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Abstract

The proper linear spaces on 17 pointz are classified. The computation is based on the
paramebers of the geometries and makes extensive use of tactical decompositions, A
specific one, the tactical decomposition by ordering (TDO) which has been invented
by I, Betten and M. Braun in [5] is presented in full detail, The TDO may be seen
a5 the final step of parameters of the geometries. In the current article, the authors
show how the TD can be used in order (o construct geometries, This new metbod
starts by caleulating all possible TD-schemes which the requested geometries may
have, In a second step, all peometries for a fixed TDO-scheme are constructed. This
two-step approach is a versatile tool which may be applied to other construction
problems, too. The corrent work may be seen as an extension of [3] where all linear
spaces on 12 points were classified.

AMS subject classification: 06B25, (G6B30, H1EQD

Key worda: linear space, proper linear space, regular linear space, tactical
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1 Introduction

A lrnear space 18 an incidence structure 5 = (V, ) with a set of points V
and a set of subsetes of V called blocks or lines B such that the following two
conditions are satisfied: Each line contains at least 2 points and each pair of
points lies on a unique line, In this article, we require the set V' to be finite and
denote the number of points by v and the number of lines (or blocks) by b. A
linear space is called proper if cach line containg at least three points and no
line has length v (the last condition just execludes the linear space consisting
of a single line of length v).
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Whereas the number of linear spaces grows rapidly with v only few of them
are proper. Ch. Pietsch showed in [16] that there are 232 929 linear spaces
on 11 points. The current authors determined the 28872973 linear spaces
on 12 points in [3]. All proper linear spaces on up to 16 points are known:
A, Brouwer (6] computed them for © < 15 and G, Heatheote |14] did the case
on 16 points. The current note handles the case v = 17,

Historically, linear spaces were studied among others by 1. Doyven who enu-
merated all linear spaces on at most % points (see [8]). The linear spaces on
10 points were enumerated independently by D, Glynn [10] and the second
author in 1990, The book by L. Batten and A. Beutelspacher [1| contains a
lot of drawings of linear spaces on small point sets.

2 Some More Notions

A linear space is called regulor if for each 7 = 2,... ¢ the number of lines
of length j through a peint p depends only on 7. We denote this number by
|p|; and call it the j-degree ([p] is the usual degree, i e., the number of lines
through p). In [2], the current authors determine the regular linear spaces on
up to 16 points with only few (but probably large) exceptional cases. In the
meantime, one open case could be settled, compare the work by A. Betten,
. Brinkmann and T. Pisanski [4]. We denote the parameters of a regular
linear space by (v] [ple, [Pla, --- o [ple) 88 introduced in [2]. We will alse eall
this the type of the regular linear space. The choice of p is irrelevant according
to the definition. Clearly, a regular linear space is proper if [pls = [pl, = 0.
So, the proper regular linear spaces can be obtained by collecting complete
subcases of the list of regular linear spaces. The number of regular linear spaces

of type (v] [plz, [Pla, -, [ple) is denoted by #(v|[ple, [pls, - . [plo) -

A linear space is an (1, 1)-design if the degree of all points equals a constant r.
H. Gropp has studied (r, 1)-designs with at most 12 points in [13]. From

ol = jf_:'p];-

we get that a regular linear space i8 also an (r, 1)-design (the terms on the
right are independent of the choloe of p 80 is the term on the left).

Fundamental is the notion of a configuration. A configuration of type v.be
{or: (v, bx)) is an incidence geometry on v points with b blocks of size k such
that each point has degree r and each pair of points is contained in at most
one block. A configuration with v = b (and hence also r = k because of the
well-known equation vr = kb for configurations) is called symmetric. In this



case, the type is simply indicated by ©,. The notions of regular linear spaces
and configurations meet sometimes. For example, a configuration 163 is also a
regular linear space with parameters (16[72, 16). This is due to the fact that
a configuration can be embedded uniquely into & linear space by adding lines
of length two: if a pair of pointa is not yet joined in the configuration, join
it by a 2-line., The totality of all these additional 2-lines forms a graph, the
configuration graph, This graph is regular and its degree is called the deficiency
of the configuration {compare Gropp [12]).

Table 1 shows the numbers of linear spaces known so far. The number 3,004,881
of spaces of type (16|72, 16) is taken from [4]. The sequence of numbers of non-
isomorphic linear spaces and proper linear spaces is contained in the article
of H.-D. Gronau, R. Mullin and Ch. Pietach in the Handbook of Combinato-
rial Designs [11]. The number of proper linear spaces on 17 points is new

Table 1
Mumbers of Linear Spaces

proper
v total | proper regular regular
2 1 0 1 0
3 2 0 2 0
4 4 i 2 Lk
3 3 0 2 0
6 1 0 4 0
T 24 1 i 1
& G9 0 4 0
9 354 1 ! 1
1) b2 1 14 Lh
11 232,029 1 33 (0
12 || 28,872,973 B LR 3
13 7 241 4
14 1 22 192 ]
15 114 245,773+ # (15]15,30) Ed

+ # (1530, 25)
+ # (1545, 20)

16 398 | 3306477+ # (16]24,32) 25
17 161,425 Lk




and will be presented in more detail in Section 7. The following cases of
regular linear spaces on 15 and 16 points, which are in fact configurations
are still open: (15|15, 30)=156304, (15]30, 25)=15525;, (15/45, 20)=15,420y and
(16)24, 32)=165324.

