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Abstract. A computer package is being developed at Bayreath for the
generation and investigation of discrete stroctures, The package is o O
and C-+ class libeary of powerful algorithms endowed with graphical in-
terface madules, Standard applications can be ron antomatically wheroas
research projects mostly reguire small O or C++ programs. The basic
philtsophy behind the system is to transform problems ioto standacd
problems of ¢.g. group theory, graph theory, linear algebra, pehics, ar
databases and then to use highly specialized roatines from that field to
tackle the problems. The transformations required often follow the same
priociples especially in the case of generation and isemorphism testing,
We therefore cxplain some of this background.

We relabe orbit problems to double cosets and we offer a way to solve
double coset problems in many important cases. Since the graph iso-
morphigim problem s equivalest bo & oerdain double coel problem, ao
polynomial algerthm can be expected to work in the general case. But
the redaction techaiques used sl allow to selve problems of an inder-
esting siee. As an example we explain bow the T-designs in the title
wers fowmd, The teo simple T-designs with parameders 7-(335, 8, 10) and
T-{33, 8 16} are prescoted In this paper, To the best of our knowledge
they arg the fiest 7-deslgns with small A and small nomber of blocks
aver found, Teirlinek [19] had shown proviously that non telvial f-designs
withoot repeated blocks exiizt for all £ The smallest parameters for the
case =T are T-(40320" 4 7 & 40320'),

The designs have PIUL{E, 38} s antomorphism groop, and they are con-
structed from the Kramer- Mesner method |7]. This group had previounsly
been used by [13] in order to find simple G-designs. The presentation of
oar resnlts B compatible with that earlior pablication,

The Kramer-bMeswer method regoires to sodve a system of linear diophan-
tine equations by a {0, 1 |-vector, We used the recent improvements by
Schoorr of the LLL-algorithm for finding the two solotions to the 32 = &7
syELem.

1 Introduction

A libeary of © and C4+4 routines arose from a peoject for the eonstructlve
handling of discrete strectures on a8 computer. The poutlnes were weltien as



part of diploma theses, doctoral theses and other resparch projects over several
yvears., Aleeady now the library of DISCEETA Is powerlul enough o support
ambitious research getivities. We deseribe here those parts of the package which
were used in order to find T-designs, Dther sspects are mentioned in order to
give an impression of the interfaces Lo users,

To begin with, we recall that a t-[v.kA)-design is defined to be a pair (V. B),
consisting of & set V' of vertices and a set B of blocks, where V' is of order v and
where each block b € B iz & subset of order k in V. The other two parameters §
and A mean thet each i-subset T of V iz contained in exactly A blocks.

A direct approach to the evaluation of all the t-{v.kA)-designs on V' is casy
to formulete: Consider the matrix

Myl = (m} ).
the rows of which are Indexed by the f-subseis T C 17 and the columns of which
are indexed by the k-subsetz K © V while the entries themselves are defined to

be | ITCK

0 otherwise,

It is obvious thet the set of all the t-{v.kA)-designz on V' bijectively corresponds
to the (-1-solutions = of the system of linesr eguations

A

My i = {

Mf:t'l'_

A

This is easy to soe but difficult o solve, In the case of the guite moderate
parameters ¢ o= T, v == 33, & = & and A = 1} the matrix -feﬁ has sbaout
fi- 10" entries, so that there s no hope systematically to fnd a solution.

But there exists in fact 8 way uFa.LLa.-l,:lr.i.rlE this problem, naomely by i|:||.rjd,;qsi|:||._|;
a further condition. [This s, of course, risky, since the set of :].-l,-si.,urlu :|'1_|.|[5|.|i:||.,|!I
thig sdditiomsl condition |:||.ig|:|L T r.:rl:lp-l_].'!] Wes irpose the condition that a Ei'l.-l_-.l:l
subgroup A of the symmetric group Sy on the set of vertices 15 aontained in the
autormorphism EEOLf Au.t['[-", B of the dl_a.iﬁ:l. if qquestion:

A< Aut(V, B).

