TACTICAL DECOMPOSITIONS AND SOME CONFIGURATIONS 1y

Anton Betten and Dieter Betten

The study of configurations or — more generally - finite incidence geometries is best ac-
complished by taking into account alao their antomorphism groups. These groups act on
the geometry and in particular on points, blocks, flags and even anti-flags. The orbits of
these groups lead to tactical decompositions of the incidence matrices of the geometries or
of related geometries, We describe the general procedure and use these decompositions to
study symmetric configurations vy for small ». Tactical decompositions have also been used
to construct all linear spaces on 12 points [2] and all proper linear spaces on 17 points [3] .

AMS subject classification: 05825, 05830, 51599

1 INTRODUCTION

A configuration C of type (v.. by) is an incidence geometry with » points ¥ = {p,.... . p,}
and a collection of b k-subsets of ¥, called blocks: B = {B,,... B}, B: TV and |B| =k
fore=1.....0.

An incidence (or flag) is a pair (p.B) € ¥V = B with p € B. Counting incidences in two
ways gives vr = kb, A configuration with v = b [and hence also r = k] is called symmelric,
Symmetric configurations are denoted o, for short.

An isomorphism ¢ between two geometries Cy = (P, B;) and O3 = (F, B;) 15 an incidence
preserving map between the point sets. Let ¥V, = {pll]”. Cea ,pi].:'} and ¥y = {;-II]!I, cea .piﬂ}.
So, for each block B € B, with B = {pr-”, cew .F-'E:]} B = {j.-E:W.. . .p,r-::'w} 15 a block of B,

|
An isomorphism of a geometry with itsell is an aulomorphism (or collineation). The set of

automorphisms forms a group with respect to compaosition of mappings, denoted by Aut{C).

An incidence geometry ¢ = (V, B) gives rise to a 0f1-matrix, the incidence matriz. Put
N = {n;;) with n;; = 1 or 0 whether or not p; 15 contained in B, Relabelling of points
regulta in & permutation of the rows of this matrix, rearranging the order of the bocks vields
a permutation of the columns of this matrix. Thus, the incidence matrix 15 unigque up to
reordering of rows and columns.



In this note we often draw incidence matrices by rectangular grids using little boxes to
indicate incidences (see below|. However, we stick to the original definition of a 0/1-matrix
when talking about the row- or column-aumas of V.

2 TacTicaL DECOMPOSITIONS

Let F be set, A set partition P = (P, Py, ..., F.) s a sequence of subseis F; © P called paris
{or classes) of P with F;N P =@ for i # 7 and U:=] F; = X. Usually, one allows rearranging
the parts of a partition. Sometimes, the ordering of the parts is considered significant, in
which case we call the partition ordered. The namber ¢ 15 called the length of the partition,
denoted by f{ P). For P a partition and ¢ a natural number let. F} denote the i-th part of P
if ¢ < /{ P) and the empty set otherwise. For P a partition let ||P|| = (| P [ Fsl.. .0 . Fm]
he the vector of class lengths.

A decomposition of an incidence geometry & = (VB is a pair of set partitions of points

and blocks, Let ({1 A] € TI{V)] x TI{B] be a decompaosition of & = (V. B]. For i < £({}] and
< fA) put

ﬂ‘._lj =|{EF51|FE H]‘
with p £ 1, fixed. In addition, put

G, =1{pef|pe B}

for fixed B € {1;. The decomposition (2. A) is called row-lactical, if for any ¢ < £{11) and
J < A A) the number o, ; is independent of the choice of p € £}, The decomposition ({2, A)
15 called column-tactical, if for any ¢ < £[0) and § < A the number 3; ; 15 independent
of the cholce of B € A;. The decomposition is called taclical (T if it is both, row- and
column-tactical,

Any decomposition allows to reorder rows and columns of the incidence matrix in order
to group together rows and columns according to the classes of the decompositions. Thus,
any decomposition gives rise to a block decomposition of the incidence matrix N, The
submatrices of size |F;| x |[;| are the decomposition malrices.

