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ABSTRACT
Recent work [Mirth et al., J. Chem. Phys. 154, 114114 (2021)] has demonstrated that sublevelset persistent homology provides a compact
representation of the complex features of an energy landscape in 3N-dimensions. This includes information about all transition paths between
local minima (connected by critical points of index ≥1) and allows for differentiation of energy landscapes that may appear similar when
considering only the lowest energy pathways (as tracked by other representations, such as disconnectivity graphs, using index 1 critical
points). Using the additive nature of the conformational potential energy landscape of n-alkanes, it became apparent that some topological
features—such as the number of sublevelset persistence bars—could be proven. This work expands the notion of predictable energy landscape
topology to any additive intramolecular energy function on a product space, including the number of sublevelset persistent bars as well
as the birth and death times of these topological features. This amounts to a rigorous methodology to predict the relative energies of all
topological features of the conformational energy landscape in 3N dimensions (without the need for dimensionality reduction). This approach
is demonstrated for branched alkanes of varying complexity and connectivity patterns. More generally, this result explains how the sublevelset
persistent homology of an additive energy landscape can be computed from the individual terms comprising that landscape.
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I. INTRODUCTION

The potential energy landscape (PEL) is a function
across the configurational space of nuclei (arising from the
Born–Oppenheimer approximation), having dimension 3N,
where N is the number of nuclei. The PEL is often defined in
the context of additive contributions associated with many-body
interactions—either from the decomposition of first-principles
calculations (i.e., energy decomposition analysis) or as a ground-up
approach for the construction of the total potential energy function
as is done with classical physics implementations. Broadly, the
topological features of a PEL include the locations of the maxima
and minima, the critical points of different indices, and potential
information about the gradients (dE�dr) along specific dimensions
r. Although a breadth of mathematical tools exists to describe

topological features in the broader context of functions in real
space, their application to the study of PELs is somewhat limited.
Historically, and for the sake of convenience, chemists often
focus upon select portions of an energy landscape; for example,
how a specific basin may be connected to another through the
lowest energy pathway (via a critical point of index 1, a traditional
transition state). In this instance, disconnectivity graphs are a widely
employed visualization and analytical tool that has had numerous
applications, such as in mapping protein folding pathways.1 A dis-
connectivity graph is a reductive summary of an energy landscape
as a tree. The vertices of the tree correspond to critical points of
index 0 and 1, with local minima appearing as leaves and with the
lowest energy saddle point connecting two minima appearing as
internal nodes. Each edge in the tree corresponds to a minimum
energy path connecting two critical points. A number of approaches
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FIG. 1. (a) Covalent bond graph of 2-methyl pentane with the degree of each C-atom listed. The dotted line is the angle bisector between the two leaf carbons, and ψ
denotes the angle between the bisector and the leaf carbons. (b) The potential energy landscape (PEL) of 2-methyl pentane (in kcal/mol), where the orange curve is the
PEL of isopentane and the red curve is the PEL of butane. The variables ϕ1 and ϕ2 correspond to the dihedral angles of butane and isopentane, respectively. (c) Nine
sublevelsets of the 2-methyl pentane PEL (yellow) with energy values in kcal/mol of 0, 1.041, 2.082, 3.123, 4.164, 5.206, 6.247, 7.288, and 12.493. The zero of energy
represents the global minimum. (d) Sublevelset persistence barcode for the 2-methyl pentane PEL. The x-axis denotes the energy value (in kcal/mol), and the y-axis gives
the total number of bars. The color denotes the topological dimension of the bar. Semi-infinite bars extend to the end of the energy scale.

tributions must be completely independent of one another. In this
work, the product space is the conformational potential energy land-
scape of a molecule, with the number of terms in the product space
determined by the degrees of freedom. We assume that the PEL
V : X → R is a function over the product space X = X1 × ⋅ ⋅ ⋅ × Xn.
Each space Xi is equipped with a building block energy function gi :
Xi → R, and V is defined as V(x1, . . . , xn) = g1(x1) + ⋅ ⋅ ⋅ + gn(xn)= ∑n

i=1 gi(xi). For branched alkanes, we consider Xi = S1, indexed by
1 ≤ i ≤ n for n internal bonds, where each circle, S1, describes the
dihedral angle of four C-atoms. As shown in Fig. 1(b), observe that
the potential energy landscape V : S1 × S1 → R for 2-methylpentane
is an additive energy landscape V(x1, x2) ∶= g1(x1) + g2(x2) created
from the energy functions g1 : S1 → R for isopentane (orange slice)
and g2 : S1 → R for butane (red slice), respectively. When one angle
is fixed in Fig. 1(b), the orange and red slices recover the energy
landscapes g1 : S1 → R and g2 : S1 → R for isopentane and butane,
respectively.

