € T. Put g, := z] and y; := z]. By the definition
-1 =1
of T, both g, and g, belong to T(Y//G) and 2, € T(y! Gy )and 2, € Tyl [GR).
But

f =G = @) =
which is possible only if 4y = g =: i a8 both belong to the transversal T(Y//G). Thus

g € Gy and .7 € T{y¥ /G,). But 2¥ = z, which again by the property of a
transversal is possible only if x; = x5, This completes the proof.

L

In the case that we are working with ordered sets (X, <) and (Y, <) we may require the
surjective (& morphism 7: X — V to be compatible with the ordering, i.e.

We w

T Lr = 1<z Yo,z e X

rite [X, <) —HHG (¥, <) and call these compatible actions on ordered sefs. We get the

following refined version of the morphism principle:

Lemma 4.5 [morphism principle for group achions on ordered sefs) Let 0 X = ¥V be a
surjective mapping compatible with the action of G on the ordered sefs (X, <) and (¥, <)

Then

TAXHE) = |J Tl 4G,

VET (Y]

12



Proof: Let T denote the right hand side of the equation. We must show that all elements
in T are in fact canonical. Assume there s an element x; € X with #) = % <€ z for
Eﬂ'II!]F g € G H.n-r] some & T, Put y:= 2" and 4 := 2], Then, by definition 4, < y and
=z l{m‘.’_1 7 =x"=y. As T.(Y//G) is the canonical transversal for ¥ it follows

Lhat i = yand g € G. Thus, ¥ and x; both belong to y" ", Further, r € ‘]':;[y"",."fﬂ'r} T
vields 7, = x. This shows that T is the canonical transversal for the set of orbits X6
O

5 CompruTing RaHiLry Fasmivies 11

In order to compute Rahilly families algorithmically, we reduce the problem to determining
all posaible A to the subset orbit problem. We consider A as a 2 « k-subset of a suitable
larger set and apply the orderly peneration algorithm of Section 4.2 to the computation of
all possible subsets satisfying the requirements of a pre-difference set. In addition, we make
use of the special structure of Rahilly sets. We begin by computing all possible sets Ay; and
then extend the result by adding all possible Ayg, Ay and Agy. This strategy 18 based on
the use of G-morphisms as described in Section 4.3. We define a chain of morphisms which
are compatible with the group action and then work along this chain in the reverse direction.
The Rahilly families then appear at the end of this chain, when the four tuple of sets A;; is
eompletad.

5.1 REDUCTION TO THE SET ORBIT PROBLEM

The next result allows to describe the equivalence classes of Rahilly families as orbits of a
group on a particular set. This enables us to use Procedure CANONICALTRANSVERSAL Lo
compute a transversal,

We take four copies of the set G: For 1 < i < 4, we put W, = {i} = G = {{i} = g |
g € }. Note that we take {i} x g here as the elements of the form g x {i} bhave already
been introduced. We declare W = | [, W; and for simplicity, we put W = Wi Let
pi{i} = g) := g be the projection onto the second coordinate, For H © W, we put p(H) =

{plh) | he H}.
) wihil
For 1 =< 4, let (ﬁ: |’H) denote the subsets of W intersecting Wy in &y elements for
1y 1

J=<i For2<q<4 we have the natural restrictions

Wil ) ( Wii=1 ) _
: = A AN WL, 5.1
m (‘ﬁ:.ll"'!kl: k]|lr11ki_| : I:: :I
. , . W | |
Each Rahilly family & = (4, &3, &gy, Ag3) embeds into (JL' Ji.') in the following
Toeae yheyd

way:
A ({1} = Ap) U ({2} = Apg) U ({3} % Ay) U ({4} x Ag).

13



On the other hand, each subset I & (
group elements Ap via:

defines a four-fold sequence of subsets of

" k)
A

(k, w h) = PG, D Ap = (p(DOWL), pD W), p(D0 W), p(DNW)).

For i < 4, we call a set D € (k.,]iv[ﬂ k.‘) admissible if Ap is a partial Rahilly family,
that is, if Ap fulfils the conditions of Definition 2.1. Let R(WU) be the admissible subsets
contained in (
families).

Recall from Section 2 that two Rahilly families A and A are equivalent if and only if there
exists a S-tuple (@, ay, 4z, ¢;,¢3) € Aut(G) x G' mapping one to the other according to Defi-
nition 2.2. Each element (i3, 8y, a2, €1, c2) € Equiv(7) := Aut(F) = &* induces a permutation
Toom e o © S¥IMyy via the following definition:

{1} xa g9 c7' Hi=1,
{2} xay-07-q' ifi=2
{E}Euz-y'ﬂ-rl] il ¢ =3,
{4} xag-g¥ - ;' if i=4,

{i} = g

We have a map # : Equiv(G) — Symy, : (@a.85.0,02) & Tog ase,ee PUL G =
Equiv(7)® < Sym,,. This means that @ acts on the set W and therefore also on the set of
subsets of ¥, We remark the following:

Proposition 5.1 1. The equivalence closses of Rakilly fomilies are in one-to-one porre-
spondence with the orbits of Q& on R{W).

