Math 51, Winter 2013
Henry Adams, January 22

Example: Column Space Conditions

Problem: Let

$$
A=\left[\begin{array}{cccc}
1 & 3 & -1 & 9 \\
1 & 1 & 3 & 1 \\
2 & 7 & -4 & 22 \\
3 & 8 & -1 & 23
\end{array}\right] \text { and } b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

Find conditions on the components of vector b which are necessary and sufficient for b to be in $C(A)$.
Answer: Recall that b is in $C(A)$ if the system of equations $A x=b$ has at least one solution x. To analyze this system of equations, let's take the corresponding augmented matrix and put it in reduced row echelon form.

Here's the augmented matrix.

$$
\left[\begin{array}{cccc|c}
1 & 3 & -1 & 9 & b_{1} \\
1 & 1 & 3 & 1 & b_{2} \\
2 & 7 & -4 & 22 & b_{3} \\
3 & 8 & -1 & 23 & b_{4}
\end{array}\right]
$$

We subtract the first row from the second, subtract two times the first row from the third, and subtract three times the first row from the fourth.

$$
\left[\begin{array}{cccc|c}
1 & 3 & -1 & 9 & b_{1} \\
0 & -2 & 4 & -8 & b_{2}-b_{1} \\
0 & 1 & -2 & 4 & b_{3}-2 b_{1} \\
0 & -1 & 2 & -4 & b_{4}-3 b_{1}
\end{array}\right]
$$

We swap the second and third rows.

$$
\left[\begin{array}{cccc|c}
1 & 3 & -1 & 9 & b_{1} \\
0 & 1 & -2 & 4 & b_{3}-2 b_{1} \\
0 & -2 & 4 & -8 & b_{2}-b_{1} \\
0 & -1 & 2 & -4 & b_{4}-3 b_{1}
\end{array}\right]
$$

We subtract three times the second row from the first, add two times the second row to the third, and add the second row to the fourth.

$$
\left[\begin{array}{cccc|c}
1 & 0 & 5 & -3 & b_{1}-3\left(b_{3}-2 b_{1}\right) \\
0 & 1 & -2 & 4 & b_{3}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{2}-b_{1}+2\left(b_{3}-2 b_{1}\right) \\
0 & 0 & 0 & 0 & b_{4}-3 b_{1}+\left(b_{3}-2 b_{1}\right)
\end{array}\right]
$$

We combine terms in the augmented column.

$$
\left[\begin{array}{cccc|c}
1 & 0 & 5 & -3 & -b_{1}-3 b_{3} \\
0 & 1 & -2 & 4 & b_{3}-2 b_{1} \\
0 & 0 & 0 & 0 & -5 b_{1}+b_{2}+2 b_{3} \\
0 & 0 & 0 & 0 & -5 b_{1}+b_{3}+b_{4}
\end{array}\right]
$$

Now we're ready to answer the question. Recall that b is in $C(A)$ if the system of equations $A x=b$ has at least one solution x. And this system has at least one solution so long as as we have no inconsistent equations of the form

$$
0=1 \quad \text { or } \quad 0=\text { any constant other than } 0
$$

Hence this system of equations has at least one solution so long as

$$
0=-5 b_{1}+b_{2}+2 b_{3} \quad \text { and } \quad 0=-5 b_{1}+b_{3}+b_{4}
$$

In summary, b is in $C(A)$ if and only if

$$
0=-5 b_{1}+b_{2}+2 b_{3} \quad \text { and } \quad 0=-5 b_{1}+b_{3}+b_{4}
$$

