Wolfgang Bangerth
A framework for the adaptive finite element solution of large inverse problems
SIAM Journal on Scientific Computing, vol. 30 (2008), pp. 2965-2989.

Since problems involving the estimation of distributed coefficients in partial differential equations are numerically very challenging, efficient methods are indispensable. In this paper, we will introduce a framework for the efficient solution of such problems. This comprises the use of adaptive finite element schemes, solvers for the large linear systems arising from discretization, and methods to treat additional information in the form of inequality constraints on the parameter to be recovered. The methods to be developed will be based on an all-at-once approach, in which the inverse problem is solved through a Lagrangian formulation. The main feature of the paper is the use of a continuous (function space) setting to formulate algorithms, in order to allow for discretizations that are adaptively refined as nonlinear iterations proceed. This entails that steps such as the description of a Newton step or a line search are first formulated on continuous functions and only then evaluated for discrete functions. On the other hand, this approach avoids the dependence of finite dimensional norms on the mesh size, making individual steps of the algorithm comparable even if they used differently refined meshes. Numerical examples will demonstrate the applicability and efficiency of the method for problems with several million unknowns and more than 10,000 parameters.



Wolfgang Bangerth
Mon Nov 13 13:08:20 MST 2017