Although we employ dihedral potential energy functions to
demonstrate additive energy landscapes, any function describing
the potential energetic contribution of an internal degree of free-
dom could be employed. Thus, Xi could be a different space besides
the circle S1; for example, Xi could also be the non-negative real
line R ≥ 0 if it describes displacement from an equilibrium bond
length (as in the harmonic oscillator). Whenever an energy land-
scape V : X → R has the property that X =∏n

i=1 Xi is a product space
and the energy function V(x1, . . . , xn) = ∑n

i=1 gi(xi) can be written
additively as a sum of building block functions gi on each space Xi,
then we can use the persistence Künneth formula9–12 in order to
determine the sublevelset persistence of V in terms of the persistence
of the simpler building block functions gi. Indeed, for any energy
value E ∈ R, we have V(x1, . . . , xn) ≤ E precisely when there exist
real values E1, . . . , En ∈ R with E1 + ⋅ ⋅ ⋅ + En = E and gi(xi) ≤ Ei for
all 1 ≤ i ≤ n. Therefore, the sublevelset filtration of V is the “tensor
product” of the sublevelset filtrations of g1, . . . , gn, and so we can
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ADDITIVE FUNCTIONS ON A PRODUCT SPACE

Definition 2
If gi : Xi → R is a collection of functions for i = 1, . . . ,n, then one can define
their sum f on the product space by f : X1 × . . .× Xn → R given by
f(x1, . . . , xn) = g1(x1) + . . .+ gn(xn).
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f : (S1)2 → R
f(φ1,φ2) = g1(φ1) + g2(φ2)

11⑧



ENERGY LANDSCAPES

What is an Optimized Potentials for Liquid Simulations - United Atom
(OPLS-UA) energy landscape?
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V1-2-2-1(φ1) = c0 + c1[1+ cos(φ1)] + c2[1− cos(2φ1)] + c3[1+ cos(3φ1)]
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ENERGY LANDSCAPES

What is a branched alkane?

1

1

3 2

1

f(φ1) = V1-3-2-1(φ2 + θ) + V1-3-2-1(φ2 − θ)
7②



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. (a) Covalent bond graph of 2-methyl pentane with the degree of each C-atom listed. The dotted line is the angle bisector between the two leaf carbons, and ψ
denotes the angle between the bisector and the leaf carbons. (b) The potential energy landscape (PEL) of 2-methyl pentane (in kcal/mol), where the orange curve is the
PEL of isopentane and the red curve is the PEL of butane. The variables ϕ1 and ϕ2 correspond to the dihedral angles of butane and isopentane, respectively. (c) Nine
sublevelsets of the 2-methyl pentane PEL (yellow) with energy values in kcal/mol of 0, 1.041, 2.082, 3.123, 4.164, 5.206, 6.247, 7.288, and 12.493. The zero of energy
represents the global minimum. (d) Sublevelset persistence barcode for the 2-methyl pentane PEL. The x-axis denotes the energy value (in kcal/mol), and the y-axis gives
the total number of bars. The color denotes the topological dimension of the bar. Semi-infinite bars extend to the end of the energy scale.

tributions must be completely independent of one another. In this
work, the product space is the conformational potential energy land-
scape of a molecule, with the number of terms in the product space
determined by the degrees of freedom. We assume that the PEL
V : X → R is a function over the product space X = X1 × ⋅ ⋅ ⋅ × Xn.
Each space Xi is equipped with a building block energy function gi :
Xi → R, and V is defined as V(x1, . . . , xn) = g1(x1) + ⋅ ⋅ ⋅ + gn(xn)= ∑n

i=1 gi(xi). For branched alkanes, we consider Xi = S1, indexed by
1 ≤ i ≤ n for n internal bonds, where each circle, S1, describes the
dihedral angle of four C-atoms. As shown in Fig. 1(b), observe that
the potential energy landscape V : S1 × S1 → R for 2-methylpentane
is an additive energy landscape V(x1, x2) ∶= g1(x1) + g2(x2) created
from the energy functions g1 : S1 → R for isopentane (orange slice)
and g2 : S1 → R for butane (red slice), respectively. When one angle
is fixed in Fig. 1(b), the orange and red slices recover the energy
landscapes g1 : S1 → R and g2 : S1 → R for isopentane and butane,
respectively.