3 Tactical Decompositions of Finite Incidence Structures

The kind of geometries we are interested in is a very general class of species.
Dembowski in his influential book [7, Section 1.1] defined parameters of inci-
dence geometries according to regularity conditions (H.m) and {F.n). These
conditions ensure that the number of points which are common to m blocks
(or the number of blocks which all contain n fixed points) is nonzero and does
not depend on the choice of the m-subset of blocks [or n-subset of points).
Thus, (R.0) and (R.0) are equivalent to V # ® and 5 # @. (R.1) means that
all blocks are non-empty and have the same size. (H.1) means that all points
have the same nonzero degree, Dembowski introduces integers s and ¢ and calls
(&,1) the type of the incidence geometry. The integers s and ¢ shall be maximal
with the property that (R.1),...,(R.5) and (R.1),...,(R.t) are satisfied but
(R.s+ 1) and (K.t + 1) are violated. In this notation, a t-design which is not
a [t + 1)=design is exactly an incidence geometrv of tvpe (1,1t). He shows that
up to duality t-designs with large { are of particular interest.

By definition, & linear space satisfies (R.0) and (R.0). As each pair of points
is contained in exactly one block, (R.2) is fulfilled, too. But without (f.1) we
only have the type (0, 0) for linear spaces in general. We may get (00, 2) if every
point 18 contained in the same number of blocks which is true for (r, 1)-designs.
If in addition all blocks have the same size, we get the type (1,2) and this
leads to 2-design. Note that even the type (2, 2) is possible: In this case, the
linear space 8 a symmetric design with A =1, i. e., a projective plane.

Let us hegin with some introductory remarks on tactical decompositions and
applications on proper linear spaces,

Let V = {pi,... ,0x} be the set of points and B = {B,,..., By} be the set of
blocks of a finite incidence structure 5 = (V, B). For a finite set M we call any
decomposition of M into disjoint subsets Py, ... , Fy such that M = L
a set partibion of M and write P F M., A decomposition of the incidence
structure 5 is a set partition P = (P, ..., F;) F V together with another set
partition (@ = ((y,...,0y) F B, Moreover, the decomposition is said to be
point-tactical if for any § < g and any § < h the number

a; = {Be@|peBY (1)

is independent of the choice of the point p € F; (thus, the number depends only



on { and 7 and — clearly — the decompositions P and ). The decomposition
is block-tactical if for any 1 < g and any 7 < h the number

&i = Hpe F|pe B} (2)

is independent of the chowee of B € ¢y, A decompoesition which is both, point-
and block-tactical is simply called faectical In this case we get two integral
matrices A = (ayy) and B = (&) describing the decomposition. Together
with the sizes of the point- and block-classes ([P, ..., [Fgl), ([&h], -0 o [@al)s
we call this the scheme of the decomposition. For a tactical decomposition,
the equation

|Bi| - a5 = Big - |G (3)
holds for all i =1,....9,.=1,... k.

A trivigd decomposifion is obtained by the discrete partition of points and
blocks, where each point and block forms a class of its own. In this case, the
numbers above coincide and we get oy ; = & ; = myy where my; is the (2, j]-th
entry of the 0/ 1-incidence matrix, which is 1 if and only if i € H; holds. We
call this the discrete decomposition.

Another trivial decomposition exists for any incidence geometry S5 = (V, B).
Weput g =h=1with F, =V and , = B and obtain the decomposition
P = (F) of points and ) = ((} ) of lines, This decomposition is tactical if and
anly if the column and row sums of the incidence matrix are constants, usually
denoted by & and r, respectively. In this case, the decomposition schemes are

(4)

where we indicate in the top left position which kind of numbers is contained
in the scheme. We call this last decomposition the all-in-one decomposifion.

In the sequel, we will often show incidence matrices for proper linear spaces. As
such a matrix is not unigue we will always show canonical incidence mafrices
for the geometries, This means that a specific permutation of points and blocks
iz applied which takes the incidence matriz into its column-lexicopraphic
maximal form.

Example 1 The smallest proper linear space is the configuration 75, the
projective plane of order 2 (which has an automorphism group of order 168). In
Figure 1, we have the famous picture of this plane together with the canonical
incidence matrix and the all-in-one decomposition. &

Example 2 As there is no proper linear space on 8 points the next example
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Fig. 1. The Fano-Plane

is the unique one on 9 points, It is better known as the affine plane of order 3
and has an automorphism group of order 432, This proper linear space is also
a configuration 9412, and we have the all-in-one decomposition in this case
as well. In Figure 2, we show a drawing together with the incidence matrix
and the decomposition schemes, Clearly, 3, = [Py co, /|Gh| =9-4/12=13
according to Equation (3). @
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Fig. 2. The Affine Plane of Order 3

In the following, we will make use of tactical decompositions of all kinds, in
particular those which are point-tactical, but not block-tactical {or the other
way round). We also need the well-known ordering of set partitions, Therefore,
let P, P'+ M be two partitions of M as a set with P = (P, Py, ..., F;) and
F'= (P, F;, ... F,) and put

P<P e ¥i=1..,9g33<h: FCF,. )

We call P a refinernent of P as the classes of P are uniong of complete
classes of P. We also say that P' is coarser than P. It can be shown that this
ordering gives a lattice of sef partitions. For anv two set partitions P, P - M,
the infimum P A P is formed by the non-empty intersections of the classes of
P with the classes of P’ and the supremum P v P is the finest set partition
of M whose clagses can all be written as unions of whole classes of P and of
whaole classes of P,



4 The Tactical Decomposition by Ordering

In general, proper linear spaces are incidence geometries without regulanity
apart from the trivial ones {R.0) and (R.0) together with (R.2). In order to
study this quite general class of objects we employ the concept of tactical
decompositions introduced in the last section. A refined version, namely the
canonical tactical decomposition which s obtained by ordering (the so-called
TDO) has been introduced by D. Betten and M. Braun in [5]. This algorithmic
tool will be presented in the current sectiomn.

