Graphs with second largest eigenvalue at most 1

Gary Greaves

東北大学
Tohoku University

23rd July 2015

with X.-M. Cheng and J. H. Koolen.
Which graphs have second largest eigenvalue at most -1?
Graphs with second largest eigenvalue at most -1

Which graphs have second largest eigenvalue at most -1?

- Let Γ be an n-vertex graph.

- Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.
Graphs with second largest eigenvalue at most -1

Let Γ be a connected graph on $n \geq 2$ vertices with second largest eigenvalue at most -1.

- The 2-vertex disconnected graph has spectrum $\{[0]^2\}$.

- Interlacing: $\lambda_i \geq \mu_i$ for $i \in \{1, \ldots, m\}$
 \implies every pair of vertices in Γ must be adjacent.

- Hence Γ must be complete.
Graphs with second largest eigenvalue at most -1

Let Γ be a connected graph on $n \geq 2$ vertices with second largest eigenvalue at most -1.

- The 2-vertex disconnected graph has spectrum $\{0^2\}$.
- Interlacing: $\lambda_i \geq \mu_i$ for $i \in \{1, \ldots, m\} \implies$ every pair of vertices in Γ must be adjacent.
- Hence Γ must be complete.

Theorem (Smith 1970)

Let Γ be a connected graph with second largest eigenvalue at most 0. Then Γ is complete multipartite.
Graphs with small second largest eigenvalue

Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.

- Cao and Yuan 1993: $S(1/3)$.
- Petrović 1993: $S(\sqrt{2} - 1)$.
- Cvetković and Simić 1995: $S((\sqrt{5} - 1)/2)$.
Graphs with small second largest eigenvalue

Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.

- Cao and Yuan 1993: $S(1/3)$.
- Petrović 1993: $S(\sqrt{2} - 1)$.
- Cvetković and Simić 1995: $S((\sqrt{5} - 1)/2)$.

Partial characterisations for $S(1)$.
Graphs with small second largest eigenvalue

Let $S(b)$ denote the set of connected graphs with second largest eigenvalue at most b.

- Cao and Yuan 1993: $S(1/3)$.
- Petrović 1993: $S(\sqrt{2} - 1)$.
- Cvetković and Simić 1995: $S((\sqrt{5} - 1)/2)$.

Partial characterisations for $S(1)$.

Graphs with small second largest eigenvalue

- Cao and Yuan 1993: $S(1/3)$.
- Petrović 1993: $S(\sqrt{2} - 1)$.
- Cvetković and Simić 1995: $S((\sqrt{5} - 1)/2)$.

Partial characterisations for $S(1)$.

Graphs with small second largest eigenvalue

- Petrović 1993: $S(\sqrt{2} - 1)$.

- Cvetković and Simić 1995: $S((\sqrt{5} - 1)/2)$.

Partial characterisations for $S(1)$.

Graphs with small second largest eigenvalue

- Cvetković and Simić 1995: $S\left(\frac{\sqrt{5} - 1}{2}\right)$.

Partial characterisations for $S(1)$.

Graphs with small second largest eigenvalue

Partial characterisations for $S(1)$.

- Li and Yang 2011: Quadcyclic graphs.
Graphs with small second largest eigenvalue

Partial characterisations for $S(1)$.

- Li and Yang 2011: Quad-Tricyclic graphs.
Plan

Classify graphs Γ with second largest eigenvalue at most 1 such that Γ has precisely three distinct eigenvalues.

- Graphs with three eigenvalues 101.
- Main theorem.
- A structural tool for the proof.
- Idea for the finite search.
- Closing remarks.
Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then

$$(A - \theta_1 I)(A - \theta_2 I) = \alpha \alpha^\top.$$
Graphs with three eigenvalues

Let Γ be a connected graph (V, E) with eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then

$$A^2 = (\theta_1 + \theta_2)A - \theta_1 \theta_2 I + \alpha \alpha^\top, \quad A\alpha = \theta_0 \alpha.$$

$$d_x = -\theta_1 \theta_2 + \alpha_x^2,$$

$$\nu_{x,y} = (\theta_1 + \theta_2)A_{x,y} + \alpha_x \alpha_y.$$

- Diameter of Γ is 2.