[The: avtomorphism group Awd(V, B comsiste of the permutations « € 5y that
induce permutations of the set B of blocks!) Ao interesting case of such & group
is a certain subgroup of the symmetric group Sz on g set of 33 poinis which
is wsually densded in geometry by PUL(2,32). TE can be described as Follows.
Take the 3Z-dimensional vector space over GF(2) and consider the set of its
paedimensional subspaces, there are exactly 33 of such subspaces, The general
lipear group GLI2,32) lnduces & permutation group on this set, shich Is de-
noted by PGE2,32) This group tegether with the permutation coming [eom
the Frobenius automorphism & — &7 [when applied o the coordinates of the
vertoes) generates the geoup PUEL{2, 32).



As soon as we have Imposed this condition 4 < Awi( 1, 5] we can consider-
ably reduce our numerbcal problem: MY, can be replaced by the matrix

.IH::"* = {m-ﬁll,.;].

the rows of which are indexed by the elements of an {arbitrary) transversal T of
the set of orbits of A on the set (| of f-subsets, while the eolumns are indexed
by the elements of an (arbitrary) transversal T of the set of orbits of A on the
got [} of k-subsets of V' :

T e Tiorb(A, [‘:) 11, K & T {Ork(A, (:) 1.

The matrix .HI"L 18 therefore of sise

oruta. () i x forbia. ()

which = In fact 32 = 07 In the above mentloned partieolar example, and 20 the
data reduction is enormous, it 5 In fact by the factor 2. 10 in our example.
The entries of the matrix ave defined Ty

iy o= [{K' € Orb(K) | T C K’}

(Db K} means the orbit of & under the sction of 4 on V) This matrix is
called the Kramer-Mesner [7] matrix, sinee their theorem says thet the set of
i-[v k. A)-designs on V' s bijective to the set of O-l-solutions = of

A
M;;L* = :
A
It therefore remains to evaluate the Kramer-Mesner matrix and to find a 0-1-
solution of this system of linear equations.

The evaluation of the Kramer-Mesner matrix can he done by application of
iwo basic principles of Algebraic Combinatorics which we should like to describe
here, The first of the basic principles thet come in makes use of the fact thet &
iransversal of orbits can be obtained from & transversal of double cosots as soon
as we have a tramsitive group et hand, This fect is described in the following
lemma {which is old, but we do not koow where exactly it appeared for the first
time):

The Split Lemma. Let 7 be a group acting fransbvely on o sed 1 Then the
orlafs of a sulgroup U7 of & on 0} eorvespond bifectively fo the doulle cosels
Nglw) G U by the mapping wi o Ng(w)pl?, where Nig(w) e the stabilizer of
a fueed w £ 17 under the G-action,



This lemma is known In special applications, for example coding theory [18] and
theoretical chemisiey. In the case of designs wo can apply [, sinee the symmetrie
group Sy forms a single orbit on {1:] as well as on ). We shall give details in
the ollowing section.

