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ABSTRACT

The 23,872,973 linear apaces on 12 polnts are constrocted, The parametsrs of
the geometriss play an important rola. In ordar to maks ganeration aasy. we
oonstenct possible peramater sets for geometries first. (poraly algeabraically).
A fterwmrds. the corresponding genmetrios are trisd to constroct. We define
line: types, point types. point cases and also refined line types. These are the
first three steps of & genecal decom position according to the paramesters which
wa sl T, The depth of parameter precalenlation ean ba varied, therahy
obtaining a handy toosl to react in o Hexible way to difforent geades of difficulty
af the problem.  © (Yooar) Johm Wilsy L& Sonsz, Ime.
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L. INTRODUCTION

A linear space P on v points is a collection B = {By. . .. Bo} of subsets of P
called ocks {or lines) such that every block has ab least two points and each pair
of points is contained in exactly one block.

If & point p & P is conbained 10 a block B € B we also say that *p hies on B
or “B passes through p” or “p and B are incident.” The number of lines passing
through a fixed point pis called the degree, denoted by [p]. The number of lines of
|i.-.n51|'| j rnlmins Ihrnugh i 15 called the _F-ufﬁi'rm-.. [,F].:‘ for short. A sysbarm af hlocks
which satisfies the modified axioms such that each line has at least two points and
any pair of points s contaimed in al most one block = called & prelimear space

Usually. such & st of points together with a distinguished set of subsets is called
mncadence geametry A priorl, all points are equal and so there 15 2 notion of egquiv
alence {called isomorphism) which comes from exchanging points. To be preciss,
two such geometries are somorphic if and only if one can be obtained from the
ather by a bijective map of the points which pressrves ineidencess, The isomoe-
phisms of a space with itsell form a groap. the aulemorplism group When we
speak about equal or different. linear spaces we mean somorphic or mon-isomorphie
omes respectively

Sometimes, we also need the nobtion of the dual geometry. 1 can be obtaimed by
reversing, Lhe roles of points and blocks and keeping the relation of inadence The
dual of the dual i= always isomorphic to the original space The dual of a linear
space & only a prelinear apace, in general. (ften one s interssted in obtaining a
complete sef of (different) linear spaces on a given oumber of points. Let LIN{v]
be tlee number of elements nswch a list. For our porposes 36 s important o verify
that such a list of linear spaces on v points s both complele and arredundand, tat
15 no apace is missing amd all spaces in the lst are pairwise differsnt.

The linear spaces on very few poinis are easily hsted; on the ampiy sef, there 15
cane mpace conatsting of oo blocks, O oa single point, there s again one space with
o Blocks, Chnoa bwoepaint set there s one linear space formed by a single 2-line
Juining botl points On three poiots there are two different spaces. The fimst one
s lime of lengtl 3 joining all the points The other one has three 2-lines forming
a triangle COn four points there are tlhires spaces: one d-live a 3-line and thres
Z-lines and six Zlines, So, LIN(e) = L L L2 3 for 0 < v < 4.

Often one visualizes & linear space by dreawing the blocks as lines and the points
as modes in the plane, Sometimes it s necessary not just o deaw steaight lines bt
o allow alss arcs amd cincles for the blodks, Inoa lod of cases. varioos 2-lines are
camitbed Troom the drawing becanse they are redundant [one can always reconstruet
the two-lines if they are lefi out). Figure | shows all linear spaces on five painis

An mcrdence malrir of a geometry (linear space] 15 the 0, lematrix M = [myy)
of size v x b with my; = 1if and only if point o, 7 les on line 7. that s, pyoand By
are incident. For aesthetic reasons however, we replace ones by litile boxes in the
drawings of this article. An empty square stands for a 0. that §s. a sonscidencs.
Figure 2 shows incidence matrices of all loear spacs on five points, Ineidemes
matrices are a handy tool for putting linear spacss on a computer. Butl one s Taced
with the problem that there can exist different incidence matricss for one and the
same space. Namely permuting rows and columns of & given incidence matrix does
ot change the space but often leads to other incidence matrices. It is therefors
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Fl&. 1. The Linear 3paces on Five Points

useful to introduce so-called canenical soeidence malrices. Such 8 matrix is delined
tx be the lexicographically least representative among all the incidence matrices of
a given space The canonical form i= unigque and there exist algorithms to computs
it
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1.1 Historical Motes

The systematic enumeration {and construction) of linear spaces has been started
by Dhoyen [| |] in 1967 He constructed linear spaces on wp to % poants. [ took mors
than 20 FEArS wntil 3. Betten and . [1'|_l,rn11 combimaed in 1SS0 and |'.n1'||p|||:1.-.r| the
5350 hnear spaces on 1 points [il‘ltll‘:]'ll‘:ﬂl!']l'.l‘ltl_"']. The next step was the compoiadion
aof linear spaces on 11 points: 1) Betten and M. Braoan [5] invented the “TO7
I'I'II'.|.|'I!'.II'I 'H'I'III'.I'I ;H TIIH.iI'I.I!‘l Al I]Emithﬂl I'n-r 1:I'ITII|'HI|iI'IE E S El'llf!ll'l il'l'l:'?luri.?l.l'" |mﬂf1|| ‘I'n'r
a preclassification of the geometries Withow the wse of isomorphism lesis they
were alle to give a lower bound for the nombser of linear spaces on 1] poinis. As
a matter of fact, there wers only six spaces more namely 22 920, as compuoted
indepandant]ly by Ch. Pietsch [lﬁ] and [} Beiten together with 0. Kuolse  The
book of L. Batten and & Beotelspacher '|' containg a lob of drawings of linear
spaces o0 small point sets,

Sometimes, linear spaces with certain properties are studied. For example. a
linear space is called propar if it does not contain 2-lines. The proper linear spaces
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com up to 15 points are constrocted by Browwer ['u'"] The proper linear spaces on
1 poinis are also known (of (. Heatheoie [|.-'1]:I Recently. the current anthors
determined the proper linear spaces on 17 points [4].

Caming and Mischke [49] look predominantly at linear spaces where all lines have
the same length and which have an astomorphism group transitive on lines {and
imprimitive on poinks) SGropp 1.3 stcies [:I", I]-Hﬂignu which are linear spaces
whose poinis all have -r]l-.grm r.

Apcther important elass of linear spaces iz the following & linear space is called
regidar if the j-degree of a point depends only on § {and not on the point). In other
words: the j-degrees are all equal in the spaee Tn this case. pesiriction to the lines
of length j gives & configuration for each j. In [2], the current authors determine
all regular linear spaces on up to 16 points {with only few exceptional cases),

The sequence LIN{v). is contained twice in the CRC Handbook of Combinato-
rial Designa [10]. There is a general section aboat “pairwise balancesd designs as
linear spaces™ which is dus to H -D. Gronao, R.C. Mullin and Ch. Pietseh [12] and

a seciion aboul classical geometries by A, Beatelspacher which containg a short
passage on linear spaces [6]

1.2 The Plan of This Article

The general strategy for this article = the following In order to compute linear
spaces we start with the parameters of EmmrﬂTiH. By parameiers we mean for
instance the distribation of lines of differeni ||-.n51|'| in e geomekry |Im-:r Section 'l.::l
Hut we will g further and consider also finer parameters. We call them parameters
ol I'IiEI'H.'.r kind and they cam be sither poant or line parameters. Point types, for
instance. specily the number of lines of any Ei'-'\-.-.n 1nnEth puxinE I:|'|rn-1|_E|'| a fimed
podnt. These point types may ocear with different muoltiplicities in ihe space and
the distribution of point types is called point case (see Section 3 ) We will also
inbrodduwce refined line cases which describe ow the points of different type are
lescated om tle lines of different lengih, This will be done wsing a lot of examples
i Seciion 4.

