M360 Mathematics of Information Security, Fall 2005, Section 2

General Information

  1. Lectures Monday, Wednesday and Friday 2:10-3:00 pm in ENGRG E203
  2. Instructor: Anton Betten Weber 207
  3. Office hours: Monday 4-5pm, Wednesday 8-9am.
  4. Contact details: phone 491 1865, email betten at math dot colostate dot edu
  5. Credits: 3




W. Trappe, L. C. Washington: Introduction to Cryptography with Coding Theory, Prentice Hall, Second Edition

Homework and Quizzes

Homework will be assigned but not collected. Quizzes will be held Friday every second week to review the material from the previous two weeks.


There will be three midterms and one final exam. These will be held in the lecture room.
  1. Midterm 1: September 25
  2. Midterm 2: October 23
  3. Midterm 3: November 15
  4. Final: during final's week December 11-15, the exact date can be found at the registrar's website. It will not be published here.
There will be no make-up exams. If you have a conflict, you need to discuss the matter with the teacher well in advance.

Grading Scheme

Your final grade will be determined from a score of 600. The quizzes and midterms count 100 points each, the final counts 200 points.

Course Syllabus

This course is about cryptography and coding theory, as well as the underlying algebra. We will discuss various cryptosystems, presenting the underlying algebra in bits and pieces as we go along and as needed.
In detail, we will cover to following subjects:
We will frequently use the computer lab, using both web forms and small Maple programs.


we are going to use the computer lab in Weber 205, here are some general rules by the system administrator zube: rules


hw 1
hw 2
hw 3
hw 4
hw 5


shift cipher
substitution cipher
affine cipher
vigenere cipher
vigenere table

RSA Cryptosystem

RSA setup
RSA encrypt / decrypt
compute x^a mod n (this one works for long integers!)
extended Euclidean algorithm for integers

Finite Fields

multiply two polynomials over a finite field modulo a third one
extended Euclidean algorithm for polynomials over a finite field

Elliptic Curves

MAPLE worksheet: intoduction to elliptic curves

File translated from TEX by TTH, version 3.74.
On 29 Nov 2006, 10:25.