The matrices containing the a;; and the 3;; extended by one row and column indicating
the order of the point and block classes are the row and column decomposition sehemes (or
Th-schemes). Let {2 A)] be a decompaosition and put £{01) = v and £{A) = 5. Then the
row decomposition scheme and the colomn decomposition scheme have the following arrayvs
GIF nun I.I.'.IE!"H

|Bq| [Ag| ... [A, |Bq] [Ag| ... |A,
|ﬂ|| ] e ... EE] g |f"|| 31.| Ma oo B
|ﬂ;!=| Orpy gy o-. dgs |ﬂ;!=| 3.:.1 5?1.: 3.:..1 .
10| | ari @nz ... ara 10| e Bea oo Bea




For a tactical decomposition, the equation
I§8:| < o5 = Bis - | g (1)

allows to switch between the row-tactical and the column-tactical scheme. This equation
ia proved by a simple double count of the set of incidences hetween pointa of class {}; and

blocks of class A
] - i = |{{p, B) € §4 % & | p € B} = 35 - | Al

We give some examples of tactical decompositions:

1. {The Desargues Configuration): In the Desargues Configuration we have two triangles
in perspective position. In the figure these are indicated by a shadow., We also dis-
play the corresponding incidence matrix which is decomposed tactically. The tactical
decompaosition 8 described by its row decomposition acheme,

-1@mnu 133 3
E;u DED” 1[0 3 00
HDHEE‘ 3101 1
HrEEEEEH 301 2 o0
A DEE 3010 2

2, [T]lt' cull-t']: The incidence matrix for the cube can be dcrunl]:lu:-jr:] inta three block-
paris.
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3. {The affine plane) The afline plane of order 4 is a composition of five parallel classes.
[ts incidence matrix may therefore be decomposed in the following way:

1) ]

ju]m)

0
W = |:[|
o =] =]

s
[u [m % nu{:n
=]

5] 0y |0 u]
’gn o |o = |..1
ikl °F 161

4. (Kirkman aystem on 15 pointa] As another example consider the seven days walk of
Kirkman's schoalgirls. [t may be indicated by the following TD-scheme:

nﬁ“nm!ﬂ

] n]

504

11

Ll 11

A very useful procedure for studying geometries comes from design theory. Therefore, assume
the point p is fixed and consider the two sets of blocks

der,(C] = {H\p| Be B, pec B}
and
res(C) == {BEB|pd B}

called the point-derivation and the point-residuum [with respect to the point p). Often, der
and res lead to tactical decompositions, for example for the ST S5{13), STS({135) and ST5(19)
we get,

|EE|I] |725 |943
60 F | 9
1 5 1 1 6 1 5

w0 we get configurations 125205, 145285 and 18448y as point residuals reapectively. Tt i3 well
known that there are exactly 5 configurations 12,204 and 787 14428, [1]. One can consider
them as regular linear spaces of type (12|7,20), (14/7,28) and {18(9, 48], where the 2-lines
mtersect i an additional point. The number of configurations 18:48; 15 unknown I:iL should
he very large|.



Another procedure ia block derivation. Therefore, fix a block I and consider the sets
dery(C) == {B\H|B € B, Bri H # 0}
amid
resu(C) == {B e B|BNH =}

They are the block derived and residual geomelries. For the 5T5 on 13, 15 and 19 points,
we get

|1 15 10 |1 18 16 |1 24 32
31 5 0 3|1 6 0 31 8 0
o 3 3 1210 3 4 160 3 6

Here, we find configurations 105, 124165 and 165325 as block residui. There are exactly 10
configurationa 10y and 574 configurations of type 124164 |:whir.h are regular linear spaces of

type (10/15,10) and (12/18, 16) respectively].