The TDO-method leads to a decomposition of the incidence geometry and
thus comes together with integral matrices describing the decomposition, the
so-called TOO-scheme, The TDO can be computed for every finite incidence
geometry. Its most useful property 15 that it is invariant under isomorphism
of incidence geometries and may thus be used for classification purposes. The
concept of TDO-decomposition is based on the parameters of the geometry
which are easily obtained by counting. In order to get a tactical decomposition
one goes on with the parameters as far as possible, L. e, till no two points or
blocks can be distinguished within the decomposition. This means that the
resulting decomposition is tactical. The TDO-scheme may thus be seen as
the final step of parameters for the geometry (we will discuss parameters of
geometries in more detail in Section 5).

In order to compute a transversal of the isomorphism classes of a given set
of geometries, one may apply the TDO in two different ways. First, it is a
handy tool to verify quickly that two given geometries are non-isomorphic,
On the other hand, one may also speed up the search for isomorphisms or
automorphisms of geometries, The TDO partitions points and blocks of the
geometry and the classes of such a partition are preserved by the group of
automorphisms.

The T is obtained by application of the TDO-algorithm, In order to de-
gcribe this procedure briefly, it is wseful to note that an arbitrary decompo-
sition of points and blocks of an incidence matrix can be refined to become
either point- or block-tactical, Here and in the following, we identify an inci-
dence structure on a set of points V = {py. ... , g} with its incidence matrix 1.
We write § = (V, B,I) and identify rows and columns of I with points and
blocks, respectively.

Lemma 1 Let I b an incidence matriz of size v xband PV and Q F B
be arbitrary decomposifions of rows (points) and columns (blocks) respectively,
Then there erists o decomposition P' = P such that (P', Q) is point-tactical,
Moreover, the coarsest P' with this properly is uniquely determined. On the

other hand, there also exists a refinement ( < @ such that (P, Q") 13 block-



tactical. The coarsest Y with this properly is uniquely delermined.

PROOF. Let P and ) have g and k classes respectively. Call them
P, B ... Fyand 4,0, ..., @y Consider separately each class of the de-
composition P. For each point p;, compute the type (f (), ta(m), o o talm) ).
where

tilp) = {B € Q; | pi € BY|

for j = 1,... ,h is the number of incidences of p; with blocks of (. Within
the classes of the original decomposition P, we now reorder rows according to
these type vectors, This is done by sorting the rows with respect to their type
vectors in a lexicographic manner. Collecting rows of equal type and putting
them together into classes we obtain a finer decomposition P < P.

As the rows of each class of P have equal type vectors, the decompesition
(P, (2] 18 point=tactical. Clearly, it is the coarsest one with this property re-
fining P. The second statement about the existence of a refinement ' = ()
follows by duality.

A few remarks are in order: First, we would like to stress that the specific
lexicographic ordering which is applied for rearranging rows is not too impor-
tant (whether we sort lexicographically increasing or decreasing, for example).
Obviously, the resulting decompositions differ in their ordering of classes but
this does not bother us too much. What is really important is that we always
get the same result from this algorithm when applying a fixed ordering. We
will come back to this point later.

In addition, it should be remarked that when starting with a block-tactical
decomposition (P,(Q) the resulting point-tactical decomposition (P, Q) ob-
tained from Lemma 1 may lack the property of being block-tactical [clearly,
the dual statement also holds for block-refinements and tacticality on points).
Thus, decomposing in one direction may destrov tacticality in the orthogonal
direction.

Now, we can proceed to describe the TDO procedure. In order to get the
T, we start with the trivial all-in-one decomposition of points and blocks
consisting of a single class each, We are now going to refine the decompositions
of points and blocks in an alternating manner. In each of these steps of re-
finement, we either obtain a point-tactical decomposition of points or a block-
tactical decomposition of blocks., This refinement is based on Lemma 1. More
precisely, we employ the following algorithm, which we call TDO-algorithm:



Put P = (V) and @' := [B) the all-in-one decomposition. If the de-
composition (P, Q) is not point-tactical we refine P! and get a new
decomposition P F WV with P < P This is done in such & way that
(P, Q") is point-tactical and P'* is the coarsest decomposition refining
P with this property (such a refinement exists and is unique according to
Lemma 1), If { P Q") is also block-tactical, we put (M? = Q1. Other-
wise, we determine Q1% = QU such that (PR %) is block-tactical and
' is the coarsest refinement with this property. At this point, we have
obtained another decomposition (P Q%) of 5 which is not necessarily
point-tactical. We may now iterate these two steps of refinement. forming
new decompositions P+ < PO and QUHY < 04 for § = 2,3,... . Even-
tually, we arrive at a decomposition (P, Q%) which is both, point- and
block-tactical. We call this decomposition TDO-decomposition.

The fact that the TDO-algorithm really terminates after a finite number of
steps follows from the assumption of 5 to be finite, In each step, at least one

decomposition is refined strictly and thus, this process of refining the decom-
pogitions and reordering points and blocks will come to an end. In addition,
the trivial discrete decomposition is tactical as we have pointed out previously,

The decomposition-matrices 4 = [oy;) and B = (3;) of the TDO-decom-
position together with the vectors [|f’]m g |f’9[::'|} and {|Q'ir| ‘o |Q‘E]|:I

form the TDO-scheme,

Next, we display the algorithm for computing the TDO in some abstract

notation which is close to real programming languages.

Algorithm: computing TDO.
input: A v x b incidence matrix I of an incidence structure 5 = [V, B,1I).
output: an integer ¢ and decompositions P F VW and QY F B,

TDO (v, b, 1)

int 1;
i:=1:
pin = (¥);
Q) = (B)
do
if (PY Q1Y) is point-tactical then
Pl — PH?;
else

determine P+ < Pl coarsest such that

(PU1 QWY is point-tactical

Jf such a refinement exists according to Lemma 1
if (PY1 Q1) is block-tactical then

Qi+ = O,



else
determine QU+ < % coarsest such that
(PUL QU+ is block-tactical
J/ such a refinement exists according to Lemma 1
=1+ 1;
antil P = P11 and QH] — Qli—l:l
return i, P, QW // this is the TDO decomposition

The mast important property of the TDO-decomposition is the following: We
call a decomposition canonical, if it is obtained by an algorithm yielding the
same decomposition for every element of the same isomorphism class of inci-
dence structures. The following lemma proves that the TDO-decomposition 18
canonical. This means that geometries differing in their TDO-schemes are not
isomaorphic.