Frecaloulating parameters up to & cortain step proves o be useful with respect
to eome important points; Fiest, the generation of spaces becomes easier if much
about the parameters is known, Strictly speaking generation means the process of
computing certain 0 l-matrices which serve as incidence matrices for spaces of that
tvpe. Generation 1= done by I::l]-ﬁnﬂ mbo account several constrainis: wsuaally, the
TTFW H.I'II:I i.'.l!'.IIIITIII'I == I'nr 1|'Iﬂ¢.'. sl r-ll'.iﬂli e FH'HIP.'FII'IH':I !;!'.II'I'H.'J II'I'IH'. CHEIE I'Il.'d SV
TTiCETE 11l.l'rli'.|_"' 1|'I¢'.n.'. may I'II'. A ﬁm-.r '|'.|an iﬁl‘lﬂil‘lE n-‘f TawW= I.I'II:I m|||rr|nu l.11l!'] I I'II': n1|m]'.||=.'r
n-f' il'li.'.ilill'.l'llﬂ i!i 1:I'II1I'11 'H';tl'liﬂ tI'II'. Areas I'Il:| |]1i5li Hm:nrrlrﬁm'-ninn. Mﬂn‘.’l'l'l’ET. NN ImAay
always assume Lhat within each part of such a partition of poings (or '|'.||n|'.|u::| all ifhe
WS I:ur codurmns, reapectively] are sorted lexicographically decreasing. Proceeding
i this way one may reduce the pomber of possible matrices considerably inoa lod
Url_'-ﬂ.‘l'-"'_"lﬂ. A !'I-H'JGJI:ITJ I:I:IH:J.UF IJEHEFI': j-ILhIII. I.L"I:iIIH IJE‘:IJJIL'.EEI-it]IJI:IE'I- i.H |]LH||. T_'HI:IUIIi.G:HJ EIJI.'I:I:IE'I-
can often be sasier computed wsing them, The classes of o decomposition give o sort
of precoloring of elements and these colors have to be respacted during the seanch
for canonical forms, A coloring s good if it has & lot of different eolors and in this
case Lhe search for the canonical form = simplified Third it is & priori clear that
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spaces with different parameter sets are not somorphie. Therefore, approdimation
via the parameters will break the probdem up into a ot of small piecss which can
be handled independently and more easily.

We should also mention possible drawbacks of this method: Clearly, there iz a
certain amount of overhead in computing parameters, The computation may take
a while and not each parameter case iz realizable as a linear space  Therefore, we
will develop various tesiz for realizability in the sequel. These tesis are able to
reduce the amount of cases considerably, 16 is also advisable io allow vanation
in the depth of parameter precaloulation, Some cases are easier o handle than
others with respect {0 generation purposes, Thus, only few parameters should be
computed in general, Bub there exist hard cases and it showed to be useful o
apply deeper parameter calculations for them. S0 parameter caloulation provides
a handy tool for adapting io different grades of difficulty of the problem, One
is able to react in & flexible way by choosing an appropriate depth of parameter
precalculation.

Section 3 displays our resulis. For v = T-12 the number of linear spaces 15
shown acrording to the line type.

IE should be remarked that the method of parameter precaleulation really anti-
cipates the so-called TDO process (of. [5] or [3]) during classification of geormetries
This means that for any geometry belonging to a fixed parameter set of kind one
two or thres, computing TDCY reveals exacily these parameters in the first three
sleps, Bometimes these parameters already coincide with the TDO {we will see an
example of this case in Section 4.2) (Mberwise we gel al least an approximation
of the T which is still wseful. This i= an approximation from the top so the
TIMD iz always a refinement of the decompositions obtained from the fist few
parameter cases, The parameter precaleulation can be extended to arbiteary depths
in principle. For instance, it is possible to compite the complete TDO on & purely
algebraical basis without handling with incidence matrices The TDO is the final
siage of all parameter precaleulations. There is no further refinement possible due
tor the fact that it is factical  The TDO-decomposition s eham clereatse in the sense
that the automorphism group respects the classes, Howewer, it may ocour that the
orbits of the awtomorphism group are indesd strictly finer than the TDO,

Recently, the method of parameter precaleulation has been applied inoits full
generality going as far as computing TDO-parameters in all cases This means that
there was no fixed limit in the depth of parameters and that the program was able
tor iy a quite general step of parameter refinement which generalizes the methods
presentad here. Howsver for the baginning it ssems to be of great help to start with
sovmie explicit parameter casss bafore going further. The corrent. anthors determined
the proper linear spaces on 17 points using this more general approach [4]

2. PARAMETERS OF THE FIRST KIND

Let (P B) be a linear space on o points, Define

a; = ¢ lines of lengihiin (P &), (1)

The vector & = {ag. ag. ..., 4, ] is called the fine fype of the space [P, B]. Line types
are also called paramelers of the firsl kind of the geomeiry Often, it is convenient
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for ddenote line types in exponential notation, that is. (277, 3% o™} Exponents
I may not be explicitly written, terms with exponent 0 are leflt out. For sake of
brevity, ane may even omit the 2-lines. They are redundant and one can computa
their number from the rest as we will see soon

Example: The linear spaces on five points have the following line cases:
] [24.‘1]. I:_.E" 41, |:'3"' a. [Ell::l.

Ome can visualzs the distinction between lines of different l=ngth in the incidenes
matrix by introducing bold lines a= in Figure 3 Thus we gei a partitioning of the
hlnck set inbo classes, We will also partition the point s=t 10 a like manner  We
call sweh partitionings of points and for blocks decompositions They can be sither
poamt= or hlodk-tactical or even both This means that the number of inodences
of one representative of a given point- (ock-) class with all elements of a given
block- [poini-) class = independent of the choice of that particular repressatative,
The decompesations which we are working with are not always tactical. As our
partitions come from structural data of the space. the group of astomorphisms
will respact them. In otler words there s mo aotomorphizm @ semding a line
aof ome type to a line of anobther type (and no point of one type may be mapped
onto a point of ancther type) In [3], such & partitioning is called a characteristic
decampasrtion. Throughouat this article. bald lines in incidence matrices indicats
chararteristic decompositions

] |:||:|I 0 | o Emin

o D] T | e

FIL:. 3. Linear Spaces an Five Paints with Lilfereat Lengih Lanes Sepacated

olo|

So. the limear spaces on five points can be distinguished by their line type This
i5 no longer trae for the spaces on six ponts (cf Fig. 4). Table | shows the (aumber
af | linear spaces on 6 points by their line type There are ten geonsetries. the lins
type (37) is realized twice (no. 7 and 8 in Fig. 4). Clearly. the two geometries are
nonissmorphie as the first one has a point of intersection of the two 3-lines whereas
the other one does not have such a point.,

TABLE I. Limsar Spaces on & Pointe by Line Typas

Lime Clase fElian Line Case #{:'m
1: (6] 1 CERE 1
T (2% ) i TR A i
& ad [ A& (A 1
£ ("4 1 @ (2" a 1
5 (A% 0 i 2% i

Tatal: 10
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Fl{z. 4, The Linear Spaces on Six Faints, Incidence Matricss by Leaving Cae The TaneLinss

[ the following, we will b= concerned with a parely algebraic task of precom-
puting line types. Afterwards some geometric plausibility considerations are made
which reduce the amount of cases to consider drastically.