There are also more general situations where this lemma can be applied,
nemely in cach case when we distinguizsh labelled and wnlabelled slruciures, Dis-
crete structures are represenied by o dets structure which in general s mot
unique for the object presented. For example a graph has to be labelled, which
means the vertices must be numbered before the computer can hendle it. But for
n vertices there are ! different lebellings with labels 1, ... . % Ansloguous ambi-
guitics arise with {~designs, groups, codes and other kinds of discrete structures,
the unlabelled structure is defined io be an equivalence class of the labelled one,
or, in oiher terms, an isomorphism class of labelled structures, Therefore we
consider ispmorphism problems with highest priority, Usually, the set of labelled
structures is very big, and many of them will be ispmeorphic, Then one bas to
find & group acting on the set of objects such that the isomorphism types are
j'u,sl,. the arlitks of Lhat ],wl,.il;,:u]u.r Eroup. ."Llﬁuril_]:u:rlu o :ﬁ.rld,il:lE; i Tull gk of arbat
representatives will Goually Elw,e the desired womorphism {ypes. For example the
st of labelled graphs on o vertices i of order 203}, and the acting group is the
symrnetric group on the vertices again. Since this group acts transitively on the
st of labelled graphs with o vertices and glven number of edges, the split lemma
in fact shows that these graphs can be obtaloed from double eoset representatives
in a symmetrle group. We can explaln here, In addition, the application to coding
theory. A linear code 5 a subspace of some dimensbon &, say, of & vector space
¥ ool a dimensbon #1 over a folte feld GFig) for some prime power . The code
vertoes are n-tuples with entries om GF(g). We consider two codes a8 equlva-
lemt. if there exists & permutation of the positions of &ll entries transforming one
code into the other or we can in addition multiply all entries at fixed positions
by the same constant different. from 0. This means that the group GE(g)" 1 8,
presented s the subgroup U7 of all monomial matrices in & = GL{n.q) acts
on the set of subspeces, Sinee E(n. ) is transitive on the set of all subspaces
of & fixed dimension &, by the split lemma the orbits of 7 on the set of thess
subspaees cormespond to the double cosets Ngg g g (KNG E{n, q)/GFig)™ | Sa,
where K is a fixed subspace of dimension & of V',

Thus we have demonstrated, how double coset transversals help to evaluats
designs, graphs and linear codes by suitable applications of the split lemma
mentioned above,

It remains to tell something about the evaluation of double coset transversals,
Here the second basic principle comes in which we would like to mention here,

The basic algebraic tool is thal of homomorphism, which means compatible
mapping, It serves very well in a stepwise simplification of group actions and
corresponding constructive methods in algebraic combinatorics, to. Here is the
corresponding lemma:

The Homomorphiam Prineiple. Let g group &7 acl on o sef 1) and on o el
g, Let o 2 [ — T be o mapping that 15 compatible wilh both group aclions.



Then, for each w € £ and each g € & the sels o7 Yw) and o7 [w?) indersect
the same orbits of & on £, Ifwywn € 07 Vw), for some w € £y, and wf = wy,
Jor some g € @, then g € Ng(w].

The proof i= obvious,

We apply the homomorphlsm principle In two diflerent ways, Fimstly, we
assume that & solution of the orbit problem is already known in the image
domain of o. Then only the preimage sets o~ "w) of representatives w and as
acting group on &~ (w) only the stahilizer Nq{w) have to be considered, The size
of the full zet of &ll preimages of one orbit. is reduced to & frection and the order
of the seting group is reduced by the same factor, that is by the length of the
orbit in the image domain, Therefore using o series of systematic simplifications
by homomorphisms reduces the overall complexity about logarithmically,

The second way we use the homomorphism principle is to dedues 8 solution
in the image domain of o from & solution of the orbit problem in the preimage
domain. We call this application & fusion.

A sombination of both princlples can be used to find double coset represen-
tatives [14).

Theorem 1. Let Ay, Ay, B be subgroups of o group & and Az < Ay Then the
Jellowring mapping belween the respective sefs ANG of righl cosels,

o AG = ANG

sending the cosel Ayg onto the cosel 4,9 is compalible with the acltion of B
on A\ and A NG by multiplication from the right. If Ay = ||, » Aaz then
a~ ' {Aug) = |U,ex Azzg. A sel of double coset representatives for A:\G(B is
phinined from a sel T of double cosel representabives for A G/ B by computing
representatives from the orbits of ' Ay B oon o~ " (Ayt), for each t e T,

In order to obioin a zel Iy of double cosel representatives for A\G /B fram
such a sl 15 for ANG /B lel 5 ron through 15, put p = oy dnbe 1, and for
pach element in o~ (p) remove the representative of ils double cosel from I3,

Progf. In order to prove this we only oeed to interpret an orbit {Agh, Agbs, ...,
Aghy } of B on the set of right cosets of a subgroup 4 of 7 as the set of those
cosets which le In the same double coset AgB. The homomorphlsm prineiple
vields the assertion, slooe £~V 46N B I8 just the stabilizer of A8 In B. O

This may suffice a5 a deseription of teo basic principles of hlﬁulumil:. Cornbing-
torics, we should ke now o give a detailled deseription of ther application in
order to find the Orst T-designs with moderate parameters, to be more procises
to fmed & T-(33, 8, 10}-deslgn vla an evaluation of the Kramers-Mesner matrix of
PrEf2,32) amd then finding a {-L-solution of the corresponding system of lnear
equations.