Lemma 2 The TDO-decomposition of a finile incidence structure exists and
i3 uniquely defined i the sense that if 12 independent from the choice of 5 =
(V,B.I) out of the cluss of incidence struclures which are isomorphic lo 5.
Moreover, the decomposifion is also canonical, . e., the ordering of classes is

fized.

PROOF. In the description of the TD(O-algorichm above, we already showed
that the stated tactical decomposition exists. In order to show the indepen-
dence of the resulting decomposition from the particular choice of 5 out of
its isomorphism class we note the following: Up to duality, the basic step in
the TDO-algorithm is a refinement of a partition P F V to a new parti-
tion PUHY = P gueh that the corresponding decomposition IZP':‘-"'”,QH:'] is
point-tactical. Such a refinement is always possible aceording to Lemma 1. In
computing P+, gne has to ensure that this refinement is always obtained in
the same manner, for example by sorting the type vectors of the points with
respect to the current decomposition of blocks lexicographically. The result
of the TD{-algorithm depends heavily on the chosen ordering of these type
vectors. However, once a fixed algorithm for determining the refinement. PV
is chosen, the result of the TDO-algorithm is independent from the ordering of
pointg and blocks within the original incidence geometry 5, This means that
the result depends only on the somorphism type of S and not on the specific
labelling of points and blocks in § = (¥, B, I).

It follows from Lemma 2 that the decomposition of the TDO respects the
orbits of the antomorphism group. This means that its classes are unions of
whole orbits of the automorphism group of 5. We call such a decompesition
characferistic. A fine decomposition by the TDO may thus be exploited duor-

10



ing the search for possible automorphisms of the geometry: only points {and
blocks) of the same class can be mapped on each other. In other words: the
T allows to colour the points and blocks in such a way that the colouring
is respected under somorphisms. This fact may aid the search for automor-
phisms or isomorphisms between different structures (compare |10]) and can
also be used to speed up the search for a canonical form of & given incidence
AtLrix.

Example 3 On 10 points there i8 & unique proper linear space. It is the
affine plane of order 3 with one parallel class of lines of length 3 intersecting
in an additional point (these lines are in fact 4-lines). The automorphism
group has order 108, The result of the TDO-algorithm for the incidence matrix
of this plane is shown in Figure 3. Heavy lines indicate the classes of the
decomposition. During the refinement step, we have rearranged the classes
of the refined decompaosition in a lexicographically decreasing manner. This
means that we first have the class of 4-lines and then the class of 3-lines.
For the points, we first have the point with three 4-lines on it and then the
remaining 9 points with only 1 line of length 4 and 3 lines of length 3. The
TD(O-schemes are shown to the righe. @
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Fig, 3. The Unigue Proper Linear Space on 10 Points

aaja

Example 4 Un 11 points there i3 again a unique proper linear space. It may
be seen as the dualized complete graph on 6 points, Kg, with a parallel class
of 3-lines intersecting in an additional point (in the dual space where blocks
become points). It has an automorphism group of order 120 isomorphic to
5. In the action on the 6 points of the graph, we get a transitive action of
5, on 6 points. In Figure 4, we show the incidence geometry and the TDO-
scheme together with generators for the automorphism group. Here and in the
following we only show the TDO-scheme containing the (¥ if nothing else is
stated. The values 3, ; can be deduced via Equation (3). On the first 5 points,
we have the group Ss acting in its usual manner, generated by a S-cyele and a
transposition: o = (1, 5, 4, 3, 2) and + = (1, 2. On the points {6, ..., 11}, we
see a different action on 6 points. After subtracting 5, we get the permutations
F=1{1,34,2 6)and 7 = (1, 6)(2, 4)(3, 3). Moreover, the map o — & and
7 +» ¥ defines a homomorphism between these two group actions. The two
actions correspond to different subgroups S, of S, These subgroups are not
conjugate in Sy as they are of different type as permutation groups (one has

11
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Fig. 4. The Unique Proper Linear Space on 11 Points

a fixpoint, the other has none). Nevertheless, it is well known that there is an
outer automorphism of 5; mapping one group onto the other, &

5 Parameters of Linear Spaces

The parameters of geometries which will be presented now differ from those of
Dembowski in (7). This is due to the fact that linear spaces do not necessarily
satisfy any of the regularity conditions (R.1) or {ﬁ.l]. The following definitions
appeared already in [3], where they were used during the construction and
classification of linear spaces on up to 12 points. We repeat from there, We
give all definitions for linear spaces, however, they can easily be adapted to
more general incidence structures. Let 5 = (W, B) be a linear space,

5.1 The line type or paramelers of the first kind

The pararmeters of the first kind of a geometry are the lengths of lines. Define

ay = 7 lines of length ¢ in 5. (6]
The vector a := (ag, @, . .- ,a,) i8 the line type of 5. For convenience, the line
tvpe is often written in exponential notation, i. e., (2%, 3%, ... ,v®™)]. Here, ex-

ponents 1 may be left out while terms with exponent ) may vanish completely.
Clearly, in a linear space the equation

) -5 6)e "

is satisfied.