As each e line joins [:,::I peairs of points and as each pair of points in P s joined

£4() - ()

2.1 The de Brujin § Erdis Test

by exactly one line we get

Not all line types which fulfil {2} can be pealized.  For instance. we saw already
that thers s mo linear spacss aon six points with five 3-lines It is & challenge to
precompuie putative paramster sets in such a way that the probability that thess
rets are realizable as linear spaces is high.

The following important theorem is & first step in that direction

Theorem 2.1 ({De Brujin, Erdos [8]).  Let P = (V. B} be a linear space. If B
s different from the ine of length v hen b 2> o holds.

The theorem of de Brojin and Erdos gives even more but we nesd only this par
We dedues that there cannod be a linear space on six points with only five lines,

Thers are a bot of proofi of the theorsm of de Brojin and Erdos some of which
came up recently, Probably the most beautiful one is due to Conway  See Metach [15]
or van Lint and Wilson [19] for more,
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2.2 The Minimum Breadih Tesd

Lat us consider amother nonrealizable line type: for example on seven paints it is
impossible te have a linear space with two 4-lines, one 3-line and six 2-lines though
B30+ G +2 (3} =21= ;). The two 4-lines must intersect because thare are
only seven points. But then, no 3-line is possible In terms af the ineidencss matriz:

Ome can generalize this to an sasy test for filtering out possible line types Starting
with the longest lines one tries to place them as “close” as possible that = with
the smallest number of points involved. Assume one has placed ¢ lines “denss” and
one is gmng to place another ine with only few new points needed, Then only
i incidences can be made with the first s points as it can be seen for instanes in
the following example, Here thres d=lines are placed on mine points which s the
minimal numbser of points possible, The incidence matrix does nof show a linear
spaie hecanse of its first and fifth row. But for our test 1 s only important o know
which lines intersect therelore we procesd irying to place a fourth 4<line. This s
imper=ible with only min=e poants becanss thers can be ai most thres intersections
witl the three other lnes

i

[=]=

oLt

“den==" on & points

e

Maore generally having placed ¢ lines on & mimimom of 5 points [dense packing)
one needs & =1 new poants when placing an additional &<line. [F s+ & =7 = » this
i= impossible, This crternion works best if one starts with placing long hnes first.
Here is the algonthm we specifly i some formal language which 1= closs io

real programming languagess.

Algorithm: venfication of line types via minimum breadih fest,
input: aline cass a = [ap @y,. .. @)
for a linear space on v points.
outpul: TRIUJE if the line case makes seqnse
(passes “min-breadth™ test), FALSE atherwise
int i k £ 5 m
i =ik

=
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H. ¥ = I-.l:

i, for & =y down to 2

10, for £ == 1 to ax S loap invariant
I1. S we have placed i lines on at least s poinis
12, mo o= max(k =i 0); [ owe need at least monew points
14, ¥ =48 4 m

14, if (5= v}

15, return FALSE; f line iype cannot be realized
i} [ —E |

I7. ernd

15, el :

11, rectnnrm THUE: S I ine type ssems to be OK

Mote that there ar= line types which pass this test bod which cannol be realized.
For example, the line types (3% 4%) (2% 32 45%) (2%, 3. 4%) or (2% 4%) on ten poants
are nod ruled out Also (3 47) and (27 47} are still valid thoogh they cannot ke
realized. Some of tlese cases can be excluded dee to the de Brujin § Exdos test but
we will now present another test which is able to eliminate all thess line cases. too

2.5 The: Maximal Flag Test

Let us determine the maximal number of incidences which fit into & rectangular
matrix of dimension ¢ % § say. Putting the grometrical conditions of & linear space
aside for the moment one starts in the following way: place the ineidemees “tightly™,
that is. start Trom the top left position and fill the ineidemees row by row into the
matrix. Consider the line cases with six d-lines on ten points, for example, One
gats the situation of Figure b after dualizing.

Flz, & Tight Facking of Incidences

We find that d-[g:l +ﬁ|:::::| = 13+ 6 = I8 pairs of rows are joined whersas o the
geometry only () = 15 pairs of rows are possible (any placement of the incidences
covers &l least as many two-subseis as the packing in the example] So, there is no
B w10 ineidence matrix with row sum four for & duslized space on ten ponis. To
be slightly more general we conelude that there s no geometiry which has &6 = 10
incidence matnx with more than 22 inckdences (this s becaose 22 incidences give
2 colummns of weight 3 and 8 columns of weight 2 and .E[:J'l + .‘I-{i:l =h+d=14<
15 = 7} whilst for 23 incidences we got 330 + 7(5) = 94 7= 16> 15).

More formally we claim that the following is troe:
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Lemmma 2.2, For o geomeley will n ancadences on o podnls willy § blocks Le ensl,
o < Mkt = min (mas fm ) < (1) mecpimn < (3)) 09

miust be satisfied. Here, f{m, j} = {lﬂ‘gﬂ Voj+immod ) |mfi| and amodb for
a, b E a8 the wnague miteger e wilh 0 < e < b and o = emeod b

Froaf.  The tight packing of incidences imdicated in Figare b gives us a lower bound
on the number of pairs of points (corresponding 1o rows) which must be joned in
an incidence geometry with o points. This can be deduced by noticing that ihe
tight packing = abiained by repeated application of the Tollowing three kinds of

operations:

1. shiding an incdence into a gher box of the same column if that kigher fisld
and all fields n=between are smpiy,

2. permuting columns

3. raising & box (incidence ] from the end of & long column o the end of & shorter

column (. Fig 6).

/ *
Fliz. . Freparing for the Maxfit Test

The number of pairs which are joined may be expressed in termas of column sums
of the incidence matrices, Assume we have £y incidences in the &-ih colomn for
k=1 . j The function Piz, . . ;) =5"%_, (%) counts these pairs. Clearly,
operation | does oot change the &g, Operation 2 simply permutes these values
and therefore P is oot changed The third operation always reduces the value of
this function, Therefore, F decreases weakly during the succession of operations
of type 1-3 This shows that we can obtain a lower bound from the tight packing
which has column sums g = [nfj|+ 1for k=1, . nmodj and g = |nff] for
E=znamedi4 1, . § Therefors

Flw . ..m) = fin j) < Pl . oxy) {4)

where &y, .. r; are the column sums of any incidence geometry with o incidences
in an 2 x §fgnd, Clearly,

Pley .. o2 < (;) (a)

holds and {4} togeiher with [3) imply f(n §) < [.;_] Applying this test to both,
the geometry and its dual we gei the statement of the lemma. O
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The first few Maxfit numbers are shown in Takle 110 The lower triangle of the
mairix is oot shown it is the transpose of the upper friangular part [the symmetry
in & and j comes from application of this test for both, the geametry and its dual)