2 Computation of the Kramer-Mesner Matrix

Recall from above that we have to evaluate fwe ransversads of double cosels in
the symmettc group Sza. On the left hand side there 8 in the first case the
stabilizer of a T-subget of the set of 33 vertices, and in the second case it s the
stabilizer of an S-subset. On the gght band side we bave, in bodh cases, the
group FPEL(2, 32, We shall descrbe a way of solving these two problems in one
wash by using a sg-called fadder of subgroups, which Orst meets the stabllizes
of a T-subset and ends up in a stabillzer of an 3-subset. But let us describe that
slightly mone general in oeder to make the generallty quite clear. Let us discuss
a way of construction of a double coset transversal In an arblteary finite group
i{r.

Since in many cases wo cannof find chains of subgroups with small indices
leading from & downwards to a preseribed subgroup A, we use some deviations
ingtepd of a direct way. In fact, we may proceed going along a seguence of
subgroups Ay where eifher Ay = Aj— or A 2 Ai—r- The key to this method is
to consider also cases Ay < Ay, where representatives for double cosets A0NGS B
are koown and then, by fusion, reduce the set to double coset reprasentatives
for Ay \/B. The discussion above leads directly to an algorithm, see [10, 14].
For a recent object orlented vershon see [20).

An example indicates how one can obiain & set of double coset reprosentatives
in Szz wheme on one side the group A is a Young subgroup being the normaliser
of wset K = [1,..., &} for smne k < 33, In the application to the construction
o u T-design we choose as B the group PUL(2, 32). Of course Sz is transitive
o the set of all subsets of the same cardinality k. Therefore, by the split benvma,
the orbits of B on the sed of these subsets correspond 1o the dowble cosets of the
stabilizer A of K in Sy and B, We indicate the sequence of subgroups leading
froan Sz to A, which can be used for a determination of the double cosets.

If B =i, B ... .0H) i a partition of {1,....7) into blocks B; the corre-
sponding Young-subgroup of 5, is the normaelizer Ng_ (5. ..., 8] of sl these
blocks. Then our sequence of subgroups is as in Fig. 1,

ATl orebit peoblems In this example deal with very small sets of polots only.
In eopteast to this, the index of a Young subgroup In 5 I8 8 usually very big
multinomial coeflelent. OF course the set of oehili representatives will he also very
large, since the multinomial coefficient can be reduced &t most by the [acwor [B].

A simmilar chain ursu'l_:lgr\uu],ns exists in General Linear Groups. There one can
take the normalizers of subspaces ingtend of Young subgroups. IE (T, Ty, 0 Ty
is an ascewding chain of subspaces of & vector space Vi, ) of dimension » then
wee g the subgroup relation

Nevinal (T8 2 Nagin,g (D) N Nopie glTi-1) € Nopim,alTi-1)

for all ¢ in order 1o consteuct a sequence along which we compute representatives
for the double cosets with the monomial group. Again the full GGeperal Linear
Czroup ks transitive on the set of all subspaces of a fixed dimension such that the



Faz

H—"“ilzl . IW‘H'I'l'[]'}:l

Nzgy (11,2} 43, 33}
Ny ({1} {2} {3,... . 33})

Nog ({1, 2,3}, {4.....33))
Nsm(il 2h 43}, 44...., 33h

Nl ... 7} {8, ..., 33})

. Naggifl,... B} {8,..., 330
Nag({1,... . 7THL B} {8, ..., 33})

Fig. 1.

split lemrna applies. Therefore one can use the same algorithm with groups of a
different kind to solve the problem of code construction [1].