12



Example 5 The proper linear spaces on 7, 9, 10 and 11 points (Examples 1,
2, 3, 4) have the following line types: (37), (3'%), (37, 4%), (3'%, 5). @

Example 6 On 12 points there are three different (non-isomorphic) proper
linear spaces (cf. Figure 5). Two correspond to the Latin squares of order 4 in
a way described in [2| (the automorphism groups are of order 576 and 192),
The third space turns out to be the dual of the affine plane of order 9, 1. .,
a configuration 1249, admitting a parallel class of 4-lines, This space has 432
automorphisms. The first two spaces have line type {31'5, 43} whilst the third

has (34, 47). =
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Fig. 5. The Proper Linear Spaces on 12 Points

5.2  The point case or parameters of the second kind

Often, considering line types suffices to distinguish between different spaces.
If it does not, one may take a closer look at the parameters of the geometries,
Therefore, we define parameters of the second kind. Let S = (V, B) be a linear
space of line type a = (2%, 3%,... ,v™). For p e V let

by o= ([plo,-- - [Plas [p]e) (8)

13



be the peint type of p (recall that [p]; is the number of lines of length j passing

through p). Sometimes, we prefer exponential notation by = (pFe  2F2)
Clearly, for any point type the equation
F .
2 lplii-1) = v-1 (9)
i=2

holds. Now, we forget about the particular finear space 5 and instead consider
the set of all linear spaces with a given line tvype a. As each point in a linear
space has a well-defined point type, we may solve (9) in all different ways
to get a list of pufafive point types. However, we should solve (9) under the
additional restriction

ply < ay (10)

for § = 2,...,v. Now, we proceed in the following way:

Let by, by, ..., by be a complete set of solutions to (9) and (10). Denote the
t=th solution by by = (b, ...  Byz). Fori=1,... Z let
G = {p€V|by=bi) (11)

be the number of points of type b; in the geometry. The vector (¢, ... ,c¢) I8
the point type distribution or the peint case of the geometry. For a point type
distribution, the following linear equations hold for all 7 with 2 < 5 <

2 _ciby = jay. (12)

Apart from the obvious equation

N =u (13)

we get that for any pair of (distinet) numbers §;, and jg in {2,...,v}, the
inequality
¢
S b by € oay -ag, (14)
im1

is satished. Here, equality holds if and only if every line of length j, meets
every line of length ;. In addition, the sclution must satisfy

o (3) < ()

14
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We carelully have to distinguish between algebroically possible and geornetri-
cally realizable parameter sets. There may exist a solution to Equations [12)
(153) — what we call an algebraically possible point case — which does not
appear a8 a valid point case of a linear space 5 with line type a — what we call
a geometrically realizable point case, See |3| for a deeper discussion of such
realization problems. In that article, a lot of tests for geometrical realizability
are discussed. They are useful for reducing the number of possible parameter
sels.

In the next section, we generalise the recaleulation of parameters and extend
this computation to arbitrary depths. This is what we call the algebraic ap-
proach to the parameters of linear spaces. We will show examples of these
calenlations in the next two sections. Note that in [3], parameters of the first,
gecond and third kind are used for the computation of linear spaces on 12
poinks.

6 Construction via TDO

It has already been pointed out that the TDO) may be used for classification
purposes. However, in this article we use the TDO in a rather different way.
This new method uses TDO {or better: TDO-schemes) in a more restrictive
sense, leading to & new strategy for construction. Instead of post-classifying
a given set of objects we may reverse the process. Thus, we may start the
construction of objects by initially computing possible TDO-schermes which
the requested objects may have. We do this on a purely algebraical basis by
caloulating parameters in a way we have discussed it in the previous section.
However, here we compute parameters of even higher kinds, i. e., also of fourth
kind, of fifth kind and s0 on. We have to go on with this refining process of
parameters as far as possible, this means, till we end up with a TDO-scheme,
This parameter calculation is the first step of our algorithm.

As a second step, we try to realize the so computed schemes and obtain geo-
metries for every single TDO-scheme, The geometries for any fixed scheme are
closely related in the sense that their final parameters coincide. Usually, these
lists of geometries are already very short and easy to handle. However, we
may get a large list of possible parameter cases. The point is that these cases
are disjoint in the sense that they contain non-isomorphic geometries. Thus,
we may simply add the results of the different subcases in order to obtain
complete lists of geometries,

The process of computing possible TDO-schemes can only be sketched in
this section. It is a rather difficult task, in particular if parameters of higher
kinds are involved. In any case, refinement of the parameters means solving

=
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diophantine systems of equations similar to those presented in the previous
section. This can be done in a mostly algebraic manner. However, in order
to reduce the number of possible cases we apply some tests for geometric
realizability already at that stage. Refining the parameters step by step leads
to a tree, the parameter trec. The nodes of this tree represent the parameter
sets of different kinds. The line cases form the first level in the tree, the second
kind of parameters the next level and so on, The initial parameters may be the
number of points together with some restrictions like the exclusion of 2- and «-
lines, for example. Starting out with this information, the higher parameters
are computed step by step. Recursively, we first compute the pessible line
cases, then the point cases and so on. Eventually, we arrive at a tactical
decomposition where no further refinement of parameters is possible, This
decomposition i the TDO-decomposition which we have to take into account
for our construction purposes,

It is important to mention that a TDO-scheme may be diserefe, which means
that all its point- and block-classes have gize one. In this case, the TDO-
scheme coincides with the incidence matrix and we identify the geometry and
its TDO-scheme. We may require a discrete TDO-scheme to be geometrically
realizable, i. e., the matrix of the TDO-scheme shall describe the incidence
matrix of a valid linear space.

If a TDO-scheme is not discrete, there is the need for another program which
constructs the set of possible geometries for that scheme. A priori, it 15 not
clear whether or not a given scheme is realizable at all. In case that it is, the
realization may or may not not be unique (see the following section for a lot of
examples), However, our generator for geometries should produce all possible
realizations up to somorphisom.