Point derivation in Steiner Systems 5(2,4,13) (the unique projective plane of order 3, see
hl’.‘]ﬂ“‘]- S'IZE.-L lﬁ:l |:L]1E umigue afline p]am: of arder -1} and SI:‘E.-LE-"S] [cumpar-: ﬁp:rru::r [F-f-]:I:
gives

|49 5 15 |8 42
10 50 R
11111-1 21 7

Here, we get configurations 1339y, 154 and 24:42, as residual structures {a]l with a parallel
class of lines of length 3]. They can be seen as regular linear spaces of type (12|0.4. 9],
{15)0,5,15) and (24]0, 8, 42) where the 3-lines intersect in an additional point. The configu-
ration 154 occurring here is the affine plane of order 4 with one parallel class removed. There
are three other configurations 154 a3 we will see in the sequel,

Block derivation leads to the following TD-schemes:

|1 12 |1 16 3 |1 28 7
i1 3 41 40 41 7 D
90 4 12|04 1 21|00 4 4

The configurations 214 occur as residual structure in the last case. In the first case, we get
the affine plane of order 3 as a derived structure. The middle one has configurations 12,164
a4 derived structures,

There algo exist tactical decompositions for flag-derived structures, For the 5(2,4,13),
5(2.4.16] and 5(2.4,25) we get

|1 3 9 |1 4 12 3 [t 721 2
T30 [t 400 1[17 0 0
S B A0 o400 (L0 7 0
90 13 12(01 3 1 21|01 3 4

Here, we find configurations 93, 122, 215 and 21,.



3 THeE TDA AND THE STRUCTURE OF GEOMETRIES

An important way to obtain tactical decompositions of an incidence system D = (V. B) is

by considering the aorbits of a group of antomorphisms A of & This means that we start out
with a group A < Aut{S) and consider the twa set partitions

ﬂ_'lfﬂﬂ and ﬂn_ﬂlu"ln"r"l.

yielding the decomposition ({1, A} which we call A-decompaosition (here, X'/fA means the set
of arbits of the group A an the set X'|. The decomposition induced by the full automorphism
group, the Aut{S)-decomposition, is called TDA (faclical decomposilion by avlomorphisms).

3.1 Lemma FLet & = (V.B) be an incidence struclure. Let A < Aut(S) be a group of
automorphisma. Then the A-decomposition iz factical.

Proaf: Let p € £}; and B € A; be a point /block pair from the i-th point and the j-th black
class, Then for any a € 4, p* € P, and B* € B, and pe B <+ p" £ B" holds. From the
fact that a induces bijections on }; and A; we deduce that the number of incidences in each
row s a constant, o, ;, and the number of incidences in each column is a constant, 3,;. 0O

We consider as an example the decomposition by antomorphisma of the two Steiner systems
on 13 points (compare also Mathon, Phelps, Rosa [6]]. One is cyclic and has an antomor-
phism group of order 39 (cf. Figure 1]. The other one has an automorphism group of order
G. This group leads to a rather fine TDA-decomposition [ef. Figure 2],

E"E‘ o | =1 EHEIEIL:'.
FIME A ]
E'%I al_ 0 nE_'l]:u - 5
. u] ’E] s B
a =] [ =] =]
E.tﬂ ol 1575 DUE' DJ_E
] ] ol oo
=] o =] =] 3] =] 13 13
oL o nnn:lﬁl i DDEH 13 3 3

Figure 1: TDA decomposition of the cyelic STS(13)

One decomposition is always possible, it is called the trivial one and consists of the diserete
decompoaition where each point and each block form a single part in {1 and A respectively.
This decomposition is in fact the A-decomposition in the above sense if the antomorphism
group A is trivial. The matrices (a; ;) and {3 ;) from the row-tactical and column-tactical
decomposition scheme coincide with the incidence matrix of the geometry,

T]’lﬁT‘t‘ are UL]]’:F dﬂL’U[]I[JUH;LiEJ]]H '|'.'|II‘I‘L'-|:I 'L].Lil ralk ]]EL’!‘:‘SHT“_‘,‘ COTIes ﬁ'urn LJ!'hi.L!‘l Ur(ﬁl’lﬂi[l autoror-
phism (sub)groups, For example, each configuration admits another trivial decomposition
W]’liﬁ]’[ ]]-HH LJ[I]_}" Qe dﬂL'LiI[]I]JUEiLi.IZJ]] r[l-iﬂ.-]'ila 1|ﬂr[|::l_'.-' Ll:lﬂ 'I'l-']]U]t' ‘Irll:}‘ldﬂrliﬁ 1[]-&1.-!'11; T]’liﬁ 1!‘] 1.-]]':
decomposition with r = a =1 and {};, =V and A, = B. Here, o, ; = r and 4, , = k.
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Figure 2: TDA decomposition of second STS{13)