1234 5|6 T 8 G 10000 12 135 14 05006 17 13 1% 20) 21 k2 K M4 25
11284 5|6 T & 1011 12 18 14 05]16 17 18 19 20| 2l 22 23 24 2%
El A48 6|7 & Q01002 03 14 185 0607 18 19 k20| Er XK XM 2% 206
A 6T Bl 900 12 1504 05 06 17 18(1% 20 2 22 EE) B4 RS OB 2T IR
4 G102 13 14 15 16|17 18 19 20 ][22 2§ 24 25 26| 27 3 2 40 il
& 12|14 15 17 18 20|21 32 25 24 25|36 27 34 25 50| 31 &2 £ 34 35
i3 16 18 19 20 2224 25 27 28 3031 2B 8 3% 8 37T | 349 40
T F1OEE A4 A5 ET B D 3] KR 6 AT 40 44 43 4 45 46
3 B0 AT A4 L) CRE AL A5 6|8 34 4] 40 44 ) 45 47 44 5B 51
a A BE |34 G AT A9 40|42 43 45 45 45| 49 51 B2 K4 AR
[} AN|ET A5 40 48 45 (46 AR 49 51 5F) B4 8BS BT 88 G0
11 400 45 44 46 49|30 5 54 56 5T BE B B2 G 65
¥4 5 44 50 62|54 56 08 G0 GEE) B4 B85 6T 49 T
13 SrodMEMM G066 66| 68 TD T2 T4 TE
14 AT GOGL G4 66 A T0) T T4 Td TH AD
L5 GAGG 68 VL TATE) 7Y T9 K1 84 A5
16 THTETASTT 80| 82 B4 B HE 90
17 TH TA R &) 86 B3 Bl B3 95
13 K385 85| Bl B3 B85 98 100
19 a8 92| 55 BY 1 K2 1ds

L) 97 |10k 102 105 10T 110

i] 105 107 110 112 113

X2 112 115 117 120

E3 119 1%2 135

24 127 130

25 113
TABLE II. Maxfit Mumbers for & § < 25

Finally., we would like to point out that there are also the true maxfit-numbsers,
that is, maxft[f][i] is the largest n such that there exists a geometry with n in-
cidences in an @ x j field. Clearly, maxfit]a][j] < Maxfit[i][f] bot the deviation of
the upper bound iz hard to compute as determining maxtit numbers invalves a
revere construction problem. Geametries whose numbers of incidences atiain the
true maxlit numbers deserve special interast,

3. PARAMETERS OF THE SECOND KIMNI}

Let us come back to the two linear spaces on zix points with line type (2% 37) [the
sevenih and eighth geometres in Fig 4). In order to distinguish the two spaces we
were looking at the point degress. Do the fist geometry there was one point with
two F-lines and one 2line, one point with five 2-lines and there were four points
with one 3-line and three 2-lines. In the other geometry each point had one 3-line
amd thres 2-lines Therelore, we are led to the following refinement of parameters
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3.1 Point Types and Point Type Distribotions

Lat {F, B] be a linear space on ¢ points with line type a = (2%, «%). For fixed
p e Fowa define

by = (gl . .. [els. [pl2) (6}
the peint bype of p. Usually we prefer exponential notation by, = (ol | 2l

The vector by, is called the poant type of p The multiset of vectors of point types
{by| g & F} i the paind type disbrebution or poind cese of the gsometry. The line
case togother with the point case form the parameters of the second bind of the

geometry
For the two (27, 3%), we get the following point types

1= (3 2
4 x (3 2% and 6 x (3, 2¥).
1 (2%)

Visnalized in the incidenms matrix we havs

Eb I:ll:ll:| ﬁ I:[Il-h.l:ll:il I:IH
. manES :EJ.:D”:.U |

L=t u= now swiich over from the type of a particular point p to the set of all

nEI'%I__

possible point types in linear spacess with a given line iype Therefore, we remove
the referemee to the point @ from our notation and write b = (b, . g, 6] The
feslleww ing inapeortant question immediately arises: What are the necessary conditions
foor swch a vector of non-negative integers 1o be a valid point type ina linear space
with line type & = (op. oy . .. 2, )7 Clearly.

by < a {T)

v
miast be satisfied for each 7 = 2, . v As each point in a linear space i joined

ter each other point and as each line of length 7 joins & fixed point to j — | other
points we get

N
Y obli=1) = w=1 (3)
=4

Let now by = (& ,, . &< run through all solutions io (7} and {8) with i =

l,.. k e

& = fEpoints of type by in (P 8) for 1 <7< k. (9}

The vector ¢ = (e, e, . g i5 the peind bype distridulion We are now going to
campate point types and point type distributions for linear spacses of & given line
Lype.

3.2 Counting Incidences

Fix a line case a = (a4, ag. .. ..a,) and assume that by, . . by are all possible poind
types according to (T) and (8) One forms & & x 0 — | matric B = (& ;} with the
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point fypes written i iis rows  To compuie possible point type distributions [or
poant cases] ome considers a blocking scheme of the ineidence matrix of possible

geometries (of Fig 7).

i, ® a-lines g ® d-lines s ® 2-lines

e e, [ B e, n B i o]
IT|:!'.IZI| { '!—!H_..—'l' '!—!F|_1|—!' {—-El|_-.,|—|r
ngxl:-g{ — ey, — — g g — =y —
e,,r:h;,{ — g, —+ — fg g — — b o —+

o= wa, . % o= oy o= day

FlG. 7. choosing polnes of different types

The Blocking of the matrix is imduesd by the line-type {vertical stripes] and the
poant cases (horizontal stripes]. In order to determine possible point distributions
(e ey, .. o) we proeesd in the following way: Counting the incidences in the strip
af j-lines in twao ways leads to the lollowing system of Diophantine equations:

L]

Y by =go; for2<ji<m (1)

Clearly the sum of all & is fixed:

L
E"f = u (11
F=l

The sslutions to (10} and (11} give all possible point cases for geomeatries |F, B)
with line type a. Note that there might exist “algebraically peesible” point cases
which are mod realizable, [n onder to get more pecessary comditions we apply the

temsis of Sections 2.2 and 2.3,

L. [the minimume-breadih test of Section 2.2) Consider the dualized geometry
of the set of j-lines of [P, B} - assume a; > (1 These geometries are prelinear
spaces on «y points and have ¢ lines of lengih & ; for I < ¢ < k. The
minimeen breadih test must be satisfied for all such geometries. Again. this
test is beat applied after eordering the lines to abtain decreasing line lengtlis.

2. [ihe maximal flag test of Section 23] The intersection of points of iype by
with lines af length § form & e = a; submatrix of the incidence matrix Assume
that c; > 0 and a; > 0 to avoid trivial cases, We apply the maximal fag
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temst oo Section 2.3 to each such submatrin. The point case s valid only if the
condition is fulilled in all cases

3. [the maximal flag test for combinations of squares] It is also possible o
apply the previous test fo combinations of those submatnces. For example,
one conld stack dwo such matnces of the =ame column upon each obther and
apply the maxfag-test with ooy 4 opby ; inodences inoa ey 4 o0 by ay grid.

