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Abstract. We show that the persistent homology of a filtered d-dimensional simplicial
complex is simply the standard homology of a particular graded module over a polynomial
ring. Our analysis establishes the existence of a simple description of persistent homology
groups over arbitrary fields. It also enables us to derive a natural algorithm for computing
persistent homology of spaces in arbitrary dimension over any field. This result generalizes
and extends the previously known algorithm that was restricted to subcomplexes of S* and
Z, coefficients. Finally, our study implies the lack of a simple classification over non-fields.
Instead, we give an algorithm for computing individual persistent homology groups over
an arbitrary principal ideal domain in any dimension.

1. Introduction

In this paper we study the homology of a filtered d-dimensional simplicial complex
K, allowing an arbitrary principal ideal domain D as the ground ring of coefficients. A
filtered complex is an increasing sequence of simpli¢ial complexes, as shown in Fig. 1.
It determines an inductive system of homology groups, i.e., a family of Abelian groups
{G}i>0 together with homomorphisms G; — G;4,. If the homology is computed with
field coefficients, we obtain an inductive system of vector spaces over the field. Each
vector space is determined up to isomorphism by its dimension. In this paper we obtain
a simple classification of an inductive system of vector spaces. Our classification is in
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Computation
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In our example, we have
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where z; =ad —cd —t -bc—t -ab and 7o = ac — t* - bc — t? - ab form a homogeneous
basis for Z;.
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Exp&rﬂ ment S

|K| Length Filtration (s) Persistance (s)
Kigin looHle K 12000 1,020 0.03 < 001
Elechostatit c,lnwje, E 529225 3013 3.17 5.00
J 3029383 256 24.13 50.23
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