An important notion for decompositions is the following: A decomposition ({2, A) is called
inwariand if the hlocks of (¥ and A are either mapped onto itsell or onto different blocks of the
same decompodition. This means that the seta of blocks of the decomposition are permted
among themselves, Looking at the automorphism group as a permutation group on the
points this means that {0 is a system of imprimitivily for Aut{']. The subgroup which maps
each block onto itsell is normal and will be called the kernel (of the decomposition), If the
kernel coincides with the full automorphism group the decomposition is called characteristic.
Finally we call an incidence matrix indecomposable if it containg no non-trivial TD. We call
the mecidence matrix primitive if it admits no non-trivial invanant TD. We remark that one
wounld like to classify all primitive configurations and build up each incidence matrix by
primitive configurations.

Examples:

1. The decomposition of the Desargues configuration in the example above is net invari-
ant: The antomorphism group is transitive on points but the decomposition contains
one igolated point,

2. The TD for the cube is invariant since the three subrectangles corresponding to the
three dimensions of apace must be permuted. Here, the kernel is the group £ = £ = 4.
The full collineation group 1 an extension of the kernel by the symmetric group Sy on
the set of three dimensions. Tt is isomorphic to the wreath product S5 1 Sa.

3. The decomposition of the affine plane of order 4 into 5 parallel classes has as kernel
the dilatation group of the plane. [t has order 48, The full group of antomorphisms
has order 5760,

4. ."".|.1I ﬂlﬂr[l[l]ﬂ rUF il IZZJ]-HTH‘.'-[.::I!"IHLi.IZZ- TD iH [.]'lt' T]-:' IZJ:II-H L-iﬂ-iﬂ S UATS, Say uf UTdﬂf .

Sinee each collineation permutes the three S-blocks and permutes the 25 3-blocks, it
fixes hoth subrectangles.



4 SyMMETRIC CONFIGURATIONS 14

A symmetric configuration vy consists of n points and » lines such that each line has length
4 and each point is incident with 4 linea, Furthermore, each pair of points is incident with
at most one line. Thus, we have a TD-scheme

We enumerate such configurations for amall o:

Result: The numbers N{uy) of configurations vy for small » are the following:

w:| 13|14 (1516 17 | 18 |
N{uws):| 1|1 [ 4[19|1,972]971,171 |

The auLu::mur]:lhiHm groups hawe the rul]nw'lng orders or distributions of arders:

n=1%3: 5616

o= 14: 330;

=15 15, 30,24, 360,

w=16: 1%,2°,3% 4" 6% ,12',16' 18" , 32" ,1152",

po= 17 11761 2194 gu 40T b gh p2d 17 183672

We will give descriptions of some of these configurations in the sequel. For v = 13 we have
the well known projective plane of order 3. Using a Singer cvele, we may give a eyelic
representation of this geometry: Take the point set {0,1,...,12} and define the following
blocks: {0,1,4, 6},

53 THE SYyMMETRIC CONFIGURATION 144:

The unigue symmetric confignration 144 has the following property: for each point p there
is exactly one point p' not joined with p. So we have a natural partition of the 14 points
inta 7 pairs of points. Dually also the 14 blocks are divided into ¥ pairs. The related TD
is shown in Figure 3. Turning now to the quotient scheme of 49 elements we see that the
empty blocks of this quotient structure form the incidence matrix of the Fano (= 7-point)
plane,

Another description of the configuration 14 results from the TD-scheme
iT

T3 1

71 3

and is shown in Figure 4.  Here two Fano planes are interlaced: each block of the first



Figure 3: The configuration 14,
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Figure 4: The configuration 144 as two Fano planes

