M460 Information and Coding Theory
homework sheet # 3

Select a sufficient number of problems from the following list to work on:

Problem # 1
Evaluate the minimum distances of the binary codes which are generated by
\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}
\text{ and }
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

Problem # 2
Compute coset leaders for the binary code generated by
\[
G = \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}.
\]

Decode the vectors (1, 1, 0, 1, 0, 0) and (1, 1, 1, 1, 1, 1).

Problem # 3
A linear code C is self-orthogonal if and only if $\langle c, c' \rangle = 0$ for all $c, c' \in C$. Show that C is self-dual (i.e., $C = C^\perp$) if and only if C is self-orthogonal and C is of dimension $k = n/2$ (and hence n is even).

Problem # 4
Let C be a binary, self-orthogonal code.

a) Show that each word of C is even and that C^\perp contains the all-one vector 1.

b) Assume in addition that the length n of C is odd and that the dimension of C is $(n-1)/2$. Show that
\[
C^\perp = C \cup (1 + C).
\]

Problem # 5
Show that a code with check matrix $H = (I_k \mid A)$ is self-dual if and only if A is a square matrix with $A \cdot A^\top = -I_k$.

Problem # 6
Define the “intersection” of two binary vectors u and v to be the vector
\[
u \wedge v : (u_0v_0, \ldots, u_{n-1}v_{n-1})
\]
which has ones only where both \(u \) and \(v \) have ones. Also, let

\[
\begin{align*}
u \lor v : (1 - (1 - u_0)(1 - v_0), \ldots, 1 - (1 - u_{n-1})(1 - v_{n-1}))
\end{align*}
\]

be the “union” of \(u \) and \(v \), i.e. the vector which is one if at least one of \(u \) or \(v \) is one. Show that

\[
\begin{align*}
\text{wt}(u + v) &= \text{wt}(u) + \text{wt}(v) - 2\text{wt}(u \land v) = \text{wt}(u \lor v) - \text{wt}(u \land v).
\end{align*}
\]

Problem # 7

Show the following:

a) If \(u, v \in \mathbb{F}_2^n \), then \(\langle u, v \rangle \equiv \text{wt}(u \land v) \mod 2 \) (where \(u \land v \) is as in the previous problem).

b) If \(u \in \mathbb{F}_2^n \), then \(\langle u, u \rangle \equiv \text{wt}(u) \mod 2 \).

c) If \(u \in \mathbb{F}_3^n \), then \(\langle u, u \rangle \equiv \text{wt}(u) \mod 3 \).

Problem # 8

A \((n, k, d, q)\) is said to be perfect if the balls of radius \(e = \lfloor (d - 1)/q \rfloor \) cover the whole Hamming space \(H(n, q) \). Show that this is equivalent to

\[
\begin{align*}
\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{i}(q-1)^i = q^{n-k}.
\end{align*}
\]

Deduce that

\[
\begin{align*}
\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{i}(q-1)^i \leq q^{n-k}
\end{align*}
\]

for any linear code. Is the binary \((7, 4)\)-Hamming code perfect?

Problem # 9

How many one-dimensional subspaces does the vector space \(\mathbb{F}_q^n = H(n, q) \) have?

Problem # 10

Let \(H \) be a matrix whose columns form a system of representatives of the one-dimensional subspaces of \(\mathbb{F}_q^m \). The code whose check matrix is \(H \) is called \(m \)-th order \(q \)-ary Hamming code. What are its parameters? Is it a perfect code?

Problem # 11

Let \(C \) be a linear \((n, k, d)\) code. Define the parity extension of \(C \) to be

\[
P(C) := \{(c_0, \ldots, c_{n-1}, c_n) \mid (c_0, \ldots, c_{n-1}) \in C, c_n = -\sum_{i=0}^{n-1} c_i\}
\]

Compute the minimum distance of \(P(C) \) (Hint: distinguish cases according to whether \(d \) is even or odd).

due Monday, April 2.