Notes on Homework 7

1. (a) Two things to show:

Additivity Suppose \(\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbb{R}^3 \). Then

\[
f(\vec{x} + \vec{y}) = f\left(\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}\right)
= \begin{pmatrix} 2(x_1 + y_1) + (x_2 + y_2) \\ 4(x_3 + y_3) \end{pmatrix}
= \begin{pmatrix} 2x_1 + x_2 \\ 4x_3 \end{pmatrix} + \begin{pmatrix} 2y_1 + y_2 \\ 4y_3 \end{pmatrix}
= f(\vec{x}) + f(\vec{y}).
\]

In fact, this isn’t the way one would probably derive this solution; in practice, the way to solve this part is probably to compute \(f(\vec{x} + \vec{y}) \) and \(f(\vec{x}) + f(\vec{y}) \) separately, and then observe that they’re the same vector.

Homogeneity Suppose \(\vec{x} \in \mathbb{R}^3, \lambda \in \mathbb{R} \). Then

\[
f(\lambda \vec{x}) = f\left(\begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}\right)
= \begin{pmatrix} 2(\lambda x_1 + \lambda x_2) \\ 4\lambda x_3 \end{pmatrix}
= \lambda \begin{pmatrix} 2x_1 + x_2 \\ 4x_3 \end{pmatrix}
= \lambda f(\vec{x}).
\]

See remarks above.

(b) Fix a matrix \(B \). Two things to show:

Additivity Suppose \(A, C \in \text{Mat}_{n,n}(\mathbb{F}) \). Note that \(B \) is a fixed matrix throughout this problem, so we’re not allowed to modify it. Then

\[
g(A) + g(C) = AB - BA + CB - BC
\]
while

\[g(A + C) = (A + C)B - B(A + C) \]
\[= AB + CB - BA - BC \text{ start using matrix properties} \]
\[= AB - BA + CB - BC \]
\[= g(A) + g(C) \text{ from the first line.} \]

homogeneity Suppose \(A \in \text{Mat}_{n \times n}(\mathbb{F}) \) and \(\lambda \in \mathbb{F} \). Using properties of matrix multiplication from about a month ago, we have

\[g(\lambda A) = \lambda AB - B\lambda A \]
\[= \lambda AB - \lambda BA \]
\[= \lambda(AB - BA) \]
\[= \lambda g(A) \]

(c) Same story:

additivity Suppose \(p(z) = az^2 + bz + c, \ q(z) = dz^2 + ez + f, \ p(z), q(z) \in \mathcal{P}_2(\mathbb{R})[z]. \)

Then

\[h(p(z) + q(z)) = h((a + d)z^2 + (b + e)z + (c + f)) \]
\[= \begin{pmatrix} (a + d) + (b + e) \\ (b + e) - (c + f) \\ 2(c + f) \end{pmatrix} \]

while

\[h(p(z)) + h(q(z)) = \begin{pmatrix} a + b \\ b - c \\ 2c \end{pmatrix} + \begin{pmatrix} d + e \\ e - f \\ 2f \end{pmatrix} \]
\[= \begin{pmatrix} (a + d) + (b + e) \\ (b + e) - (c + f) \\ 2(c + f) \end{pmatrix}. \]
\textbf{homogeneity} Suppose $\lambda \in \mathbb{R}$, $p(z) = az^2 + bz + c \in \mathcal{P}_2(\mathbb{R})[z]$. Then
\[
h(\lambda p(z)) = h(\lambda (az^2 + bz + c)) \\
= h(\lambda az^2 + \lambda bz + \lambda c) \\
= \begin{pmatrix} \lambda a + \lambda b \\ \lambda b - \lambda c \\ 2\lambda c \end{pmatrix} \\
= \lambda \begin{pmatrix} a + b \\ b - c \\ 2c \end{pmatrix} \\
= \lambda h(p(z)).
\]

2. (a) By definition, we have
\[
T(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\
= \begin{pmatrix} x_1 + 3x_2 \\ 2x_1 + 4x_2 \end{pmatrix}.
\]
(b) Our formula yields
\[
\begin{pmatrix} 3 + 3 \cdot 1 \\ 2 \cdot 3 + 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \end{pmatrix},
\]
while the definition yields
\[
T(\begin{pmatrix} 3 \\ 1 \end{pmatrix}) = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\
= \begin{pmatrix} 6 \\ 10 \end{pmatrix}.
\]

