The Vietoris-Rips Complex of the Circle
Michał Adamaszek and Henry Adams

1Max Planck Institute for Informatics, and 2Institute for Mathematics and its Applications

Notation

Let \(S^1 \) be the circle of unit circumference with the geodesic metric.

Definition. For \(X \subset S^1 \) and \(r \geq 0 \), let \(\text{VR}(X, r) \) be the Vietoris-Rips complex with vertex set \(X \) and connectivity parameter \(r \). That is, simplex \(\sigma \subset X \) is in \(\text{VR}(X, r) \) when \(\text{diam}(\sigma) \leq r \).

Persistent Homology of \(\text{VR}(S^1, r) \)

Theorem 1. The odd-dimensional persistent homology of \(\text{VR}(S^1, r) \) is

\[
\text{dgm}(H_{2l+1}(\text{VR}(S^1))) = \left\{ \left\lfloor \frac{l}{2l+1} \right\rfloor \right\},
\]

and within this interval \(\text{VR}(S^1, r) \simeq S^{2l+1} \). The even-dimensional persistent homology has no intervals of positive length.

Homotopy Types of \(\text{VR}(X, r) \) for \(X \subset S^1 \)

Theorem 2. For \(X \subset S^1 \) finite, \(\text{VR}(X, r) \) is homotopy equivalent to either a point, an odd sphere, or a wedge sum of spheres of the same even dimension.

For example, let \(X_n \subset S^1 \) consist of \(n \) evenly-spaced points. This case is given in [1].

Example. We have \(\text{VR}(X_9, 1/3) \simeq \vee S^2 \).

Corollary 6.7 from [1]. Let \(k < n/2 \). Then

\[
\text{VR}(X_n, k/n) \simeq \begin{cases}
\vee_{n-2k-1} S^{2l} & \text{if } \frac{k}{n} = \frac{l}{2l+1} < \frac{l+1}{2l+3} \\
S^{2l+1} & \text{for some } l \geq 0.
\end{cases}
\]

References