2, The restrictions 1 defined by (5.1) are compatible with the action of 0.

3 The kermel of the mapping 0 consmsts of the elements of the group
(linng, g,9,97",97") | g € G fwith inn, : G = G : = +— x¥). Thus, the order
of @ is |[Equiv(@)|/|G] = |Aut{G)| - |G

This proposition shows that we can obtain a transversal for the equivalence classes of Rahillv
families by computing the orbits of @ on R{W), that is T-(R{W)//Q) is the required
transversal of Rahillv families.

However, the action of € on W and thus also on R{W) is not transitive, Therefore the
morphism problem allows us to divide this orbit problem into several smaller pieces. This is
discussed in the next section.

14



5.2 ImpuoTivE CONSTRUCTION VIA C-MORPHISMS

We apply a version of the morphism principle for ordered sets (Lemma 4.5) to the construe-
tion of Rahilly families by using a suitable Q-morphism together with a chain of Cl-sets.

Consider the chain sets WU C Wi C Wi C W piving us a natural embedding of

P Wi+
into fori = 1,2, 3. The group € leaves the sets W, invariant,
LT = Kiyeo o R Riga

and thus the restriction maps 1; are compatible with the action:
(D) = (D%)" fori=23.4

Al

and for all I
(kll"' |k‘.l-

) and x £ . Thus the same is true for admissible subsets, i.e.

(D7) = (D% fori=23,4

and for all D ¢ R{WW) and = € Q.
Mow we order the subsets of YW by ordering the sequences

(pOWV WL, p(W NWL), p(W N WLLL p(WNWL) (5.2)

lexicographically using the original ordering of subsets of & for the comparison of the four
components, It is useful to note that the maps o are compatible with this ordering of subsets
of ¥ as they simply eliminate the least significant elements which are the rightmost elements
of the sequences [5.2). Thus we have the following chain of surjective (J-morphisms between
ordered (J-seta:

(RIVIE), <) g (ROVH), <) Bg (ROVP), <) Sg (ROWIM), <).
For 1 < i < 4, let To(R{W)//Q) be the transversal of (J-cancnical admissible sets in
R{WH). Aecording to Lemma 4.1, To(R(WE Q)™ C To(RWSIYHQ). We construct
these canonical transversals in an iterative manner using the morphism principle. Assume
we have a transversal T.(R(W') /@) for some ¢ < 4. Then, for each canonical admissible
ser 1 E T [R['P‘L-":ﬂjl."l."{}} we also have computed the stabilizer G}y py. We form the preimage
D R(WEH), that is, the set of admissible sets D € R(WH") mapping onto I} under
Ti4r- We determine a transversal of the (Jjpj-orbits on this set of extensions. The digjoint
union of all these transversals gives the desired transversal:

TRWEN Q) = | Te((DW nRWE) Qo).
DT (ROWEH 1)

Az a result, we obtain the following algorithm for computing Rahilly families with respect
to & group O

Procedure ALLRAHILLYFAMILIES (G, O, kyy, Big, ke, k)
J compute Ty := T(R(WWU)/Q):



Ty = CANONICALTRANSVERSAL(Q), Wi, kn);
for each D e T, do
[F D corresponds to Ay
/{ vompute Ty := T (D% NRIVE)) Q-
T3 := CANONICALTRANSVERSAL{CH py, W, ka);
for cach D e T, do
/{ I} corresponds to (A, &g
/[ compute Ty i= To (D% N RWE))/Qqm):
Ty := CANONICALTRANSVERSAL( Gl py. W, ka1 );
for each D e T do
A D corresponds to (A, Mg, Ay )
ff compute Ty = T ((DW I"I'R.['Iu"'la":d':']]ﬁ{,;'m}}:
Ty := CANONICALT RANSVERSAL(G) py, Wi, kn):
for each I e Ty do
/| D corresponds to (A, &g, Aoy, Aga)
print new equivalence class of Rahilly families: Ap
enid;
end;
end;
end;
end (of ALLRAHILLYFAMILIES)

6 REsULTS

We begin by computing feasible parameters for Hahilly families of pre-difference sets in a
manner described in |10, Section 4|, We show these putative parameter sets for groups of
order 5 with v < 220 in Table 1, where §; denotes the set of groups of order i, We indicate
the number of groups of order § in the last column of the table. Apart from the alternating
group Ay of order 60, all groups are soluble. It has been pointed out in [10] that there is a
Rahilly family for G = &4 = £y with v = 16, &, = 4 and ky; = 2. This family leads to the
famous biplane 2-(16, 6, 2).