3. (a) Note that
\[
f(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = \begin{pmatrix} x_1 - x_2 \\ x_1 + 4x_3 \\ -x_1 \end{pmatrix} \\
= x_1 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + x_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}.
\]
So in fact, we can compute $f(\vec{x})$ via
\[
f(\vec{x}) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 4 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.
\]
(b) Compute in two different ways; using the given formula,

\[
T\left(\begin{pmatrix} 1 \\
3 \\
-1 \end{pmatrix}\right) = \begin{pmatrix} 1 - 3 \\
1 + 4(-1) \\
-1 \end{pmatrix}
\]
\[
= \begin{pmatrix} -2 \\
-3 \\
-1 \end{pmatrix}
\]

while multiplying by our matrix yields

\[
\begin{pmatrix} 1 & -1 & 0 \\
1 & 0 & 4 \\
-1 & 0 & 0 \end{pmatrix}
\begin{pmatrix} 1 \\
3 \\
-1 \end{pmatrix} = \begin{pmatrix} -2 \\
-3 \\
-1 \end{pmatrix}.
\]

4. (a) The reduced row echelon form of \(A \) is

\[
\begin{pmatrix} 1 & 0 & -\frac{17}{2} & -\frac{19}{2} \\
0 & 1 & \frac{9}{2} & \frac{11}{2} \end{pmatrix}.
\]

(Computation omitted here.) Therefore, the most general solution to the equation \(Ax = 0 \) is

\[
\begin{pmatrix} \frac{17}{2}x_3 + \frac{19}{2}x_4 \\
-\frac{9}{2}x_3 - \frac{11}{2}x_4 \\
x_3 \\
x_4 \end{pmatrix}
\]

and the null space of \(A \) is

\[
\text{null}(A) = \text{span}\left(\begin{pmatrix} \frac{17}{2} \\
\frac{9}{2} \\
1 \\
0 \end{pmatrix}, \begin{pmatrix} \frac{19}{2} \\
-\frac{11}{2} \\
0 \\
1 \end{pmatrix}\right).
\]

These two vectors are linearly independent check this, and \(\dim \ker(A) = 2 \). A two-dimensional subspace maps to zero, and \(f \) is not injective.

Remark: Actually, you can figure out that \(f \) is not injective without computing anything! Since
\(\dim \mathbb{R}^4 = 4 > \dim \mathbb{R}^2 = 2 \), there is no injective linear transformation \(\mathbb{R}^4 \to \mathbb{R}^2 \).

(b) Since the reduced row echelon form of \(B \) is

\[
\begin{pmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \end{pmatrix}
\]

(calculation omitted), for any \(b \in \mathbb{R}^3 \) there is a unique \(x \in \mathbb{R}^3 \) such that \(Ax = b \). In particular, the equation \(Ax = 0 \) has a unique solution, and \(g \) is injective.
5. The key observation for this problem is that for any vector \(b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \), the equation \(Ax = b \) is consistent. Moreover, each variable is a pivot variable, so there is exactly one solution to \(Ax = b \) for any particular \(b \). (Explicitly, the solution is \(x_3 = b_3; x_2 = b_2 - 2x_3 = b_2 - 2b_3 \), and \(x_1 = b_1 - 2x_2 - 3x_3 = b_1 - 2b_2 + b_3 \).)

(a) Since \(Ax = b \) always has a solution, each element \(b \in \mathbb{R}^3 \) is in the column space of \(A \), and the associated linear transformation \(T \) is surjective.

(b) Since \(T \) is surjective, we know that \(T \) is bijective if and only if it is injective, too. From class, we know that \(T \) is injective if and only if the nullspace of \(A \) is trivial, that is, if and only if the solution to \(T(\vec{x}) = \vec{0} \) is the zero vector. This last condition is true; we can read this off from the echelon form, as discussed above. Alternatively, since

\[
\dim \text{im}(T) + \dim \ker(T) = \dim(\text{source}) = 3,
\]

and since \(\dim \text{im}(T) = 3 \), the kernel has dimension zero, and thus \(T \) is injective.