Although we employ dihedral potential energy functions to
demonstrate additive energy landscapes, any function describing
the potential energetic contribution of an internal degree of free-
dom could be employed. Thus, Xi could be a different space besides
the circle S1; for example, Xi could also be the non-negative real
line R ≥ 0 if it describes displacement from an equilibrium bond
length (as in the harmonic oscillator). Whenever an energy land-
scape V : X → R has the property that X =∏n

i=1 Xi is a product space
and the energy function V(x1, . . . , xn) = ∑n

i=1 gi(xi) can be written
additively as a sum of building block functions gi on each space Xi,
then we can use the persistence Künneth formula9–12 in order to
determine the sublevelset persistence of V in terms of the persistence
of the simpler building block functions gi. Indeed, for any energy
value E ∈ R, we have V(x1, . . . , xn) ≤ E precisely when there exist
real values E1, . . . , En ∈ R with E1 + ⋅ ⋅ ⋅ + En = E and gi(xi) ≤ Ei for
all 1 ≤ i ≤ n. Therefore, the sublevelset filtration of V is the “tensor
product” of the sublevelset filtrations of g1, . . . , gn, and so we can
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KÜNNETH FORMULA

Theorem 4 (Persistent Künneth Formula [GP19])
There is a natural short exact sequence of graded modules

0→
⊕

i+j=n

(PHi(X)⊗ PHj(Y)) → PHn(X⊗f Y)

→
⊕

i+j=n

Tor(PHi(X), PHj−1(Y)) → 0.

If Hi(X) and Hj(Y) are point-wise finite, then
bcdn(X⊗f Y)

=
⊔

i+j=n

{
(!J + I) ∩ (!I + J) | I ∈ bcdi(X), J ∈ bcdj(Y)

}

$
⊔

i+j=n

{
(rJ + I) ∩ (rI + J) | I ∈ bcdi(X), J ∈ bcdj−1(Y)

}

=
⊔

i+j=n

{
[!I + !J,min(!J + rI, !I + rJ)) | I ∈ bcdi(X), J ∈ bcdj(Y)

}

$
⊔

i+j=n

{
[max(!I + rJ, !J + rI), rI + rJ) | I ∈ bcdi(X), J ∈ bcdj−1(Y)

}
.

Here # and r are the left and right endpoints of the interval.
140
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FIG. 1. (a) Covalent bond graph of 2-methyl pentane with the degree of each C-atom listed. The dotted line is the angle bisector between the two leaf carbons, and ψ
denotes the angle between the bisector and the leaf carbons. (b) The potential energy landscape (PEL) of 2-methyl pentane (in kcal/mol), where the orange curve is the
PEL of isopentane and the red curve is the PEL of butane. The variables ϕ1 and ϕ2 correspond to the dihedral angles of butane and isopentane, respectively. (c) Nine
sublevelsets of the 2-methyl pentane PEL (yellow) with energy values in kcal/mol of 0, 1.041, 2.082, 3.123, 4.164, 5.206, 6.247, 7.288, and 12.493. The zero of energy
represents the global minimum. (d) Sublevelset persistence barcode for the 2-methyl pentane PEL. The x-axis denotes the energy value (in kcal/mol), and the y-axis gives
the total number of bars. The color denotes the topological dimension of the bar. Semi-infinite bars extend to the end of the energy scale.

tributions must be completely independent of one another. In this
work, the product space is the conformational potential energy land-
scape of a molecule, with the number of terms in the product space
determined by the degrees of freedom. We assume that the PEL
V : X → R is a function over the product space X = X1 × ⋅ ⋅ ⋅ × Xn.
Each space Xi is equipped with a building block energy function gi :
Xi → R, and V is defined as V(x1, . . . , xn) = g1(x1) + ⋅ ⋅ ⋅ + gn(xn)= ∑n

i=1 gi(xi). For branched alkanes, we consider Xi = S1, indexed by
1 ≤ i ≤ n for n internal bonds, where each circle, S1, describes the
dihedral angle of four C-atoms. As shown in Fig. 1(b), observe that
the potential energy landscape V : S1 × S1 → R for 2-methylpentane
is an additive energy landscape V(x1, x2) ∶= g1(x1) + g2(x2) created
from the energy functions g1 : S1 → R for isopentane (orange slice)
and g2 : S1 → R for butane (red slice), respectively. When one angle
is fixed in Fig. 1(b), the orange and red slices recover the energy
landscapes g1 : S1 → R and g2 : S1 → R for isopentane and butane,
respectively.