Figure 5: The configuration 14,4 as complement of the Baer subplane in P({4]



one 18 extended by a point of the second one to form a 4-block and vice versa. The best
understanding of the situation may be the following (Dembowski [4] p. 305 or Gropp [5]):
Take the projective plane over the field {}'Fl:‘li} and in it the Basr aubplane corresponding to
the subfield *F(2]. Then the configuration 144 turns out to be the complement of the Baer
subplane in the whole plane, see Figure 5. The collineation group of 144 is now generated
by the collineation group of the Baer subplane and the Baer involution. Such a geometry
15 called an elliptic semiplane since for two distinct points p and g there 15 at most one line
through p and g and we have the following generalization and dualization of the axiom of
parallels in an affine plane: For any non-incident point line pair p & B there s at most
one line throngh this point p parallel to B and there i3 at most one point g on B auch that
g = 0. It is called elliptic because the degress of elements are all o + 1.

We note that the configuration 14, may also be cyclically generated: {0,2,3,7}5.

uf
u ]
[m]
|u]
0| O O | o E-"!’".’-'l
5|0 2 2
H =8 52 0 2
o 502 20
O O - -
uf ju
]
|u]
O | o1 O - 3-35
I a2 11
o 5|11 2 1
nl:ﬁ a1 1 2
= =] =]
o mE' 33333
- 2 3011 11
- un-nan-n-ns LR
= 3|1 101 1
= . 9 3{1 1101
=M= =M= 311110

Figure 6: The cyclic configurations 15,



i THE Four CONFIGURATIONS 154

Three of them are cvelically generated:

{0,2,812}% ;| Aut| = 15,
{0,109, 11} | Auf| = 30,
{0,1,9.13}% | Aut| = 360,

Possihle TDs for thess three mrlﬁguraiiurm are shown in Figure 6.

The extension of the kernel K by Aut/R s in the first case (5 = s in the second case it s
5 m S5 where S5 acts as symmetric group on the thres squares on the main diagonal, and in
the third case we have Uy m 55, Here the aymmetric group S5 acts on the five empty diagonal
fields. The third configuration has the following interpretation {t:urnparc Section E}: it comes
from the projective plane of arder 4 by removing a non-incident point-line-pair p ¢ L and
all points on I and all lines through p. The kernel 5 of the TID) iz in this interpretation
the group of homaologies with respect to the antiflag p § L. and it is extended by the group
5.2 PIL{2,4) acting on the line L.

uhnhﬂ_ﬁg—lﬂ
a
O
0

]

0 0

B fiaintaan:

Figure 7: The fourth configuration 154 decomposed characteristically

Figure 7 shows a characteristic TD together with the incidence matrix for the remaining
fourth configuration 154 with [Auf| = 24, This configuration is a substructure of the projec-
tive plane of order 5: Choose in the projective plane PG(2.5) a non-incident point-line-pair,
say the origin and the line L... Now remove the following 16 points: the arigin (0,0), the
12 points (z. 0], (0, y). (z,z),x.0=1,2.3,4 € GF[5) and the three points (2], (3).(4) € L.
Dually we remove the following 16 lines: the line L., the 16 lines through the points
(2),(3), (4) different from L., and not incident with the origin, and the three lines which
join the origin and the points [IJ:I |:]:I|:m]

Note that the subconfiguration 125 also has an automorphism group of order 24; it is a
subgeometry of the affine plane of order 5.

Historically, three of these configurations have already been known to Merlin [7).



T THE 19 CONFIGURATIONS 164:

Sinece these geametries might not be too well known, let us give a complete list of them. We
denote the 16 blocks by numbers and letters 0,1, 2,3, 4,5,6,7, 8,9, a, b, ¢, d, e, . 'We list the
incidence matrices in a row-hy-row fashion. speciflying the set of blocks incident to a given
point as a 4-tuple. An empty space in the following table means that the 4-tuple coincides
with the corresponding 4-tuple of the preceeding configuration one row above, The first four
rows coincide for all geometries, They are

0123 0456 0789 Dabe |

The remaining 12 rows of all 19 configurations are shown in Table 1 {the order of the
antomorphism group is indicated in parentheses). Let us first look for species which are
cyclically generated. There are two configurations whose antomorphism groups have order

16 or 32, Both are indeed cyclically generated:

ll:l {ﬂ. l.-l.ﬁ}ﬂ"' : |.-'hn', = lii;
13] {0.1.5-1-'!}':"': |.4ut = 32.