See Bection 3.5 for a worked-out example where all these tests are applied

3.3 Counting Intersections

In order o reduce the number of putative parameter sets Turther we may apply
amother test Let us choose two different columns balonging to j -lines and jy-lines,
gay, in Figure 7 and assume that a; > 0 and a;, > 0. We count the number of
intersections bebween lines of these different soris, As each iwo lines interssct in st
most ome point thers can be no more than ay, -aj;, intersections betwesn these two
sorts of lines  Each point of type b; lies in the intersection of b ;& ;, such pairs
of lines and thus the following insgquality most be satisfied

&
Yooby b € oy forg e {2 vk i # (12)

=1

3.4 The j-Degres Test

For the next test. leb § be fixed and consider lines of length § (2 < < v) Fixa
poant @ with maximal jedegree  Consider the set of points g # p coversd by the
pencil of flines throngh p More formally. we set

X={gev\fr}|AB B [Hl=jpeB ge R} (13}
Claarly
Aufel C oV | >0}=Y (14]
holds Counting vields (of Fig. &)
|| = [ply (i=1) and [¥] = % & (15)
£, el

(147 and (15) together imply
pli-i-1he 3 = (15)

foby ol
and this gives another necessary condition for second kind parameter seis

3.5 A Worked-Out Example

We finish this section on second kind parameiers with an example on 8§ points

chowing how o combine parameter calculation application of various kinds of
tests and construction seen so far
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[p]; lines of length §

p;:!::"-\-\.ﬂ:l i i F i
A
1 -,
L""\. nh‘"\-\.h
"-._lq H‘:I"-\.H
, HH“I:
,
b
o
4,
b
,
b

Fliz. & The j-[legres Test

Assume we want to construct all linear spaces on eight points with line type
(2% 3% We start with the point types. According to (8], we solve

2ﬁ3+&;¢ —_— F

amd find the solutions b = (ks ) = (3,0} (23], (1,5) and (0 7). In order to
compute point fype distributions we solve [10) together with (11):

Fey + 2oy + 23 = 12
ep 4+ dew 4 bex + Ty = 32
e+ ¢z + &3+ & = B

Starting with the solution ¢ = (e, 3 e3,e4) = (4.0 0 4) we get the following pa-
rameters of our linear spaces
4 I
413 1
4100 7

which should serve as a short way to descibe the inedence matrix with the following
indicated row-sums:

L N O N A O N N
L]
L] 3 1
L] —k e
L]
L]
L] i T
L] i L
L]

[each bullet stamds for & row or a column of the ineidence matriz). Bob owlead
about realizability of this parameter sed? Looking at the topmost box in the firsd
column we find a geometry with 4.3 = 12 incidences in a 4 = 4 rectangle. Hud
Maxfit[4][4] = 9 =0 this s impossible. We conclude that ¢f = 4 Noie that the
minimum-breadih test is able to rule out this case too,
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The cas=s o = § and ¢f = 2 also lead tooa violation of the maxfit condition. so
ey = Lo We continue with e = (1.4, L. 2]. Thus we gei the following parameters:

1
3
2
|
1

B = fa -
=] O A =

The top left rectanghe is now fne bt still we cannob realize this parameter sat, The
problem liss in the fwo topmost rectangles in the first colomn: combining them,
we geb an incdence-matrix with 1344 2 = 11 incidences 0 a b x 4 fisld Bug
Maxfit[4][5] = 10 =0 this is impoessible

We try ¢ = (1,5 3. 1) with

This leads to our first realisation [cf. Fig 9).

XN 7
NN X

Fliz. 8. The & Example Spaces

The next case s o= (1, 2,5 (0) which alss possess a realization
4 16

NER
2
B

[y ]

From now on, ¢ = 0. The pext case bs e = (0,6 0.2) In

G2 3
2 7

we find the dual of the complete graph Ky in the top left square, The corresponding
geomeatry exists.
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The disiribution ¢ = (), 5. 2. 1) gives another unigquely realizable parameter case
[geametry mo 4).

With ¢ = (0,4 4.0) we get a scheme which is realizable by two different linear
epaces (no 5 and 8], The first one has a 3-line whose points all have [plz = 2. In
the other one. each 3-line has two points with [plz = 2 and one with [pla = 1 S0,
even though the second kind parameters of thess two spaces coincide a closer look
at the lines shows a difference (of. Fig 10}, Thiz i= the motivation for introducing
parameters of even higher kind, see the following section.

Ee

1]
o
5 1]

[u]

[m,

beerome

Fiis. 10. Limenr  Spaces  on Highe Points with Same  Secand
Kind Farameters, Refinement of the Line Type

4. PARAMETERS OF THE THIRD KIND

Let B be s line of length § in & linear space P = (¥ B) on v points. Let by, .., by
be the point iypes in P Define

d® = # of poinis of typa by on B (177
foar 1 E I-E b The vectar
dg = (df a4 (18]

i= called the refired five fype of B in P

Fach line B of P has a refin=d lins type dg The multiset of refinsd line types
{de|B & B} = called refined fine type distrobution. We will also call them parame-
ters af Bee thord kndd of the geometry.

Following the general scheme of this article, we are now going Eo precom paks
third kind parameters of possible geometries, Therefors, we forget aboot the par-
tieular space P oand comsider all pessible line types in spaces with given first and
second kind parameters, Assume that a = (as,. ... ay ) s oA fixed line type and
by ... b are the point by pes each oocuring with mooltiplicity . Defins

ﬁfj.,: = # of pnﬂnlu nrlyp-e '|-|.,| on a line of |i.-.n5'|'|1 j |I1'EI:|
The vectar
dyo=d; ;. dio . k) [ by

i5 & refimed line type of j-lines. It is our task to compote all refined line types and
tor choose them with appropriate muliiplicities These selections will form our thivd
kind parameters of the geometries.
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4.1 Refined Line Types

Agsume that & line case & and & point casa (o, . e corresponding to point types
By . ... b are given. In order to compute possible types of j-lines (with o; > 0 in
the line type) we have to solve the equation

&
S dieo= (21)
uncder bhe additional restrictions
diy € fwalli=1. . k (22
Assume that there are £; solutions
[ FETE: FETNY - PP
amd write

1']_.|u — id_i-l.l.l . --dj.h.l] FI'IF T E 'ff'
Lt =ik be the number of |;_;|'-::||inm al type rl_f_,-,, in the space. The vesior

T = I::-E.;_|,|'.'|-_2,.. .-ﬂ!-_f-. ceog BRY-ERE . ER . B BEao. ..-E!_r}:l Lﬂ:]

is the refined line Iype disivibulion or refined bine case of the geometry. To be a
litle bat more precess. the line type. the point types, the point type disinbaoation
the refined line bypes and the refined line type disiribution aliogether form the
third kind parameters of the geometry  Clearly realizability is still an important
topic aml nonrealizable parameter sets should again be recognized and aliminated
as woon s peessble
Note that the computation of reflmed line types gives nothing new if there s only
cme point Gype in the poiot dype distribotion. Namely. in this case the refined line
Ly pess are widgue amd coincide with the original line types given by the length of lines
This is what we call a TDORcaes: the second kimd parametens already describea a
tactical decomposition which is the same as it woold show up when T -classilying
geometries of that type. [t has besn mentioned in the introduction that a TDC
canmot be refined any further Naote that the TDO-cases appearing at level two are
exactly the parameter cases of regular linear spaces {in the sense of [Z]].
Clearly

r?