Summarising, we have two parts (ef. Figure 6):

(1) TDO-scheme calculation:
We compute all possible parameters for the requested geometries. Start-
ing from an initial parameter sitnation, say the number of points or a line
type in the sense of Equation {6), we caleulate all possible TDO-schemes
for this case, This means that we build up the parameter tree in a re-
cursive manner. In each step, a parameter set ig trhied 1o be refined in
order to obtain another parameter set of a higher kind. Thus for every
line type, we compute all possible point cases, and for every point case we
compute all possible parameters of third and even higher kind. Proceed-
ing in this way, we get more and more closer to the real structure of the
geometry. This is the algebraie part of the procedure. Note, however, that
this part is not purely algebraic, since we consider already at that stage
several tests for geometric realizability. Some of these tests are deseribed
in [3]. Sometimes, a parameter set cannot be refined any further. This

16
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Fig. 6. The Construction Algorithm with TDO-Caleculation

can happen for two different reasons. First, we may find out that there
exists no parameter set of higher kind refining the current parameters, In
this case we have run into a dead end and we should go back and procesd
with another parameter set. On the other hand, we may have arrived at
a decompozition which is tactical in both directions. A decompaosition of
that kind cannot be refined any further. In this case we have found a
possible candidate for a TDOwscheme of the requested geometries. Such
a scheme may be either discrete or not. In the first case, we are finished
as we got the incidence matrix of a valid linear space [recall that we re-
quire a discrete TDO-scheme to be geometrically realizable). Otherwise,
we pass the scheme to the geometry constructor,
(2) Construction of geometries:

Every non-discrete TD-scheme of (1) may or may not be realizable.
This means that it i8 not clear whether or not for a given TDO-scheme
there exists a geometry for it. In case that a TDO-scheme can be realized,
the realization may not be unigque. After all, a quite general program to
construct geometries defined by a given TDO-scheme is necessary. In ad-
dition, this program shall compute the possible realizations up to isomor-
phism. MNote that for construction purposes, it is sometimes advisable to
reorder the classes of the decomposition. This is due to technical reasons
within the generator of geometries. The generator applies backtracking
and the behaviour of algorithms of these kinds is very hard to estimate.

OUmne remark may simplify the calculation of TDO-schemes: It is possible to
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omit the 2-lines in the TDCO caleulation as the 2-lines can always be recon-
structed uniquely afterwards. Moreover, even when constructing geometries
one may get along without 2-lines as well. Clearly, this remark does not apply
to the construction of proper linear spaces which do not have any 2-lines. But
we should keep this remark in mind in case that we plan to use the TDO-
method for the construction of a different kind of species.

The depth at which a TDO-scheme shows up in the parameter tree is not fixed.
In fact, it may vary from 1 t0 2v where v is the number of points (which s
less then or equal to the number of blocks by the famous theorem of de Brujin
and Erdas).

We first look at the TDO at depth 1 or 2: It is possible that a line case is
already & TDO. Namely, if the line case has only one type of lines then the
decomposition is tactical and therefore forms a TDO. Consider, for example,
the trivial linear spaces consisting of just one long line of length v or the space
consisting only of 2-lines (the complete graph K ). These two spaces have line
type l['rJ]] = (v) and [2{:]] leading to TDO-schemes of size 1% 1:

w1 amd

None of these two spaces is a proper linear space but, for example, every non-
trivial Steiner-Syvstem 5(2, k,v) is a proper linear space on v points with a
TDO-scheme of size 1 x 1. Thus, the 80 5(2, 3, 15) are configurations 15:35;.
Ag a matter of fact, there is no 1 ® 1 TDO-scheme for proper linear spaces on
17 points.

Another TDO which is detected early in the parameter tree is that of a 1 x m
decomposition. In the corresponding linear space, all pointg have the same
point type and this is what we call a regular linear space. For m = 2, these
T are computed at level two in the parameter tree. To be precise, a regular
linear space with parameters (v|[pls, [pla. - . ., [po]) corresponds to the following
TD-scheme {with possibly empty block classes):

R S PR ¥ PR 1Y
el Ugh e vlv o ..o3 02

o

EH

Note that [p|, is either 0 or 1 and in the latter case the space happens to be
the long line {which by definition i not a proper linear space).

In contrast to these cases we have the discrete TDO which are detected rather
late in the caleulation. Note that when refining partitions we are usually split-
ting more than one class at a time., Thus, even the discrete TDO-schemes do
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not need 2o steps for computation.

Example T The proper linear gpaces on 13 points turn out to have a lot of
different parameter sets. First, we list all possible TDO-schemes (cf. Figure 7).
The number of geometries in these casesis 2.0, 1, 1, 1, 2 (the second one cannot

(1) | 26 ()5 15 1 (3)|6 & 5
13 | 6 30 5 1 1|0 0 6
W2 3 0 122 2 1

(4)[1 3 12 (5)]13 (6) |3 16
1211 1 3 13| 4 1211 4
1040 0 103 0

Fig. 7. The TD{)-Schemes for Proper Linear Spaces on 13 Points

be realized). More precisely, we have the following species:

(1) The two Steiner-Triple-Systems on 13 points,

(2) None.

(3) The dual consists of cubic graphs on 8 points joined with 4-regular graphs
on § points. There is an additional parallel class of lines of length 6 which
intersect in an additional point.

(4) Configurations 12; together with two different parallel classes: three lines
of length 4 and four lines of length 3 forming a 4 = 3 grid. The 3-lines
intersect in an additional point.

(8} The projective plane of order 3 or the (unique) symmetric configuration
13,.

(6) The two Latin squares of order 4 from Example 6 again. Here, the three
4-blocks intersect in an additional point.

