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Abstract

Modern finite element software tends to become increasingly complex. Techniques like adaptive meshes, error
estimation, multigrid methods, or hp finite elements require the programmer to work with extremely complicated
data structures and sophisticated algorithms. Designing programs in a maintainable and expandable way while
retaining run time efficiency has therefore become a major task in applied numerical analysis. In our experience,
this task can only be fulfilled by using modern programming languages and tools.

We will show how modern aspects of the C++ programming language, in particular templates, can be used to
write algorithms for finite element programs in a dimension-independent way. This enables us to test algorithms in
one or two space dimensions while using the same program for large scale computations in three space dimensions
as well. It will be demonstrated that this is even possible without much loss in efficiency since tests for the actual
space dimension at run time can almost completely be avoided.

The idiom above is one of several modern aspects of C++ used in the design of the finite element library deal.II
developed at the University of Heidelberg. We will give a sketch of its implementation and examples how it is used.

Key words: C++, Adaptive Finite Element Methods, Dimension-Independent Programming.

1 Introduction

Developing modern finite element codes involves a significant amount of software management tasks. While compu-
tations on uniform grids using multi-linear elements can be done with programs with a few hundred lines of code
and in almost any programming language, it is already a non-trivial task to write a multigrid solver on uniformly
refined grids. Due to the relatively simple data structures possible for globally refined grids, such codes have most
often been written in Fortran and comprise several thousands to a few ten thousands of lines of code. On the other
hand, modern finite element codes offering adaptively refined grids, various different finite elements and support for a
variety of applications in several different space dimensions, can quickly exceed 100.000 lines of code. Most libraries
offering support for these topics are written in either C++ or Java (there are too many finite element packages written
in these languages to give a comprehensive list; we refer the reader to [1] for an overview).

C++ and Java are often selected due to the lack of support for complex and indirected data structure in Fortran
77. However, they also offer far better support for the software management challenges involved with packages of this
size. For example, object orientation and generic programming allow for code reuse.

In this paper, we will discuss an approach to use certain features of C++ to enable the programmer to write
library components and applications in a way that is essentially dimension-independent. The reasons for such an
approach are two-fold: first, three-dimensional simulations are computationally expensive; developing algorithms in
two-dimensional programs that can then be simply re-compiled for 3D saves significant parts of the development time
since such programs need not be written twice. Secondly, it is often simpler to transfer mathematical ideas into
programs if we can think in terms of cells and faces, for example, rather than quadrilaterals and lines. This is due to
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the fact that one usually develops finite element theory in a dimension-independent way. For instance, assembling a
matrix (here for Laplace equation) is usually written as A;; = (V;, Vo) = > g (Vi, V@;) i » where Q C R is
the domain and K are the cells of a triangulation of Q. Likewise, error indicators are often evaluated by integration
over faces of cells. To name only one simple example, the error indicator by Kelly et al. [5] has the form

h
(1) i = o7 IOnunlllor »

24
where 0K is the boundary of a cell, which is the union of its faces, and [0, un] denotes the jump of the normal derivative
of the numerical solution uy at the interface of two cells. It is simpler to implement such formulas if the programming
idiom supports translating them into code in a one-to-one manner. How such a style is implemented in the deal.Il
finite element library (see [2, 3]) will be the subject of this paper.

The layout of the remainder of this paper is as follows: in Section 2, a brief introduction into templates in C++ is
given. In Section 3, we explain the basics of the use of templates for dimension-independent programming in deal.II.
Section 4 details how so-called traits classes can be used to make dimension-independent programming transparent,
and Section 5 shows applications of dimension-independent programming.

2 Templates in C++

Templates are a way by which generic programs can be written in C++ (see [6]). For example, a function template
might look like this:

template <typename number>
number sqr (const number x) { return x#*x; };

This template specifies a family of functions that return the square of its argument. It is not a function in itself, since
the data types of the parameter and the return value are not fixed. However, it is a template from which the compiler
can generate a function, if it is told to identify the template type name number with an actual data type. For example,
let x be a variable of type double, then calling sqr (x) will lead to the following actions on the compiler’s side:

e Look up whether there is a function sqr (double).

e Look up whether there is a template function from which a function sqr (double) can be generated by identifying
template types with the types of the arguments; this is the case here, since by matching number with double,
we can obtain a function sqr that takes a variable of type double; this also fixes the return type of the function.
Only now has the template become an actual function with known types and can be compiled.

e If later we call sqr (i) with a variable i of type int, a second instance of the template is generated and compiled,
for which number is identified with int.