- $\theta_1 \geq 0$ and $\theta_2 \leq -\sqrt{2}$.
Regular graphs

- Regular graphs with three eigenvalues.
 Strongly regular graphs

- Regular graphs with second largest eigenvalue 1.
 Complement of graphs with smallest eigenvalue -2.

- Regular graphs with three eigenvalues and second largest eigenvalue 1.
 Complement of strongly regular graphs with smallest eigenvalue -2.

Gary Greaves — Graphs with second largest eigenvalue at most 1
Nonregular graphs

Theorem
Let Γ be a connected nonregular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ and $\theta_1 = 1$. Then $\theta_2 = -2$, and Γ is the Petersen cone or the Van Dam-Fano graph.

Petersen cone

Van Dam-Fano graph
Main theorem

Theorem

Let Γ be a connected graph with three distinct eigenvalues and second largest eigenvalue at most 1. Then Γ is one of the following graphs.

(a) A complete bipartite graph;
(b) The Petersen cone;
(c) The Van Dam-Fano graph;
(d) A complete multipartite regular graph;
(e) The complement of a Seidel SRG.
Structure of the proof

Goal: find connected 3-eigenvalue graphs Γ with $\theta_1 \leq 1$.

- Reduce to the case where Γ has second largest eigenvalue precisely 1. \implies all eigenvalues are integers.

- Reduce to the case where Γ has at least three distinct valencies.
 - Regular case follows from Seidel (1968).
 - Biregular case [Cheng, Gavrilyuk, GG, Koolen (2015+)].

- Reduce to the case where Γ is not a cone.

- Reduce to the case where the smallest eigenvalue of Γ is at least -29.
A structural lemma

Lemma
Let Γ be a connected graph with second largest eigenvalue 1. For $x \sim y$, let π be a vertex partition with cells $C_1 = \{x, y\}$, $C_2 = \{z \in V(\Gamma) \setminus C_1 \mid z \sim x \text{ or } z \sim y\}$, and $C_3 = \{z \in V(\Gamma) \mid z \not\sim x \text{ and } z \not\sim y\}$. Then the induced subgraph on C_3 has maximum degree 1.
A bound for n

Lemma

Let Γ be a connected n-vertex graph with three eigenvalues and second largest eigenvalue 1. Let m denote the multiplicity of the smallest eigenvalue of Γ. Suppose $x \sim y$. Then $n \leq d_x + d_y - \nu_{x,y} + 2m$.

Proof. $|C_3| = n - (d_x + d_y - \nu_{x,y})$; $|C_3| \leq 2m$.
A bound for n

Lemma
Let Γ be a connected n-vertex graph with three eigenvalues and second largest eigenvalue 1. Let m denote the multiplicity of the smallest eigenvalue of Γ. Suppose $x \sim y$. Then $n \leq d_x + d_y - \nu_{x,y} + 2m$.

Proof.

$$|C_3| = n - (d_x + d_y - \nu_{x,y}); \quad |C_3| \leq 2m.$$
Finite search

Let Γ be a connected n-vertex graph with eigenvalues $s > 1 > -t$ and suppose $-t$ has multiplicity m. (Γ not a cone.)

- $n \leq f(t)$ for some rational function f.

- For each $t \in \{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $S(t)$.

Finite search

Let Γ be a connected n-vertex graph with eigenvalues $s > 1 > -t$ and suppose $-t$ has multiplicity m. (Γ not a cone.)

- $n \leq f(t)$ for some rational function f.

- For each $t \in \{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $S(t)$.

| t | $|S(t)|$ | t | $|S(t)|$ | t | $|S(t)|$ |
|-----|--------|-----|--------|-----|--------|
| 3 | 128 | 12 | 497 | 21 | 189 |
| 4 | 196 | 13 | 455 | 22 | 163 |
| 5 | 277 | 14 | 409 | 23 | 143 |
| 6 | 375 | 15 | 377 | 24 | 118 |
| 7 | 492 | 16 | 340 | 25 | 95 |
| 8 | 610 | 17 | 311 | 26 | 76 |
| 9 | 748 | 18 | 273 | 27 | 61 |
| 10 | 898 | 19 | 248 | 28 | 43 |
| 11 | 546 | 20 | 220 | 29 | 27 |
Finite search

- $n \leq f(t)$ for some rational function f.

- For each $t \in \{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $S(t)$.