6.1 HavLr-REGULAR 2-[36,15,6) DESIGNS

CUur aim 18 to construct svmmetric designs on 36 points with & = 15 and A = 6. Therefore, we
construct Rahilly families of pre-difference sets in the group & = £y x £y = &3 of order 18,
The Rahilly family has block sizes by = key = 9, &z = &y = 6. We take the following
presentation for O

labe|la*=1,F=1=1,a"=a,a°=a, 6*=5H}.
Every group element has a unique expression of the form g; = a® b2¢®™ with nonnegative
exponents satisfving ) < 2, ez < 3 and ¢3 < 3. We number the group elements in the

16



S ky kn A |Gs] Uk kA |Gs]

ha] 4 2 2 ] G| 20 15 10 3
18 g 6 6 3 T2 a6 a0 30 4
20 ] a q ] Tr | 11 T2 1
28 T 4 2 4 T8 18 13 6 6
J2 0016 12 12 Al 80 30 24 18 52
33 15 11 10 1 BE | 28 22 14 12
8014 10 858 1 98 | 49 42 42 5
49| 13 g f 2 mz2( 17 12 4 4
48 | 12 & 4 L2 104 | 26 20 10 14
all | 25 20 20 o 105 | 42 35 28 2
Ml 2 1 12 13 110 | 40 33 24 i

Table 1: Feasible Parameter Seta of Half-Regular Symmetric Designs

following order:

=1 g=ab gr=¢ gu=abe gz=¢ 0 = abe*
fa =i gg = b g=ac gy = be g4 = ac’ g7 = be?

ga=b ge=ab® @=b gu=dc gu=k" gu=ab’c
In the resulting regular permutation representation, the generators a, b and ¢ correspond to

pa = (1,2)(3,4)(5.6)(7,8)(9, 10)(11, 12)(13, 14)(15. 16)(17, 18),
oy = (1,3, 5)(2,4,6)(7,9, 11)(8, 10,12)(13, 15, 17)(14, 16, 18),
pe = (1,7,13)(2,8,14)(3,9,15)(4, 10, 16)(3, 11, 17)(6, 12, 18),

The automorphism group of G has order 48. Thus, the group @ is of order |Aut(G)| - 18% =
279936,

Using the algorithm ALLRAHILLYFAMILIES, we compute all Rahilly families for this group.
This means that we build the generation tree having the (J-canonical admissible subsets as
its nodes, We found 16 Rahilly families of pre-difference sets. Remarkably, for all the Rahilly
families, we found the same sets Ay, Ay and Agy, namely

Ay ={1,2,3,4,5,810,14, 16} and A, = Ay = {1,2,9,12, 16,17}

We call the 16 equivalence classes £, 1 € {1,2, ... 16}. For each of these classes we display
the et Age im Table 2. The table indicates the order of the group of auto-equivalences
E(), whether or not the Rahilly family is self conjugate and, in the case that it is not,
the corresponding conjugate family, Among the 16 equivalence classes we found 11 different
designs, denoted by Dy, ..., Dy (different designs means pairwise non-isomorphic designg).
The 1somorphism tvpe of the design TN E;) is listed in the last column,

The corresponding 11 designs are shown in Table 3. All designs turn out to be self-dual
and self-polar, We determined the full sautomorphism group and its action on points, blocks
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E | A E(G)| | conjugate to | isomorphic to
1]4{1,2,3,4,58,10,14, 16} 2 itaelf Dy
2 | {1,2,3,4.6,7.9,13, 15} 2 itself Dy
3041,2,3,56,8,12 14,18} 4 itaelf ™
41{1,2,3,57.8,9,11, 14} 1 itself oy
5 {1,2,4,5,6,7,11,13,17} 1 itself Dy,
6({1,2,4,6,7,8,10,12 13} 1 itsell Dy
T {1,3.1.5.1'9 10,11, 16} 2 E1a Dy
8 [ {1,347, 8,9,10,12,13,15} 1 itself D,
9| {1,5,7, 810,11,12,13,17} 2 itself Dy
10 | {1,7,8,10,12, 13 14,16, 18} 2 En Dy
11 | {2,3,4,6.8,9,10,12, 15} 2 £ Dy
12 | {2,4,7,8,9,10,11,14, 16} 1 itself Ty
13 | {2,6,7,8,9,11,12, 14, 18} 2 itself Dy
14 | {2,7,8,9,11,13,14,15,17} 2 £y Dy
15 | {3,8,9,10,12,14,15,16,18} | 4 itself Dy,
16 | {4,7,9,10,11,13,15, 16,17} 4 1tself oy

Table 2: Equivalence Classes of Rahilly Families for £ x &3 = £y

and flags. We list the orbit structure by showing the distribution of different orbit lengths
together with the multiplicities. So, £™, ™ indicates that there are n orbits of length = and
m orbits of length . The running time for computing these 16 equivalence classes was about
15 minutes on a Pentium Pro based machine with 200 MHz clock speed. The computation
of the isomorphism types of designs took another 3 minutes.