The line types are (3%%), (3'% 47), (3", 4%), (3%, 47), (4"%), (3"%, 5%). Figure 8
shows the parameter tree for the TDO-schemes, The nodes in the first level
stand for line types, The mumbering of these types i8 not continuous as there
are a lot of line types which are not realizable. We do not show them here,
theyv are simply the algebraic solutions to Equation (7) of Section 3. The
nodes at level two represent point type distributions. In branches 1 and 5, the
TDO-scheme s finished as we only have one point type. In all other cases,
there are two different point tvpes and the decomposition is not necessarily
block-tactical. In branch G it is and this will be recognised in the next step.
In branches 2, 3 and 4 we have another refinement of lines at level 3. Here,
some 3-lines or 4-lines are divided into different classes because of the number
of incidences which they have with points of different type. In level four, all
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resulting decompositions are tactical. Note that apart from the line type in
all cases the first possible extension (refinement) of parameters is successful,

indicated by the ones labelling the nodes. @
;_____-__-_:.:::__..- ::-:::::_-q':?-—____ .
o & @ TR TV A €T
o o o o O O
@ @ I @
© @® @
1 ] 3 4 5 fi

Fig. 8. The Parameter Tree on 13 Points

T The Proper Linear Spaces on 17 Points

This section containg the results of the computation and classification of
proper linear spaces on 17 points. Table 2 shows the results by line type
(second column). A particular line type may or may not be realizable as a
TD or even a8 a geometry. Therefore, we have more line types than shown
in the table (the table shows only realizable line cases, i. e., those which lead
to at least one TDO). The number in the first column indicates the line type
number.

Column 4 indicates the total number of TDO obtained for that particular
line case. For a TDO, we have to distinguish two cases: either the TD( is
discrete or not. Column 5 shows the number of discrete and non-discrete TDO,
The overall number of realizations of non-discrete TDO (for a particular line
case) is listed in column 6 (under ‘GEO (n.d.)"). Non-diserete TDO may have
multiple realizations as it happens for instance in the last row with line case
(3%, 5, 7). There are 23 realizations of a single non-discrete TDH) (we will come
back to this parameter case later). Buc it is also possible that a non-discrete
TDO does not; possess a realization. For example in the preceeding row, the
line case (3%,4% 5,6) leads to a non-discrete TDO which is not realizable.
Interestingly, the line case (3%, 4% 57) one row above leads to a non-discrete
TD) which has a unique realization (see below),

The last column lists the total number of geometries for each line case. This
mumber is the sum of the geometries from discrete TDO and non-discrete
TDC. At the bottom of the table, the total number of geometries and TDO
cases is shown.
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Table 2

The Proper Linear Spaces on 17 Points

no. | line case | TDOnd-no. | # TDO= d. + nd. GEOD (n.d.) GEO
1 (3% 5) 1 1 = 0+1 157,151 157,151
fi (3% 4% §) 2—6 1,671 = 1,666+ 5 54 1, T20
T | (390 4% 5 771 1,280 = 1,215 + 65 184 1,399
B (38 47 5) T2 —EBd 126 = 112+ 13 44 156
9 | (3 4% 5 BO — B8 169 = 165 +4 127 202
| (3 47 5 8O — 105 111 = $+417 i 124
11 | {3*2495) | 106 —117 3T = 25412 g 34
12 | (3*0 45 | 118—118 I = 1+2 0 1
13 | {3 4™ 5) 13) 1 = 0+1 1 1
14 | (3642 5) | 121 -1 4 = 0+4 3 3
15 | (3" 4" 5) 125 1 = 0+1 0 i
16 | (3 4'®5) | 126128 3 = 043 2 2
17 | {34 5) | 129 —130 2 = 042 i i
23 (3% 54 131 — 200 BTO = 8O0+ 79 205 1, (05
29 | (3% 4% 5% [ 210 —220 12 = 1+11 3 4
30 | (3847 5Y | 221 —223 3 = 043 i 0
31 | (3045t | 224 —229 6 = 0+6 b &
J2 | (3% 4%5Y | 230 -231 2 = 042 1 1
33 | (37 410 5% 232 1 = 041 i 0
37 | (3t 4M el 233 1 = 0+1 { i
309 (4% 5% 234 1 = 041 1 1
40 (372 5T 235 — 237 3 = 043 1 1
48 | (3% 4% 57) 238 1 = 0+1 1 1
67 | (3*" 4% 5 6) 234 1 = 0+1 i i
159 [ (3% 57 240 1 = 041 23 23
4,319 =4079 + 240 157,846 161,925
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Finally, it should be remarked that for construction purposes, the non-discrete
T are numbered sequentially, starting with 1 for the TDCY of line case
(3*2,5). Altogether, we have 240 non-discrete TDO. Column 3 indicates the
non-digerete T numbers within each line case.

Figure 9 shows the parameter tree of proper linear spaces on 17 points. Only
the subtree of non-discrete TD) is shown here. Due to lack of space, we can
only show parts of the tree. Line cases 7 and 13-39 are remnoved from the figure,
The nodes at level 1 correspond to sets of parameters of depth 1 of possible
peometries, Leaves are TDO-schemes and may occur at arbitrary level, The
non-diserete T numbers are shown in the line at the bottom.

Let us begin with an example of a TDO and consider line case no 1=(32,5) in
the first row of Table 2. In the parameter tree, this case is the leftmost branch
of the tree. Using the TDO calculator, we get a unigue TDO at depth 3:

point type distribution: oy ;|1 42

line tvpe:
. * o= (1, 6) = 5l &
(3, 3%)
12 % (0, 8) 120 8
501 3012 o |1 30 12 oy 511 30 12

—+ a@l b= 53160 =~ 12|05 3
120 2 3 1210 5 3 516 0

Note that in step two (after computing the point type distribution) we have
a point-tactical decompesition which is not block-tactical. For the generation
process, it proves to be useful to exchange the two point classes in the TDO as
indicated after the ~~-gymbol. From Table 2, we find that there are altogether
157,151 realizations. We only show the first one (with trivial automorphism
group) in Figure 10, The incidence matrix is decomposed with respect to the
TDO and shown in its canconical form.