A careful analysis of the fusion of the step from the normalizer Vg, ({1.....7},
{&,...,83}) to the normalizer Ng,({1,....8}, {D,..., 33}) shows that {or each
representative T of o T-orbit of A and {or each 8orbit Oy one geis the numbser
m(T, 4] of &subsets in (% that contain T'. This is the information needed {o
form the Kramer-Mesner matriz M owhich allows to Gud a T-degign, The oummbser
miT,j) is just the entry mi p for some K € Oy It is easy to see that this
pumnber i independent of the choice of the representative T

We look for 7-(33.8, X) designs having the group 8 = PrL{2.32) as an
automorphism group. Sweh a design then consists of full orbits O, One hes to
choose appropriate columns of M to get the desired design. Each column selected
stands for selecting all B-subsets of the corresponding orbit for the design. The
condition for a simple design says that in each row of the Kramer- Mesner matrix
the entries of the selevted columns must sum up to A,

Sinee the designs constructed In this way have at least PIL(2,32) a8 s
autormorphism group, one should ask for the full automorpbism groap. While



such a gquestion is hard to ansgwer in general, ln this case we only have to notlioe
that by [12] PI'L(2,32) Is a maximal subgroup of Sgg. Thus, the only possibilities
for the full automorphism group could be PIULIZ, 32) or Ss, the latier case
being impossible ginee it would reguire all 8-subseis to be included into the
design because of the transitivity of S35 on this sec. We therefore conelude that
any incomplete design having PIUL(Z, 32} as an automorphism group must have
this group as the full sutomorphism group.

We have included the Kramer-Mesner matrix for this problem for convenience
of the resder at the end of the article, Actually this matrix had appeared already
in [13] together with a description of simple G-designs, To make our resulis
comparable {0 thet paper we decided o use the representation of the matrix
there, Dur own result differed only by some permutation of the 97 columns and
32 rows.

3 {o,1}-Solutions of Linear Diophantine Systems

MNow il remains Lo solve for the Kramer-Mesoer matrixs W, an | % s~matrix, the
euation

.ﬁ-‘f-u:.l.l:l:...ll]l‘ r:_:ra.-ll:l.|1]--'|.'|_u,:Lur1,J . []]l
This is a special instance of the multi-dimensional subsed sum problem which s
known to be NP-complete [4]. Our approach therefore wses an algorithm which
generally solves only & weaker problem, but often also gives a solution to (1). In
fact, we could Ond such a solution for a difficult problem in this way as shown
belova.

As In [2, 3, 8 we reduce the problem to that of Anding short vectors In a
lattlee. At the moment & polynomial method to Gnd short vectors In a lattioe I8
not. known. But the algorithm of Lenstra, Lenstra and Lovész [11] guarantees to
find a nontelvial vector In an m-dimensional lattlee that has at most 2™ the
length of the shortest nonirivial wvector ln this lattlee. This does oot look very
promising, but In praciice the 2o called LLL-algorlthm performs much hetter
ithan is guaranteed by its worst case bownds,

Mesnwhile there were several improvements of the original algorithm end
lattices have been found which are better suited to the subset sum problem,
8, 15, 16, 17]. So the performance of the algorithm dramatically improved.

Let " be the n-dimensionel B-vector space with the ordinary inner product
(o) A discrete, additive subgroup L © R iz called a labfice

Every lattice L is generated by o set of linearly independent vectoms by, ... by,
€ L, the bosis of L:

L=Lib,....bg)={zib + -+ by | 21,2 o £ E}

m b8 callod the mnk of the lattlee L.
For & sequence of linear independent vectors by, .. by € ™ welet b, ... 8
be the Gram-Sefrnidl ortfiogonalized sequence. We thus have

=1 I:Eiliil}:l

Bf =bi— ¥ b fori=1,... . m, where ;= ——o .
ol 'Elj‘bi.}



The vectors b, ..., 00 are loearly Independent, but In general they ave not in
the lattice spanned by by, ... by, Note that the orthogonallzed vectors B, ... 05
depend on the order of the basis vectors by, ..o by,

Definition 2. A basis b, ... by of the lattioe Lois called LLL-reduced weld & if

il =12 forl<j<i<m, (2)
BIRE® < [y + paerabll! fork=1l.....m—1, (3)

where § is a constant with 1/4 < § < 1.