Eu,_,,=uJ for =23 . v [24)

=1
miast be satisfied. Balancing incidences within che rows belonging to a fixed poiod
tvpe by and the colomns belonging o j-lines leads vo the following equations, We
call tlem type- 1 equations (el Fig 11)

£y
2: "‘:1 uifjm = 5§ 'I':I.;l |:1.'FF"E" I ] |I‘.L=j-:|
i
for 1 <4 < k with &5 > 0, and for 2 < § < w with o = 0. Next. we have to ansure
that ench pair of points 8 joined exactly ones, Fix an index & with 1 < ¢ < k& and
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n; % flines

GER | "ra #.1
| —
i, | 9. i,
T t
L F":'jnIH of I-.,'”:"E' h: e dgl 1 d_1 2.8 e d.:i.-l','n
} 4 l

Fliz, 11. chioosing refined line typea

o = 0 All the pairs of points of type b; are joaned if and only if the following
equation of type 2 holds:

iJE (I{?'F) By = (:) (type-2). (26

FElu=]

Finally we consider points of different type. Fix o 3 1z such that ¢, > 0 and
e, = 0 We get equations of type 3

v B
Ezdj.uu 'dl;i'un: ‘ "j.n = Gyt Ty |:|!l'|:|"§-:5] I'HT]

F=tu=1

for L« iy, dp < koamd & 3 i5. This type of equations is dual to (12]. Here we have
i Fact equality sinee the points and blocks form a linear space

4.2 The: Examples on Eight Points Agnin

Let s come back to the example of linear spaces on 8 points with lise type (219, 3).
Mg we are o the last point case;

(24)

Solving (21) we get the following refined line types of S-lines and 2-lines

da; = (4,0}, daz=(2 1), daa=1(1 % daqg=1(03)
e = (200 des =011} daz={0 2]

We are looking for solutbions

&= (eg) €32 “3.% ©3.4. £2.1, €23, €2 3)
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aof the following systems of equations, The type-1 equations amd [24) give for the
Alines

a1 + F3z + ®aa 4+ e = 4
Beay + Zeaz + ean =48 ()
rsa + dega 4 deag = 4
aml for 2=lines
e 4 ez + esp = 14
PN T = 12 ()
epa 4 desa = H
The equations of bype 2 and § are:
dexg 4+ eaz + a3 = i
eaa 4 degg 4+ ea3 = (41
degg 4 dean 4+ eay = I

W snlve Ehess el ions with the two westors
ey = (1,2 1,0 110 5) and ey = {0 4,0 0.2, 8 §).

They form the two different refined line type distributions of the two spaces of Fig-
ure 10 — the 2-lines were left out in the figure, This means that we can refine [24)
in l-.'r:.ﬂ.-e:l:|_',' twn different WRYH. We ohiain the Fn“nwins schiarnes |:|'||-.r-.-.. the mum hers
inside the scheme stand for column so mu]

[1 21 a
4321210 and

(42)

Figun-. 12 shows the T Hﬂ:nrrlrﬁm'-ninnn ol the Bwo i.-.'r:.ﬂ.mpli.-. s[kACes, The first
a-hieme 1 [:'!!.:.'::l = :|.|'r|-.ﬂ.-:|].' ey ol to 1= "|"|']'|:I whermas the s=cond one i fact
coincides with its TDO demmposition. The antomorphism group of the first spass
hms order 4 and = H\.‘.nl‘.r}llﬂ'] |'|_',' [| ‘.!_':l[ﬁl |5.| A [Tl' E] ['|:|.'|'.||-.'|in3 pnintx ar rows Trom
i hess Eop downwards in the incidence Tllall:ri:-.':l. The secand = has A& group ol carder
4 HI‘.‘JI.II'!E?IIHIJ. '|:l_'|l I:l 'I:II:::I '1]I:ET:I amd I:l::l 4 !]I:-"-rﬂ B 'i"]. Tlaese L qpaAacaes l'.'liJFFEFl.IUIIIJ L2

the last two spaces of Figure 8.

h. RESULTS

5.1 Linear Spaces by Line Types

Tables IV to X display the numbers of hinear spaces on 712 points. We st only
realizable line cases and show the number of geometries within each case. Addition-
ally. we indicate the computing time. In order to save space. only runniong times of
2 or more roanutes are shown,

All sompuiations were made on a DEC AlphaStation G600 wich 400 MHz CPLU
clocdks At the emd of the tables, the total number of geometries and the the overall
runming bime are given.

All linear spaces on < 11 pointe wepe computed using only second kind param-
eters, The LIN{]12-computation uses different parameter depihs. Table T shows
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O DETEFMJ
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Fliz. 12, The TIHY Decompositions and TIHI-Schemes of the Two Example Spaces

the parameter depth which has been closen for each line type. The ourmbsers 2
amd 3 stand for second and thind kind parameters. respectively, whereas a star [*)
indicates that a special program was used [namely. the program written for [2])

Note that we do not show the 2-lines in the line itype This is for reasons of spacss
and it is possible to recompute their number using (2). Empiy parentheses stand
for K. the romplete graph on o points

The resulits displayed in this section can also be obiained via Internet.  We
maintain two copies of this page, one at the Journal's home page and one at the
auwthor's. The addresses ane

http: ffuww. amba. wwn. adu/ " jod//reports/336/pub_linl2, html
http: /S fwww . mathel. uni-bayreuth.de/betten/PUB pub_linl2, html

In addition io this article, the latter of these pagrs also contains incidence matrioes
for the hinear spaces.  Che file for each line case of a linear space on v points
i= provided.  The coding of the fils s sxplaned on the above mentionsd page
Morsower, the files are compressed vang the program gaip. The total amoont of
storage mesded for the linsar spaces on 1 points i only 1D B whereas the linear
spaces on 12 points mesd 11T MB of disk space. This means that oo the average
each linear space s coded with between 4 and 5 bytes. which s amazingly short.
[ The credit goes to the authors of the program gzip!)

Finally., we would like to mention the genemation rate The linear spas=s on 10
1l and 12 points wepe constructed at a rate of 350, 228 and 312 abjects per second.
respectively, However the actual rate of generation within the individusl line casss
miay differ from these values considerably  Moreover, in the cass that parameiers of
depth 2 or 3 were used the generation rate inside the line cass is just the averags
over all the subeases pesulting from relinement of parameters
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TABLE IIl, Different Parameder Depths for the LIN(1E) Computation
Line Cases Paramecer Depth

{12) - (47}
{d"l -~ (3" &)
(#%,4%) - (47)
(41 - (3" 4]
1 4 - (3
(3)
(3'%)
I:.']IH} B {3"] -