The geometries of this parameter case consist of a configuration 125 overlaid
by a regular graph of degree 5. This graph has a partition of its edges into
i parallel classes. This means that there are 5 disjoint classes of edges and
every vertex is contained in exactly one edge of every class. Each parallel elass
of lines intersects in an additional point, and these extra points are joined
by a S-line. Thus, we get a space on 1245=17 points. It is well known that
there are 229 configurations 123 (see for example [2] or [-‘l]} The mymhber of
S-regular graphs on 12 points is 7849 (cf. M. Meringer [153]). 7848 of them are
connected and one is the union of two copies of the unique S-regular graph on
6 points, the complete graph on 6 points Kg. The configuration 125 determines

22



O U W0 05 T STE A0 A0 SOS0FL CNEEIN R0 600 w0 200 0 e S e e s o o 5a v T o b OF O ONE DN OM SH M OOE B I W B W MW BRI EF S FE

mq o 1 (T T
mm T T i LR odaEnd o
m o o@p @ i ] Dm0
1 i} i i IO L L EoE D ] B

m oo DEDeDDD ® o DO & mEm ai i D

o e QREEEIE@eEd TR .@ QEeRoopo @ oL @ o) a0
mEaE ®
L

B0 00 0 01 Yy T BB

L)

EIREED G D

N

PO QEQa i ¥ i

=
1)
=
5
=
=

- -
-,
!
—

) ) [ iR T

o :
i i

23

Fig. 9. The Parameter Tree of Non-Discrete TDO-Schemes | Shortened)
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Fig. 10, One of the 157,151 Geometries of Line-Type (342, 5]

the graph uniquely as its configuration graph (see the remarks to this point
in Section 2). However, the parallel classes are not unique causing the high
number of isomorphism types of geometries in this case.

In order to give a typical example of cne case in the list, consider line case
no 159 = (3%, 5,7) (the rightmost branch in Figure 9). There exists a unique
TDO-scheme possessing 23 realizations:

1132462

113000

1004110

-y

6
401046 00
G001 421

A uniquely realizable line case is no 48=(3%, 4* 537). We get the following TDO-
acheme from the TDO calculator:

1686
311202

1210221
21040

The unique realization is shown in Figure 11 (in its cancnical form). This
geometry has an automorphism group of order 48. It is generated by the
following permutations (of points or rows):

(12)(58)(612)(7 13)(1014) (11 15)(16 17),
(132)(4612)(51013)(7 148)(91115),
(45)(89)(1214)(1315){1617).
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Fig. 11. The Unigue Geometry of Line-Type (3%, 45, 87)

Fairly interesting is a subcase of line case 23=(3%, 5%). This line case leads to
79 non-discrete TDO. The first is no 131

4 32
16|11 G
140

and has 23 realizations. On the first 16 points, we have the linear spaces of
Franek, Mathon and Rosa [9). They are extended by an additional point in
which all four 4-lines intersect.

It seems instructive to analvee also non-discrete TDCO) which have no realiza-
tion. We display two examples. TDO 238 is rather fine (Figure 12) whereas
T3> 233 has only few point and block classes (Figure 13).

In order to study an example of a discrete TDO-scheme, consider the one
shown in Figure 14 with 17 point- and 33 block-classes. Clearly, the TDO
coincides with the incidence matrix, This TDC was deduced from line case
(3% 4 5). It came up at depth 10. The path labelling the cases at each step
15 11.8.1.1.3.1.1.3.1.1. Here the :-th umber stands for the case at depth 1,
e, g the first 11 stands for the line case 11 (cf. Table 2). The partitions of
points and blocks at intermediate levels are not indicated. These parameters
can be recalculated by applying TDO-algorichm on the incidence matrix, In
the first step, we simply count the column sums vielding 1 % 5, 10 x 4 and
22 » 3 coinciding with the line type. After that, we count the point types and

25
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Ip1ri1o002000000000000
2100100001001 000100
20000100100100101000
1noooo10002000020000
20101100111 000000000
20100000000111110010
200110000011 00000 010
1oo10010200020000001
20001101000001011001
200001110100001 001210

Fig. 12, A non-realizable TDO for line case {3%%, 4%, 5, 6)

g 412231 Aila12231
622010 631020
B (1 3 100 " 5122400
d04011 01013

Fig. 13. A non-realizable TDO for line case (3%, 4%, 5%)

et the follwing point tvpe distribution forming the parameters at depth 2:

|1 10 22
101 4
12
110
04
02

o = b kI
[E= =

1

The next step is another refinement of blocks, By simple counting, we get the
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111111111111 1111111111111111111'111
111110000000000000000000000000000
100001100001001100000000000000000
1000000110001100100000000000000:00
100000000000000001010101001010000
100000000000000000101010120100000
10100010011000000000011000000000:00
HOD1000110100000000010000100000000
1H{Oo0101010010000000100001000000000
HO00010101010000001000010000000000
HO10000010001000001000000010001001
HOOLO000010010000001000000012000110
o001 00100000100000001000000011100
100001 1000000010000010000000101010
HOOLIO00000010101000000100000100001
o001 00000100010100000010001000001
HO10000000010000210000000100010010
HOOoOo010000100001010000001010000100

— [

—

—

Fig. 14. A Discrete TDO for Line-Type (3%, 417 5)
following block-tactical decomposition:

Giill4426844
1l1oo00000

1
2120101000
210000110
401220100
8

02122123

After 7 further iterations one arrives at the discrete TDO of Figure 14 .
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Finally, we would like to point out that the results presented here may be
obtained electronically from our homepage for this article. The address is

http: //www.mathe?.uni-bayreuth.de/betten/PUE/pub_properl?.html
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