In order to fnd a lattice basis which fullfils (2) and (3) & Aoite number of two
Kinds of linear transformation are applbed:

Algorithm (LLL-algorithm, see [11]}. Set k= 1. Now do until k =m - 1;

L Fori=1,....k— 1 replace by by &y, — rby, where v = [y ] I8 the nearest
integer to pg 4.

200 8|65 0" = (b + s kbl then interchange by and by and set k =
maxik — 1, 1},
ciherwise sot & := &+ 1.

Remark, With step 1 of the algorithm we achieve condition (2) which assures
that the LLL-reduced basis vectors are "as orthogonal as possible®,

In condition (3) the vector 8., 4 ues1,eb] 8 the orthogonal projection of
the vector bpey on the orthogonal complement of the subspace generated by
Biyeeey i, In other words to [ullfl condition (3) step 2. of the algorithm does
ihe following; if for some k& € {1,...,m =1} the last vector of the Gram-Schmidi
ort hogonalized sequence &,..., 8 _,, b, i shorter than the last vector of the
Gram-Schmidt orthogonalized sequence b, ..., BL_, . B by at least a factor § < 1
the two vectors are swaped, Le by is the new vecior by,

This is the natural generalization of an elgorithm by Gauss [5, Art. 171, 153,
272 to reduce binery, respectively ternary quadratic forms,

For a lattice L © R" of rank m the successive minima Ay, ..., Am of L are
defined through: A, = M(L) is the smallest radius r of a ball centered at the
origin which contsins exectly { linearly independent lettice vectors. It follows
that Ay (L) is the cuclidean lengih of the shorest nonzero latiioe verwor of L.

The following theorem from [11] stetes that an LLL-reduced basis contains
ralatively short vectors.

Theorem 3. Every basis by, ... by Dt i L Lereduced with 1/4 < 8§ < 1 sales-
fies

(=1} 2
i< (o) M O

In [11] the authors also give the following running time:



Theorem d. el by, ... by be an ordered bagie for an anteger lodlice L such thal
(Bl = B for 1 < i < m. Then the LLL-algorithm computes a LLI-reduced
bazia for L wsing of most O(m® log, BY arithmelic operafions and the inlegers
on which these operalions are performed have length af mest Om log, B).

Several speedups of the algorithm have been proposed. Schoore [16, 17] intro-
duces variants which use floating point arithmetic to circumvent. the time con-
suming use of long integer arithmetic,

In [17] the authors use the so called decp insertions: Instead of [3) - where
the LLL-algorithom behaves like the bubble sort method - they inferchange by
wak just with oy but with the lefioost vector &y, 1< ¢ < K, for which ||I|n:||ﬁ 15
al Jeast decreased by a factor 4.

There are other kinds of lattice basis reduction beside of LLL-reduction. Oone
classical definition of Tattice basis reduction s Kerkme: Solotores reduchion 6]
Let by, . ... by be an ordered bagls of the lattlee L. We deflne Ly a8 the orthogonal
projection of Lin By, ... -y}t Then L, s a lattice of rank m — i + 1. Further
wi denote with Ly(by, ... 0y) with @ < & < m as the orthogonal projection of
the lattice spanned by the vectors by,. .. by In (..o oy ).

Denote with oy : ’R™ — {by...., 0" the orthogonal projection so that
b—xlB) € (b, ... B}

Deflnition 5. An ordered basis by, ....b0; of a lattice L i called Korkine-
Eolotaerey reduced [B] if it Tulfills [2) and if
]| = AfLy}) Fari=1,....m .