It is noted that at the time of compilation, all data types are known and the compiler is therefore able to optimize in
the same way as if we had written the code for variables of type double and int into separate functions. In particular,
no run time checks are necessary when using templates over regular functions. Templates therefore allow to avoid
code duplication without penalizing performance, and thus simplify management of complex software.

Just as for functions, C++ allows the declaration of templatized data types. A typical example is an array of
elements of a data type that is only fixed later. For simplicity, we show how a vector with three elements could look
like:

template <typename number>
class Vector3 {
number elements[3];
... // other member variables and functions

};

If later we want to use such a data type for a variable, we have to specify which data types the elements of the vector
shall have:

Vector3<double> double_vector;
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Unlike in the case of function templates, we have to specify the data type explicitely, with which number shall be
identified. The reason, of course, is that upon declaration we have to specify a full data type, while when calling a
function the data type of the parameters are already known, so the compiler can usually deduce the function template
types from the parameter types.

Here, again, at the time we write the declaration of double_vector, the compiler knows all data types and can
compile the template class Vector3 into a true data type; a variable of type Vector3<double> will thus have a size
of 24 bytes, while a Vector3<char> will only take three bytes. Furthermore, the compiler is able to optimize accesses
to elements of the vector, since the offsets of the data elements are known at compile time due to the fact that the
size of the elements is available.

For later reference, we note that template classes can be specialized. For example, it is wasteful to store boolean
values in classes like Vector3 above, since one could as well store the three values as a bit field. This does not require
us to introduce another concept, since C++ allows us to specialize Vector3<bool>:

template <>
class Vector3<bool> {
char bitfield;

};

Whenever an object of type Vector3<bool> is required, this specialization is used, while in all other cases, the general
template is taken. It is noted that the specialization needs not have the same functions and member variables; the
general template and the specialization are entirely separate entities that happen to have the same name.

One of the less well known features of C+-+ which we will use extensively below, is that C++ also allows template
parameters to be integral values rather than types. For example, assume we want a vector of variable length, for which
the length is known at compile time, however. Then, the following class template might be useful:

template <unsigned int N>
class Vector {
double elements[N];

};

If we now declare a variable of type Vector<3>, the compiler will instantiate an actual class from the template which
has exactly three elements. Again, at the time the class is compiled, the size is known and the compiler can optimize
computations involving the template parameter N. If the class above had a function that computes the square of the
lo-norm of this vector, it would probably look like this:

template <unsigned int N>

double Vector<N>::norm_square () const {
double tmp = 0;
for (unsigned int i=0; i<N; ++i) tmp += sqr(elements[i]);
return tmp;

};

A good compiler will usually unroll the loop if N is small, since then the overhead of the loop is significant. The compiler
can do so, since the length of the loop is known at compile time, and most modern compilers actually perform this
optimization.

3 Value templates in deal.ll

Within the deal.Il finite element library, extensive use is made of value templates as shown above. At the foundation
of the library, there exists a template class Point<dim> very much like the Vector<N> above. It denotes a point
in a dim-dimensional space. Starting from this class, a first step towards a triangulation of lines, quadrilaterals, or
hexahedrons (depending on the dimension we work in) could be the following class:

template <int dim>
class Cell {
Point<dim> vertices[1<<dim];
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};

Here, each cell stores the coordinates in dim-dimensional space of its 1<<dim = 2™ vertices. A simple triangulation
would contain a list of cells:

template <int dim>

class Triangulation {
list<Cell<dim> > cells;

s

list, like the Vector3 above, is another data type that accepts the type of the elements it should store as template
parameter.

