MATH 417: Numerical Analysis

Instructors: Prof. Wolfgang Bangerth, Prof. Guido Kanschat
bangerth@math.tamu.edu, kanschat@math.tamu.edu

Teaching Assistants: Seungil Kim, Yan Li
sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 8 – due 11/2/06 and 11/6/06

Problem 1 (Condition numbers). Calculate the condition numbers \(\kappa(A) = \|A\| \|A^{-1}\| \) with respect to the \(l_1, l_\infty \) and \(l_2 \) norms for the matrix

\[
A = \begin{pmatrix}
1 & 0.001 \\
0.999 & 1
\end{pmatrix}.
\]

(5 points)

Problem 2 (Error propagation). With the matrix from Problem 1, consider the solutions \(x, \tilde{x} \) of the following linear systems:

\[
Ax = b, \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix},
\]

\[
A\tilde{x} = \tilde{b}, \quad \tilde{b} = \begin{pmatrix} 1 \\ 1.001 \end{pmatrix}.
\]

(Imagine the former to be the exact right hand side, and the latter to be one that is contaminated by measurement uncertainty, statistical error, etc.)

Solve for \(x \) and \(\tilde{x} \). Calculate the relative difference in the right hand side \(\epsilon_r = \|b - \tilde{b}\|/\|b\| \) and the relative error \(e_r = \|x - \tilde{x}\|/\|x\| \) in the solution, each for both the \(l_2 \) and the \(l_\infty \) norm.

Using your result from Problem 1, do \(\epsilon_r \) and \(e_r \) satisfy the estimates discussed in class? (5 points)

Problem 3 (Lagrange interpolation).

(a) Compute the Lagrange interpolation polynomials \(L_{4,k}, k = 0 \ldots 3 \), for the points \(x_0 = 1, x_1 = 2, x_2 = 1.5 \) and \(x_3 = 1.6 \).

(b) Calculate the interpolating polynomial for the data set where \(y_k = \log x_k \) at the four points \(x_k \). Write the polynomial in the form \(a_3x^3 + a_2x^2 + a_1x + a_0 \).

(c) The polynomial calculated in (b) by construction interpolates the function \(f(x) = \log x \). Compute the maximal error on the interval \([1, 2]\). (6 points)