The following theoren from [15] reveals that Korkine-Zolotarey reduction is
stronger than LLL-reduction.

Theorem 6. 4 KHorkine-Zolotarey reduced basis By, oo by saligfies

4 i+3
v H_—aﬁu[L] = [l = %L[L] fori=1.....m .

The bad news are there is no polynomial time algorithm for Korkine- folotarey
reduction known. In [15, 17] the authors define a weakened version of Korkine-
Zolarey reduction:;

Definition 7. Let 8 bean intoger with 2 < F < me Abasis by, ... By 5 callsd 5.
redwced I It satisfles (2) and Hior i = 2, .. . m— 341 the orthogonal projectiong
of by, oo By In (B, oo By ) Torm 8 Korkine-Zolotarey reduced hasks of the

lattloe wy[E{by. . .. byya—1))
A basls by,. .. by 18 called S-reduced wdith & IF (2] Is satisfled and I

SRl < ALyl obgaa)) fori=1,....m-2+1.

Remark, Mote that & LLL-reduced basis with & & 2-reduced with 4. Actually In
case of 7 > 2 step 2 of the LLL-algoelthm s generalized in S-reductbon wich &
to the Tollowing:



Instead of looking whether a swap of the wectors bgpey and by would glve
a shorter new by we are searching for the linear combination of the wectors
Ok oo Bgpgpg—1 88 new vector by which produces the shortest vector b,

In [15, 17] the length of the basis after S-reduction is bounded as follows:

Theorem 8. Every S-reduced basis by, ... by of 0o lodfice L salisfies
o |[* < g™ g g

provided that 3 — 1 divides m — 1.

The constant ag 18 the maximum of ||y / b";" taken over all Korkine-Folobaney
reduced bases by, ... ba. (From [15] we know that oy = 1, a5 = 2 and ag <

JHnE With 8 increasing alftF- converges to 1,

Often the vectoms of & reduced lattice basis still are not short, enough {0 solve
the linear diophantine systems. Sinee o reduced lattice basis depends on the
order of ihe initisl lattice basis, we shuffle the basis vectors after S-reducing the
lattice and repeat this process several times, Kreher and Radziszowski [B] gave
ihe following improvement of the algorithm: After each F-reduction step we test
if fhere are pairs (¢, 7) with 1 <4 < 7 < meso that [Jby 2 0] < [ly]]. IF this i (he
Cise we set h L b‘i + IIJ. Then wee start .a,&a..il:l with shu I-Hi.rlsI and Fereduction.

T golve= |:'|.] wer gornbdne the app roach of Keeher and Badsissowsks |E-J with
thee mewe wleas of Schooer e al. |3., ]5., 1ﬁ, 1TJ.

This means that we apply lattice basis reduction to the following lattice basis
L o get a reduced latilee hasis Lf:

( el 0
cod T
gl 1
[ 12 i 0 ol 1
U w3l e
0...0 |1 O
S T VI

where M 15 a [ s=matbrix and oy and ¢ are constants which control the behaviour
o Ehi a.'lgl;_r:ril;.hm. The chodee of ep ghould foree an mact solution over the i:u.l,l;:,ui,-:ru
whereas a good choice of ¢ will yield a {0, 1 }-solution:

Suppose op 18 large, Then by the reduction the whole upper block of about
b first s — 1 columns and I rows will Be teansformed to 0, because cach nonmero
entry woahd be divisible by op which means that the cuclidean ]l_-;u..ut.h ol the
whole correspondending column would be large. Sinee the rank of the Kramer-
Mesner matrix M s about [ only & — [ wectors of the reduced basls can consist
only of zeres In the frst [ rows. o should be approximately the expected value
of A.