In fact, the data types describing a triangulation in deal.Il are much more complicated than shown here. For
example, rather than a Cell data type, we have classes that describe objects of dimension structdim in a space of
dimension spacedim:

template <int structdim, int spacedim>
class TriaObject {
Point<spacedim> vertex (unsigned int vertex_number);

};

An object of type TriaObject<2, 3> would thus describe a quadrilateral in a three-dimensional domain, i.e. a face of a
cell. It has a function that returns the positions of one of the vertices (which are of data type Point<spacedim>), and
it could also have a function that returns a pointer to one of its faces, which itself is of type TriaObject<structdim-1,
spacedim>.

For cells, the structural dimension is the same as the one of the embedding space. Furthermore, in a triangulation
they have more properties than other objects of arbitrary dimension; for example, they have a fixed number of
neighbors. It might therefore be useful to derive the cell class from the class with structdim equal to spacedim:

template <int spacedim>

class Cell : public TriaObject<spacedim,spacedim> {
Cell<spacedim> * neighbor (unsigned int number_of_neighbor);
TriaObject<spacedim—1,spacedim> * face (unsigned int number_of_face);

};

It is stressed again that at the time of compilation all template parameters are known, such that no run time checks
on their values have to be performed. Furthermore, all data types are exactly known, so no casting from abstract base
classes to actual classes is necessary, thus enhancing type safety and by this improving maintainability of the code.

Rather than the pointers to cells and faces above, deal.IT uses iterators. These are principally like pointers, but are
significantly more flexible. In particular, while the operator ++ applied to a pointer moves it to the next consecutive
element in memory, an iterator may overload that operator to let the result point to any other reasonable location
in memory, usually where the next cell is located (which may not be the consecutively next location in memory). In
deal.Il, iterators are also used to present different views on objects. For example, we have iterators to cells which
move to the next cell when increased, but also iterators to active cells which move to the next cell that is not refined
any further; for the latter operation, it might be necessary to skip several non-active cells in between. Although the
iterators operate on the same objects, their ranges represent different parts of the collection of cells.

4 Traits classes

Using classes like TriaObject<2,3> is unhandy, in particular since in actual implementations, there are several
such classes, and changes to the internals of the library might require changes to the names or template param-
eters of these classes. Also, in deal.Il iterators to other objects are declared using a complex framework of tem-
plates; for example, an iterator to active quadrilaterals might be of type TriaActiveIterator<2,Cell<2> > or
TriaActiveIterator<3,TrialObject<2,3> >, depending on the space dimension (here 2 or 3, respectively). Finally,
iterators to quadrilaterals are pointless in one space dimension.
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For this reason, deal.Il uses traits classes. They are used to represent typedefs that bind alias names dimension-
dependently to actual classes, using explicit specializations of classes. For example, the iterators above can be defined
as follows, disabling support for faces in 1D and mapping cell iterators to the respective classes:

template <> class TrialteratorTraits<i> { template <> class TrialteratorTraits<2> {
typedef TriaActivelterator<1,Cell<1> > typedef TriaActiveIlterator<2,Cell<2> >
active_cell_iterator; active_cell_iterator;
typedef void * active_face_iterator; typedef TriaActivelterator<2,Trialbject<1,2> >
}; active_face_iterator;
};

This way, we can refer to the type TrialteratorTraits<dim>::active cell iterator and get whatever consti-
tutes an iterator to a cell. Note that in this case, no general template was declared since there is nothing that might
hold for all dimensions for which we have not provided specializations.

5 Applications

The intent of traits classes is that we are now in the position to write functions like the following, that might for
example be used as a simple way to output the vertices of all cells:

template <int dim>
void write_cells (Triangulation<dim> &tria) {
TrialteratorTraits<dim>::active_cell_iterator cell;
for (cell=tria.begin_active(); celll!=tria.end(); ++cell)
for (int v=0; v<GeometryInfo<dim>::vertices_per_cell; ++v)
cout << cell->vertex(v) << endl;

};

GeometryInfo is another traits class that provides informations such as the number of vertices, faces, or children per
cell, depending on the space dimension denoted by its template argument.
Likewise, the main loop to compute the error indicator of Eq. (1) could look like this:

template <int dim>
void ErrorIndicator<dim>::compute_indicators () {
QGauss3<dim-1> quadrature_formula;
TrialteratorTraits<dim>::active_cell_iterator cell;
for (cell=tria.begin_active(); cell!=tria.end(); ++cell)
for (int £f=0; f<GeometryInfo<dim>::faces_per_cell; ++f)
integrate_on_face (cell->face(f), quadrature_formula);

};

Note how an object describing a three point Gauss formula for quadrature on submanifolds is created. Quadrature
formulas are only implemented for 1D and are obtained recursively by outer product of dim-1 and one-dimensional
formulas in the dim-dimensional case.