Degign 1) is isomorphic to a previously known design admitting the group £; x Ey as a
regular group of automorphisms. Using the elements

{11, 22, 33, 44, 55, 01, 02, 03, 04, 05, 10, 20, 30, 40, 50}

as a starter block one arrives at the design by allowing independent eyelic shifts modulo 6
in both components.

Degigna T, Ty, and Ty can be constructed from Latin squares of order 6:

123 4 35 6 132435 6 1234 5 6
21 5 6 3 4 4 21 5 6 4 216 5 4 43
4 6 1 3 2 5 21 3 6 445 351 6 2 4
3 3416 2 6 5 41 2 3 4 6 51 3 12
6B 4 2 53 1 3 4 6 3 31 2 6 4 2 3 1 5
336 241 46231 a3 4261

Let the (i, j)-th entry of the Latin square be denoted by L{i, j). In order to obtain a
gymmetric 2-(36, 15,6) design one labels the places of the square with numbers 1,... |36

(for example, the {, j-th place mav get the number (i — 1) -6 + j). Then, for any place iy, 7

18



Dy | |[Aut{D;)| | point-orbit structure | Hag-orbit structure |
1 432 3G 108, 2167
2 36 18* 18% 36
3 T2 36 a6, 727
4 a6 36 3514
] 216 36 36, 72, 108
G 324 182 544, 108*
T 324 36 108*
8| 648 36 108%, 216
o 144 6 36, 72%, 1442
10 1944 36 216, 324
11 JE8E 36 216, 324

Table 3: Isomorphism Types of Half-Regular 2-(36, 15, 6) Designs

£, | regular extension for |
1{Ds) [f=(arrabrrberrel,z=1Lu=1
2 (D) |P=la—ab—be—cfl,z=1u=a
(D) |f=la—ab—bc—f)e=1Lu=1
(D) | f=la—rab—=b eoez=1lu=a
6(Dg) |0=lar—rabce—b,z=1u=1

Table 4: Regular Extensions of the Rahilly Families for &g x &5 x &g

we define a block of the design as

Biiggy = ({083) 1=} U{(.5) |7 =d} U {{i,5) | L{#,3) = L{in, Jo) })\{ (i, o) }-

It is easy to see that the set of blocks By, o for 1 < iy, 5y < 6 forms a design with the
appropriate parameters (cf. [13], p. 198). Altogether, there are 12 Latin squares of order 6
(and 109 of them if one may not exchange rows with columns or columns with digits). The
other Latin squares lead to 2-(36, 15, 6) designs different from Dy, ... Dy,

Finally, we would like to point out that T, can also be obtained from a Spence difference
set. See [4] for this construction.

For an exhaustive reference on symmetric designs one should consult the section by Tran van
Trung in (2], pp. 75-87. Note that in this table, only one known design for each parameter
case 18 listed. Thus there may be other designs among Ty, ..., Ty which are known.

According to Theorem 2.4, the existence of a regular extension is equivalent to the exis
tence of an equivalence with special properties. We found that exactly the Rahilly families
£, &, E5, & and £ possess such an equivalence with # € Aut{() and associated transla-
tions (1,z,u', 4% - z). Table 4 displays these equivalences. This means that the designs
Dy, Dy, Dy, Dy, Dy, Dy and Ty do not admit a regular extension for their corresponding
Rahilly families (for the designs Ty and Dy this also follows by the fact that Aut[Dy) and
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Aut{Dg) act intransitively on points, cf. Table 2). Remarkably, £ has a regular extension
but the family £5, also leading to the design T, has none. This means that ¢ i3 contained
twice in Aut{Dy,) acting as a hall-regular group. In one case it has a regular extension amd
in the other case it has none.

We have proved the following result:

Theorem 6.1 There are half-reqular symmetric designs whose full automorphtam group 18
nol reqular. In other words, the set of designs we can construct via Rahilly-families of
difference seta 12 o proper supersef of the set of designs consfructible from difference sefa.

6.2 Havrr-REGuLAR 2-[40,13, 4) DESIGNS

Using the cvclic group of order 20, another previously known symmetric design was rediscov-
ered. This design admits a cyelie group of antomorphisms acting regularly. It isa 2-(40, 13, 4)
design which can be developed from the base block {1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 23, 27, 35}
using cyelic shifts modulo 40 (see (2, pp. 73-87]). Clearly, the square of such an automor-
phism of order 40 consists of 2 cyeles of length 20. This element generates the regular group
of automorphisms acting half regularly on the design.
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