The configuration with antomorphism group order 1152 15 the affine plane of order 4 where

one parallel class is removed, We are interested in those geometries which have a rather large

group, Here we notice that the three geometries with group order 12,18, 1152 all adomit the

following TT

4 12
41 3

121 3

As an example we show the configuration with Aut = 18, (no 18 in the list). see Figure 3.

i

u] n]
- DD =] -
A LSBT E | Aut| = 18
e e e e dwt = {(23)(67)(312)(914)(11 16)(1315],
= AN 2 S (243(81114)(91612)(101315],
S sm o . (56T)(R10123(9 11 13)(14 15 16)}

Figure 8: A configuration 16,4



1)147a, 1585, 169c, 2444 257e 26a f 349 [ A5cd, 36be, Thdf. Sce f Dade (2)

2 - = - ===, ==, = =, — —, 350 1. 36bd, 38ee, dbe [ Tedf, Jade (1)
3] = =, = =, = =, = = 250,267 f 34be, 85c [, Y6ad, Tode Sae [ 9bdf (1)
4] — —, — —, — —, — =, — —, — = 3¢/, 35ad Iibe, Tede, Sae f 9bdf (6)
) — —. — —. 160d 248e, 250 267 [, 35ad 6be, 30¢ [ 4bdf, Tede, Sae f (2
6] = =, = =, = =, 248« 2500, 267 f . 340d, 36ae, 3e ], Sadf, Tede, Obe [ (1)
Tl— = — = — = — = — —, — — Hice, 37hd, 3da [ dedf Sade 9be f (2]
B = =, = =, = =, = =, = = 26bf 357 [ 36ce, 38ad dodf, Thde, Jue f(12)
B — — — —, — —. — —.25ed 2o f 3400, 35c f, Sade 50 f GTee, Thf (3)
L) = =, = =, = =, 2408, 25, 2adf, 359 [ Ybae, $80d 486 f6Te f, Thde (2]
1) — = = =, — =, — —.25de 2ie f, 350 [ 36ae, 3Ted 48ce The [, Badf (16)
12] = =, = =, = =, = = Hice, 2adf, 5ae, 367 [ $8cd 48¢ [.59c [, Thde (4)
13) — —, — —, — —.240¢, 25de 268 f, 3dbe, 35e f, Sad GTce, Thdf, Dae f(32)
14) = =, = = 16de, 2484 25ae, 260c, 37od, 330 [ 3%, doe £ 504df, 6751 (6]
13 — —, — =, — —, — —, — —, — —.3Tex, 38a [, 390, 49 f Seadf, 6Thf (2]
6] = =, = =, = =, = =, = = 260 367, 3%a [, 3Wd, 49ce, Sodf, The £ (3)
1T = — — = — =, — =268, 2be f, 34 3Thd, 3%ae, 57ce, 59df, 63a f{2)
18] — —, — — 1de [ 2494 Hae 2Te f, 35ed 368 f 300, 48ee, 50a f6Thd (15)

19)147d 15ae, 180 [, 24e [, 268, 20ad 359 [ 36bd, 370, 40be, 5R0ed 670 f(1152)

Tahle 1: The configurationa 16,

8 THE CoONFIGURATIONS 174

There are 1972 configurations 174. Those 26 with an automorphism group of order > 5 are
shown in the following table, They all have the first 4 rows equal to

0123, 0456, D739, Dabe

so we list only the following 13 rows (cf. Table 2). There are only two geometries in the list
whose automaorphism group order is a mltiple of 17, and these two geometries are cyelically
generated:

{0,1,4,6}“7 . |Aut| =1T;

{0.1.5.15}57 | Aut| = 17.
It i3 a task of its own to study and analyze all these 1972 geometries, As an example we
only present the configuration with the largest collineation group {of order 72), see Figure 9.