It is stressed that in these example, the actual data type of cell and cell->face() differs depending on the space
dimension of the triangulation object, so the actual vertex() function that is called is also dependent. Finally, the
number of vertices we print per cell is variable. All this information is available at compile time, however, once the
compiler generates an actual function from the template, so the compiler may choose to unroll the inner loop due to
its known length.

Although the types of the object we work with are different for different space dimensions, we are able to write
the function in a dimension-independent way. In fact, once dimension-dependent classes such as TriaObject or Cell
have been defined, it is possible to write almost all algorithms in a dimension-independent way. The actual dimension-
dependent core of the deal.II library is rather small (less than ten per cent) and almost all recent extensions are written
dimension-independently.

It is clear from the above that all classes and algorithms that might have different results in different dimensions
will need to depend on the dimension being passed as template parameter. However, most of them need still to be im-
plemented only once, as a general template, rather than once for every space dimension as would be the case with more
‘traditional’ approaches where we would have iterator classes active_cell _iterator_1d, active_cell_iterator_2d,
etc, and in which algorithms such as the one above would be copied with slight modifications to adjust for different
space dimensions.
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In our approach, such functions are written only once, since they can get the data types (such as iterators) and
values (as the number of vertices per cell) that actually differ between space dimensions using the traits classes
explained above. On the other hand, if algorithms really differ between space dimensions, we are free to explicitely
specialize them. For example, in some cases algorithms for one-dimensional problems differ slightly from the general
case since the faces of cells (i.e. the nodes of the subdivision of the interval on which we solve a problem) have no
extension. Thus, an algorithm implementing Eq. (1) would be written once for the special case in 1D and once as
general template for all other dimensions.

However, as noted above, explicit specializations or algorithms are the exception and not often necessary outside the
library itself. For example, in one of the applications of the author (see [4]) comprising of approximately 20.000 lines
of code, there is exactly one function that is explicitely specialized, namely the function that sets up the coarse grid
for the triangulation of the domain. All other functions are dimension-independent and can be compiled for whatever
dimension we want to solve in presently. In fact, when support for 3D became available, it took approximately one
day of work to adapt the program to run in 3D as well, in addition to 1D and 2D where it was already used before.

6 Conclusions

‘We have shown how value templates and traits classes can be used in C++ to allow for basically dimension-independent
programming. This leads to programs that can be compiled for several different space dimensions without significant
run time overhead and without violations of the strong typing system of C++. Thus, such programs remain main-
tainable despite their complexity. We also believe that they are good examples of the code reuse pattern of object
oriented programs, since the same algorithms developed for one space dimension can be used without modification for
other dimensions as well.

What is also important is that although the internals of the deal.Il library are necessarily complex, and although
the details of instantiation of value templates are usually not known to most programmers, the idiom described here
seems to be intuitive to beginners. We have observed that dimension-independent programming styles are readily
adopted by students even if they don’t have a full understanding at the start of the semantics of the details of the
C++ constructs used in their programs. The actual internals of the library including most templatized objects like
the TriaObject class are well shielded from the user by the traits classes, and are not used in applications directly.

To the experienced user of deal.Il, dimension-independent programming is an efficient way to write programs to
test algorithms in lower space dimensions and still run in higher dimensions as well. Here, ‘efficient’ is interpreted both
in terms of run time as well as of time to write a functional program. Especially the latter is of major importance in
modern numerical analysis in research where algorithms are getting increasingly complex and the time to implement
an algorithm is often more significant than the time to actually execute it.
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