The algorithm has found a solutlon If L' containg a vector (byq, ... b ;)"
with the following form:

el =1, ba=...=ki=0 ||l =-.=hsal=ea .

where { is the number of rows of the Kramer-Mesner matrix M and 2 ={4+ 342,
The Kramer-Mesner matrix M of the 7-(33.8, 10) and 7-(33, 8, 16) deslgns
has 32 rows amnd 97 columns which pesult o a lattlee Lo with 131 rows and 09
columns. We used J-reduction with deep lnsertions, where we chose @ = dil,
d = 0.990000000, &, = 30 and ¢ = W), We [pund the following solutions alter
o [beratbon which took about O minutes on a PC 486 with 66 MHz and 16 MB
Rab:
The 32 = 97 Kramer-Mesner mairixz Ad:
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LD SPERIECHD 1 O] VD ‘0 R DR | D ) 0 DT ) DR TE 1 O TV 1160 D 1 1 WD) IR el O 1 o1 0 EeC e 13 ) 1 W R
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o1 S DDA R [ [ 3 D 08 SORHDe S [ S0 Do) 8 DD v OHCw 8 Do) e [0 00H O [0 O ] 550 DOR0 DA (D] ) SR340
SO T DR 0] H) 1 1 CHRCRHOR O DR | 0 RHOD D1 DR (R ] DRI | DT R RO | SR IR L1 0 R )
EHNL SRR 11 CHEE |Gy | T L R 1 DR 1) 1 (D 100 T R ) AR SR | HEHAEHE AR 1 (HEH ] HEHAL
PRI (HARH | GHOOHRH0-0 | DT ) SRR 1 1 ORI O 1 (60T M0 R0 OO BT 1601 G0 ) (R B O
SHOTL 1 (RO RN L G | GHOHORHEF | 1001 BT B 1 0 CRHCHOAD TR RO ORI 1 RO L ) SRR 0 ] (B3R | 1 3
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SHEHEHE A 1| DR 1 CEHORE T L) SRR 1 (R | DR ORI | ] DR SRR | D0 1 DR 1) 1 1 R R R 1 DM LR 1)
SO o e 00 1 e e ) 1 O e o e e e e S 1 e D S e B
R e D o ] 0 O 0 00 2 e e ] o 0 e 0 2 O 0 o e B A0 1 L
W D A 1 0 ) 0 0 e RO 0 L
A W D e W o 0 0 e D D e B 0 s L i
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with the solution vectors v for A = 10 and X = 16 respectively:

ANV 1) SO B Y L8 . N WO 1 ) VLS N D OB T 0 ORI D 11 e BN B W) 160 ) ROV 10 0 B L 0 R L T 1
D100 T II0II0 11001 131311 B0 10T LET BT T IO i L U1 a0 1 L0 T L1 1 DL L T 0 B0l T 061 e 1



-, 33}

To make the paper sell - contalned we nelude from [13] the permutation
representation of PrLI2, 32) and representatives from the orblis on all 7- and

Z-subsets that correspond to the Kramer-Mesner matrix.
The group PIL(2,32) can be presented as generated by the following two

permutations of {1,--

or= (1248 16)(3 6 12 24 17)(5 10 20 9 18)(7 14 28 25 19) (11 22 13 26

13{15 30 2 27 23)(31)(32)(33)
A= (118 30)(2 21 12)(3 10 28)(4 31 32)(5 24 14)(6 7 17)(8 25 27) (0 19

200(11 15 13)(16 25 20)(22 33 26).

There are 32 orbits on the sot of all T-subsots and 97 orbits on the set of all

A-sutsets.
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The solutlon vectors have an entry 1 In the é-th place  and only i the i-ih
orhalt on B-gubsets s part of the design. Thus, for A = 10 we have

b= 27 x IGAIGED 4 11 = BLBAO+ 1 = 2460 = 530060

blocks in dhe 7-(33, 8, 10] design. The same number of blocks can also be obtained
froan the following well known formula:

S R 4 BT ,
b = [::’ A {;] 10 = G340 060

The suthors thank €, Praeger for pointing out reference [12] to us, We also
thank the referees for helpful suggestions for o detailed presentation of the de-
signs,
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