- For each $S \in S(t)$, we can enumerate valencies (k_1, \ldots, k_r). Denote by $K(t)$.

| t | $|S(t)|$ | $|K(t)|$ | $|S(t)|$ | $|K(t)|$ | $|S(t)|$ | $|K(t)|$ |
|-----|--------|--------|--------|--------|--------|--------|
| 3 | 128 | 58 | 12 | 497 | 287 | 21 | 189 | 137 |
| 4 | 196 | 116 | 13 | 455 | 237 | 22 | 163 | 137 |
| 5 | 277 | 113 | 14 | 409 | 245 | 23 | 143 | 120 |
| 6 | 375 | 173 | 15 | 377 | 214 | 24 | 118 | 104 |
| 7 | 492 | 159 | 16 | 340 | 220 | 25 | 95 | 92 |
| 8 | 610 | 225 | 17 | 311 | 184 | 26 | 76 | 71 |
| 9 | 748 | 233 | 18 | 273 | 190 | 27 | 61 | 59 |
| 10 | 898 | 297 | 19 | 248 | 162 | 28 | 43 | 43 |
| 11 | 546 | 272 | 20 | 220 | 172 | 29 | 27 | 27 |
Finite search

- For each $t \in \{3, \ldots, 29\}$, we can enumerate parameters (n, s, m). Denote their set by $S(t)$.

- For each $S \in S(t)$, we can enumerate valencies (k_1, \ldots, k_r). Denote by $K(t)$.

- For each $S \in S(t)$ and $K \in K(t)$, we can enumerate valency multiplicities (n_1, \ldots, n_r). Denote by $M(t)$.

| t | $|S(t)|$ | $|K(t)|$ | $|M(t)|$ | t | $|S(t)|$ | $|K(t)|$ | $|M(t)|$ | t | $|S(t)|$ | $|K(t)|$ | $|M(t)|$ |
|-----|--------|--------|--------|-----|--------|--------|--------|-----|--------|--------|--------|
| 3 | 128 | 58 | 0 | 12 | 497 | 287 | 0 | 21 | 189 | 137 | 0 |
| 4 | 196 | 116 | 1 | 13 | 455 | 237 | 0 | 22 | 163 | 137 | 0 |
| 5 | 277 | 113 | 2 | 14 | 409 | 245 | 0 | 23 | 143 | 120 | 0 |
| 6 | 375 | 173 | 0 | 15 | 377 | 214 | 0 | 24 | 118 | 104 | 0 |
| 7 | 492 | 159 | 1 | 16 | 340 | 220 | 0 | 25 | 95 | 92 | 0 |
| 8 | 610 | 225 | 0 | 17 | 311 | 184 | 0 | 26 | 76 | 71 | 0 |
| 9 | 748 | 233 | 0 | 18 | 273 | 190 | 0 | 27 | 61 | 59 | 0 |
| 10 | 898 | 297 | 0 | 19 | 248 | 162 | 0 | 28 | 43 | 43 | 0 |
| 11 | 546 | 272 | 0 | 20 | 220 | 172 | 0 | 29 | 27 | 27 | 0 |
Survivors

<table>
<thead>
<tr>
<th></th>
<th>((n, s, m))</th>
<th>((k_1, \ldots, k_r))</th>
<th>((n_1, \ldots, n_r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(31, 15, 9)</td>
<td>(5, 8, 13, 20)</td>
<td>(5, 10, 5, 11)</td>
</tr>
<tr>
<td>5</td>
<td>(36, 19, 9)</td>
<td>(7, 13, 23)</td>
<td>(6, 12, 18)</td>
</tr>
<tr>
<td>5</td>
<td>(45, 28, 12)</td>
<td>(6, 9, 21, 30)</td>
<td>(6, 3, 3, 33)</td>
</tr>
<tr>
<td>7</td>
<td>(45, 20, 8)</td>
<td>(11, 16, 23, 32)</td>
<td>(6, 27, 6, 6)</td>
</tr>
</tbody>
</table>

- Use ad-hoc methods to show nonexistence of graphs corresponding to each of the parameters in the table.
Closing remarks

- D. de Caen: must graphs with three eigenvalues have at most three valencies?

- Regular: Strongly regular graphs.

- Bi-regular: Infinitely many examples.

- Tri-regular: Finitely many known examples.

- At least four valencies: No known examples.