Although we employ dihedral potential energy functions to
demonstrate additive energy landscapes, any function describing
the potential energetic contribution of an internal degree of free-
dom could be employed. Thus, Xi could be a different space besides
the circle S1; for example, Xi could also be the non-negative real
line R ≥ 0 if it describes displacement from an equilibrium bond
length (as in the harmonic oscillator). Whenever an energy land-
scape V : X → R has the property that X =∏n

i=1 Xi is a product space
and the energy function V(x1, . . . , xn) = ∑n

i=1 gi(xi) can be written
additively as a sum of building block functions gi on each space Xi,
then we can use the persistence Künneth formula9–12 in order to
determine the sublevelset persistence of V in terms of the persistence
of the simpler building block functions gi. Indeed, for any energy
value E ∈ R, we have V(x1, . . . , xn) ≤ E precisely when there exist
real values E1, . . . , En ∈ R with E1 + ⋅ ⋅ ⋅ + En = E and gi(xi) ≤ Ei for
all 1 ≤ i ≤ n. Therefore, the sublevelset filtration of V is the “tensor
product” of the sublevelset filtrations of g1, . . . , gn, and so we can
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INTERNAL BASE BOND TYPES
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EL’S AND SUBLEVELSET PERSISTENCE OF BASE BONDS
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except for one is at a local minimum) occur at 0.9 kcal/mol; these
are followed closely by another 75 local minima at 1.2 kcal/mol.
In total, there are ∼1200 local minima prior to the first set of
index 1 critical points that begin to connect the global minima on
the PEL.

Understanding the energy distribution of the local minima
(0-dimensional bars) is a key step toward improving approaches
designed for energy landscape exploration. Many algorithms rely
upon the ability to overcome the index 1 critical points that connect
local minima and to avoid or escape out of “false minima” that are
higher-index critical points. To illustrate how the sublevelset persis-
tent barcodes are relevant in this context, we plot the distribution of
the critical points as a function of energy in Fig. 7(c). For each index,
the number of critical points was binned into 1 kcal/mol increments
and fit to a Gaussian distribution (black curve). The maximum of the
observed density in index 1 critical points occurs at 7.6 kcal/mol with
a height of 12 600 critical points and a full width at half maximum
(FWHM) of 3.7 kcal/mol. Importantly, there is significant overlap in
the index 1 and index 2 critical point Gaussian distributions; in the
10 kcal/mol energy region, there is even an overlap with the index
1, index 2, and index 3 critical points. The overlap in the index k
and index k + 1 critical point Gaussian distributions is highest at the
two extremes of the energy range of the PEL, indicating that it is
challenging to avoid k + 1 critical points if one traverses the energy
landscape within these energy windows. All other index k critical
point distributions except for index 1 and index 7 have overlap with
both the k + 1 and k − 1 critical point distributions, and knowledge
of the location of the k − 1 critical points may provide avenues for
systematically following those critical points to the global minimum
on the PEL.

These plots justify well-known chemical intuition, which is
that any geometry optimization or algorithm aimed at identifying
degenerate global or local minima should start in the lowest energy
configurations possible so as to avoid the higher-dimensional crit-
ical points. Of course, higher-dimensional critical points are also
relevant to understand the dynamic behavior of a physical system,
including transitions between different configurations. In this case,
both the distribution of critical points and the heights of the barriers
that must be overcome in order to effectively traverse the PEL are
relevant. Here, we can turn again to the barcodes of the component
functions that comprise the PEL, where in Appendix A we rigor-
ously prove each bar length. In the case of 2,8-dimethyl, 5-propyl
nonane only bar lengths (or barriers on the PEL) of 2.4, 2.74, and 3.2
kcal/mol are allowed.

In the second example, we demonstrate how the topolog-
ical features of an energy landscape manifest themselves as a
chemical system is modified. We specifically consider the chain
growth polymerization of polypropylene. As shown in Fig. 8(a),
a single unit of polypropylene is added to a trimer to form a
tetramer. The monomer unit of polypropylene has no dihedral
angles; during chain growth bond formation, the degree of the two
bond-forming C-atoms (highlighted in the black dashed box) are
altered, which introduces two new dihedral angles to the confor-
mational PEL. In Fig. 8(b), the trimer persistence barcode showing
all of the 0- and 1-dimensional bars is illustrated, with an indi-
vidual 0-dimensional bar (labeled I, [`I , rI) = [0.4578, 2.8967)) and
1-dimensional bar (labeled J, [`J , rJ) = [3.2039, 5.6428)) highlighted.

FIG. 7. (a) 2,8-dimethyl, 5-propyl nonane consists of five 1-3-2-1 building blocks
and three 1-2-2-1 building blocks. (b) The persistence diagram. Each dot repre-
sents a set of bars on the persistence barcode with the same birth and death
times. The x-axis is the energy value of the bar’s birth and the y-axis is the energy
value of the bar’s death, both in (kcal/mol). (c) The number of critical points (CPs)
of each index as a function of energy (kcal/mol); each index has the same color as
the corresponding topological dimension.
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