Note: If we remove the distinguished point and the distinguished block and add 4 diagonal
incidences in the upper right quadrangle, then we arrive at a related confisuration 16,.
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=] O =]
__E = o o u]n —
| o [=[=] =] |"q'u't|
El R Aut = {(12){79)(815){1012){11 16){1417),
B He uj i (132)(71415)(8179)(111613),
CEE e (1432)(6T1115)(817129)(10131416))
Figure 9: A configuration 17,
42147 1586 169d 248 257 Zadf 349y 368 F, 3hde Sedg. Gueg. Thfg, Sre F6)

431) == ==, —— 248e Licd 97 fg 357c 36cf, Sbdy 406 6Bag. Geng. ade f8)
$33) == ==, == == == == == 39cf Judy 49bg G8af Geeg bds f(8)
14} == ==, —— 2400 er Gufy 359f 36og. Jade ABdg. GBef, Theg. Tedf ()
BT} —— ——, —— —— hde 2 fg 359, Mice. Jady 48cg. Theg, Tedf fuef(17)
§23) —— ——. —— —— 25ef Zedyg 350y, 37ce. Badf 43de. 6] Gasg. T g()
(32) —— ——, —— —— 2fef Bdy, ey, 3Tbe. Judf 4307 57 fg. hede. Guegi)
1208) ——. ——, Lide 248d,257e 26 fg. 369c, ATh]. 3ag. dceg. Sedf Bue f. Sbdg(5)
1316) ——. ——, ——. —— 3G7f 29be 36ed, 368g, 3aef 4bfy, 60ef Teeq. Dadgi)
1514) —. ——, ——. —— 27bf 2%ae 35ee I6af, 30by 4efg, 57dy. B8eq. Dedf17)
1744) ——. ——, —— 248 2Ted, 20ae 3594, 367y, 3be [, 4bdy Gafg, 60 [ Beegit)
1864) —— ——, —— 2494 26bf 2Teq Mee 308y 30af G7ef Sadg. Sedf. Ubeg(8)
1916) ==, ==, Ldef 349d, 267e dafg $ocd, 368F 38eq. 4dcf, DHas, Gy, Thdg(d)
1917} ==, ==, ——. —— Bfae ¥ef 850, 36bf, $hed 48 fq, Sadg. 60eq. Theg()
18] ==, ==, == == == == {bhcd304f 396 ddeg bafip, Gheg. Thda 6]
1) ==, ==, ==, ==, ==, ==, == ==, == 4bfg 5Teq. cqg. Lzdg( 18]
1945} —— 1580 1Gbe 2494, 256 28eg 3der 368F, 390y 5Teq. Gady. Todf Gue f(8)
149} ==, ==, ==, == ¥6Br Z2acf 37de, 386f Mag. deeg, 5T 58 [ Gdf g 12)
1959} == ==, —— 248r 256 ey Sdod, 368y 39af Sueg. G7df Sor f, Shdg(12)
I!:.'Iﬁ'.{l::l — mm— —— ——.'lﬂrrf !TM.Lﬂdd.q.ﬂ-I;Hn.Mf. ﬂ!_irlg.lﬁ?'fy.ﬂmg.rlrfﬁj’[li]
1962) —— ——. —— —— 2GRS 2Tby Sded, A58y 3uef 5Tcf Gady. Seeg. Gbdf()
1964) == ==, —=240f Y5er 2Bag Sdeg 3THE, 30cd 5Bbg GTdy. 68cf adef(6)
1968} —— ——. —— —— Zheg 27bd, 3y, 36df, 38as. GTcf, Ghag Kb fg. Dede(8)
1970) —— ——, —— a:::.u,r 26Ty Dede 3Tef 38bg 0ad ADeq. 4bdf Sasq. B8ef(5)
1971) —— —— m»_r W4be 250) 2Ted, 3096, 39 f, Jade 40dg. Geeyg BRag. Th g 36)

1972 14T d, 158 Lafg. 245 f 2by 28ed 36dy, 3Tef, 300 dceg. Shad 6Tas. 555 f(72)

Tahble 2: The configurations 17,
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