LS S I R

(%) A, * for configurations 12 16;
l:alllj _ 1.;:'.2] a
@ -0 d

TABLE IV. The Linear Sparas on 7-8 Points

=T =4 =5 =5 =5
line case #  line case  #  line cass #  line case  f# line case #
(7l 1 (8} 1 {a% & |3 5) 3 (3" 4) al
6] 1 (7} 1 (4" 4 |35 3 (3 4) az
(35 1 (&) 1 i3 2 (% 5) & (3 4] 26
(3] 1 (&) 1 i3 1 (% 5) 5 (34} 12
(4%} 1 (43) 1) L[5 5) 4 (3 4) 6
(3 4) 1 (3" 35) 1 total: N EEY 2 [34) 2
(3 4) 1 (3% 35) 1 dime: Oaec  [5) 4] 1
(3 4) 2 (335 2 (3 47%) 13 1
{41 1 (5} 1 w=4, (3 4% 1 (3 1
137 1 (a4 1 line case {3 4%) Eoat 4
Ex 1 (a4 1w ET 1 {#) 12
EN 2 (347 1 i 14 E £
KN 3 (4% roqan 1 (3 4% 1 {4 1
3" 3 (st 4) romn I E o o R E o a4
147 Tt 4 2o(4a) 1 (2 4% I 1%
(3] 1Aty 6 (% 6) (T o S B F IR o 11
i) 1 (a4 5 (a6 RE IR IRE 5
total: M (37 4) 4 (38 N A & 147 ¥
time: Osec (34} L 1347} EOREY 1
(4} 1o 14 2 ) 1
] 1 (%45 T o 1 % total EET)
E 4 (345 I (3 4) 13 time ) s
N 6 (345 1
N T {45) 2
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TABLE V. The Linear Spaces om 100 Points

e 10 =10 =10 =10 p= 1

line case # line case  # fine case & line case # limer case #
{10} 13" s 1 (3 5) | (347 5 (3*4) Py
(9] 1 (3% 5% K - 26 {d’g 3 (34 7
[EE] 1 (35%) 1 {# 5} 13 e Toia4) 1
(&) 1 (5% ¢ (3 5) 6 (3 47 i (4] 1
{47 1o@s 1 (38 PORE 47 (A 1
# 7 1@ ds s [ U L T - I e
37 1o ats 3 4 (R o L T+ B B 14
(37 1 (3475 13" 4% (I S S T I 332
7 1 (4 6) (o Lo 4"y Ao (A 4400
15 &) 1oatas 4 3 e EIE 500 At EoT
#4611 @48 9 (Fehy 4 e 1% Al b
(#48) 1 (a%as) o (@4 3 (34h & (A 40
|3 44) 1oqatas)  aroad4y ro8 ) ERE ax
14 6] FRNE Y YIS LR [IE Y 1At 14
(3* ) 4 (3% 45 &3 4% 1 &' ay 1 iah 5
B A (345) 5 (4" 4% [E S 54 (3% 2
(#' 8} G (45} 2 & 4% & (&4 242 (3} 1
TEa 5 (a5} R E S T T E S 515 () 1
(% 8} 4 (35 T4y 4m T 4 599 tatal 5250
(%8 2 (A% 5) T Ll T N ol | X9 time: 15 m=c
3] 1 (3 5) 3 OF4y 3/ (F 4 180

(3 5%) 1 (3" 5) 4 (34" 6 (34 63

TABLE VI. The Linrar Sparns on 11 Pointe [Part 1)

w=1l, w=11 w= 11, w= 11, uw= 11,

line case  #  line case ¢ line case & line case % lne case %

{11} 1 (347 1 {7 1 {347 8) 1 {378 i

{ 160 1oatan 1 e I IRE Y i
(%9 1 (347) 1 {358} 1 (% 48) 74" 8 31

(9 1 (47} 2 (#F58) 1 (48 13 (18 45

{48 1 (a7 4 (58 1 (48, m 178 54

(3" &) 1 (37 3 (356 1 3 46 22 (3% R kS

(3% 8} 1 37 & (56 2 {348} 18 (3t 6

{3 &) ERE 5 (#4%8) 3 (F 48 & (178 12

(%) 1 (37 4 (F A8 2 (348 5 (38 &
{371 1 (37} 2 (FAFE 3 (46 2 {36 2
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TABLE VI1I. The Linear Spaces on 11 Polnts (Part 1)

=11, we= 11, =1l =11,

line case #  line case # line rase #  line case # rime
6] 1 (3" 435) 3 (3% 4% a7 (4" 2
(3% 45%) 1 (™45 43 (AT 4 17 (374 2
(3" 45%) 2 (345 T (347 N E R ! 25
{# 45%) B (345 TR (4°) LI Ry FCES
a5ty 4 (aT4m 14 (A4 4 Ay 4168
ety oa (Fam e At e an a4 1 i
{3457 1 (%45 w0 (AT 4% 147 (374 pxres
45 ) 1o(atasy mr At aY aan (a4 2441
3* 5%) A48 LR sas (2 4) 15442
Bt 5 (a8 M (3t 4% e (4 4) L L
(&7 5% 16 [(&45) Boo(at 4y 2o (& 4) 1877
(3" 5% 22 (43 (A" 4Y a0 (& 4) 446
(3 5 mooat ) 1 (a4h) 12 (a4 1z
(3 5% 21 (a5 1 (4% 3 (% 4) 23
{3 5%) 12 (375 B (a4t 1 (% 4) T
{37 5%y 6 (3735 4z A" 4% 44 (34} 2
(3 5%) 4 (3" ) s (3747 439 (4 1
(5%} 2 (3" s a5 (A" 47 1450 (37 2
{3 4* 5) 1 (3" 5) 1381 (a7 4% 383 (37 15
(3 4* 5) 1 (3" 5) 1483 (347 4387 (3 247 250
(3 4* 5) 1 (% 5) 1027 (3% 4% T (3 1637
[4* 5} 1 (%" 5) s (3t 4" naE: (37 G198
#4845 4 (35 195 (3% 4% i ooat 12745
(#4311 (3*35) 68 (37 4% 57 (a3t 15415
(#4522 (3*5) (347 12 (3 11623
(3475 21 (#F5) 7 [4"; N E BT54
(#4750 11 (35 CRNF o 300 133
34 5) 4 [:I 1 (a4 54 (87} 41
4 ""; 1 (4% 1 a4 Tar (@) 157
e 6 (3445 (R L S T F T o H
a5 B At oAt 4t nam wY) 15
(345 1 (A% 45 O o I = T E A 5
@48 Mmoo At 4 ¥o(aT4%) qamz (@) 2
475 ;v (a4 1At 4t BERD (3] 1
(3 47 5) 228 (4% 13" 4" 2175 () 1
(& 475 1on (A’ 4% oAt 859 toral: HA2G
a5 a4 7oAt 4" 124 fime: 1702
{3 47 5) B [a%4%) 3 aF 47 29

{47 5} 4 (3 4% as (a47) 7




LINEAR SPACER WITH AT M2ST 18 POINTS

TARLE VIII. The Linsar Spaces an 12 Points {Part 1)

= 1k p= 1L v= 1z, e 2L

line case 4 line case #  [line case #  line casn w
(12} 1 3T K o o1 257 (3 47 57) 2
{11} 1At wWo(F a0 a3 4767 4
3 10) 1At 12 (3 4 6) KEIE S o i
{10} 1 (@) 6 (347 6} A3 4 5% 1
149 1 (a7 : o4 4 (3478 2
& 9} L) 1ot ae A 478 1
3 a) 1At e [ E R T ap (3" 4 Yy 1
EL]] oAt [E S ¥ a4 (2" 47 8 7
18] 1 e (S S T VIS B U T &
15 &) IINE o (I S N * DR S o T B[
(& 48) 1 (36" 1 (& 48} 2137 (A" 4757 1T
(37 48) 16" 2 (3" 48) 1384 (3" 47 57 148
{348 1ot asE a3 (348 LTI ol o T
4 &) T (3" 458 4 (¥ 48 252 (3° 47 5F) )
(3* &) 4 (atdsa) 9 (348} &4 {347 37 5
(3% &) A (a 458 5 (% 48} 4 475" 1
(3 &) i (3° 456 4 (346 & (345" 2
(%" 8} 5 (3456) 1 {44) 2 (3" 45 5
{3 8} 4 (456) 1 (3" a) G (3" 45 45
[38) N E T T (3" &) 19 (3" 457 231
(%] 1 (356 15 (3" &) 135 (3" 4 5%) TAR
(67 1 (3 56 43 (3 6) 354 (3745 1354
(357 1 a6 47 (3" 6) 1575 (3" 457 1443
(#57) 1 (3" 56) 53 (37 4) 665 (3" 45 204
#57) 1 i3 58 3 (F 6 222 (3457 0
{357) 1 ' a6 13 (3 6 nazx A4’y 1w
{57 PR o T 4 47 E) 1 (3 45 34
TE S o B T 5 (4" B 523 (345 b
#4n r (5e) FRE S 195 (45 4
#an 3 @ roAE) (R S 5
3487 1 @i O o3 sY) ]
4% 7} 1At 1 aE) T oAt s 214
@47 8 4t 1 (34) PR A o EEES
#ar s @t 2 e 1oqa's) ass
(# 47y 2 (3"4'8 | (5" 143" 5" 2R0G
(#amy 2 a'4ap AT (@78 1@ 8 amT
FaTy 1w @ a o (s 4 ' 1306
(37 47) B (4 47 B) 11 (af a7 I 484
(347} 5 (a4 a) ERENE o g {157 160
(4 7] roqd A 1 (& s") & (4* 5" 50
(3" 7y 7o 4%e) a2 & E" 5 (3" 5" 15
(%7} 16 (3" 48 143 (375" T {355 A
37 a8 (3" 478} 385 (357 1 {5 2
37 49 (3 4*6) 581 (5") 1 {3 4% 5) 7
37 3476 458 (3747 5 1 i3 4% 5) 13
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TARLE IX. The Linear Spaces on 12 Polats {(Parct [1)
=1k ve= 1k w=11
line case # time line case #  time  line cace it rime
(3 4% 5) 31 (#* 43 2208 =53 (3 :T] 5
(3" 4% 5) 30 (37T 45 THARS 1348 (347) ]
(3 4% 5) 21 (37 45)  IBATTL 1049 (47) 2
{3 4% 5) & (4 45 1m006 s (3 45) 1
4% 5 ! 1 TE o T U TE I e ol i
13" 4* 5) 3 {7 48 61553 a4 150
(4 5) X4 (45  mw E G138
(37 4 5 i {4 45} 5025 it 1165
2% 4* 5) 48 {2 4 5) T it 4t 1165
PRI B
(& 4" 5) 493 (445 9 (3 4% 36
137 4' 5) £ i4 8] 2 i ) A
(347 5) 28 {3 5) 50 4% 1
{4* 5} 5 (3% 5 1288 536 (A" 4%) &2
(3" 47 5 | (3" 5 Ioees  I&20 (3" 4% 547 55
(37 4" 5) 1 (3" 5) M625 229 (3" 4% 4107 317
(3" 47 5) 132 (3% 5) BT 1158 (37 4% 12913 2:30
[%* 4" 5) 1159 {37 5) 142742 &24 (3" 4% HM53
(3 4" 5) 5218 {37 5) 124400 401 (3747 17722
g: 4: 50 11649 1§ 5{ 71443 (a: 4:] HAM
A7 5) 14485 (3" 5 RS (3" 4% 2562
(3% 4% 5 oa0a {3 5) ERETH RS 452
(3 4% 5) 2T (3" 5) 2128 (34%) 54
(3 4% 5) 1168 {3 5) 457 (4"} A
{37 4% 5) ne {3 5) 12 E R :
{34 5) 30 % 5) 4 (317 44) )
1?*;::3':.]\2 B {3 5) 7 HL; 4: ! 1610 401
13.2 5 &: i LY 2 [; ) ;mu;r B;ﬁ
4 5 B 5 1 B 2 13
1{13" 4 5; HME 4R 13“] 4 1 Ea“ 4'3 152955 10w
(247 8 1Ras0 s (37 45 1 it ety 1maseT IR
(@475 4mas Rm (37 45 1 a4ty 1ERas2 HEd
(#*af TeEr sad (347 1 ia* 4% B4254
(37 47 5)  TEe4 R4z (47 1 a4y 14342
(3 47 5) 41330 3 44 i g 2452
(2" 47 5 18264 B a it A
(3 47 5) ARO6 (3 4% a (4% AT
(& 47 5) TRd (3 4% a 4y &
(4% 4% 5) 135 T 2 (A" 4ty 2
%47 5) 24 (4" 1 (3" 4"y 4
{47 5} B (3" 47} 10 (3" 4"y 123 2:30
(37" 4 5) 3 (+ 47} a2 (3" 4"y A5 2RET
(3™ 4 5) 2R 412 (A7) 52 (37 4% RS 1:15:50
(3 4 5) F290 433 (3747 51 (3" 4%y 20T4RT  LAmIT
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TABLE X. The Linear Spaces on 12 Polnts (FPart 111

e 12 = 1F = 12

l.e. W time Lo, W time Lo, o timne
(374" 569180 L3zzs (347 1298 (3™ 3

(37 4%) REA1RE] 4R03 (47 3 (™) BI1 4
EE TAIT 1753 (& 4% ar R OEG H53
ENE 4 K a4 (B 45 T ("7 RO SRR
(3 4%) 15792 00 (47 ] (A1 ATO4 ERED
(3% 4%) AT (A" 4 (T (&% REASSE  BaS
EE B (2" 4) 2408 H1T (3" 244897 230
(3 4%y 985 (2" 4 ariiz 1541 (3" o R B
(3 4%) ] (3% 4 AT T LI TRARIR  11:17
(347 2 (a2 4 GR41TA 4514 a'ly A4S G2
(4] 5 (57 4) 210770 zodoo (3" 113873 %15
[3'7 47y % (37 4)  2TAITET L2513 (3% 27611

(3" 47 P15 ('l 4y zmessiT  i4as (aY) 5819

(37" 47 3544 430 (37 4] 1MRE8T  26:58  (37) 139

(3" 47 52198 19:37 (% 4) 470454 T4 (3% 1K}

("% 47)  FzosEs 55:18 & 4) 129053 =01 (3% 51

(347 I07FETE LAZ (F 4) 2RATS (&) 16

(7 47 1881420 12108 (5" 4) 4630 (&) [

(37 4% 2193741 4500 (%" 4) T (&%) 2

(4% 4%) 1530287 2312 (% 4) 148 K] 1

(3" 4%} FI65RE 3341l (% 4) 30 i 1

(37 4%) 214TIT A6 (5 ) T total: 2EATIOTE

(3% 4%) 474 BIT (54 2 Cime: 2548 56

(3" 4%} B30 (4] 1
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