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Datasets have shapes

Example: Diabetes study
145 points 1n 5-dimensional space

SSPG

An attempt to define the nature of chemical diabetes using a
multidimensional analysis by G. M. Reaven and R. G. Miller, 1979



Datasets have shapes
Example: Cyclo-Octane (CgH, ) data

1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Datasets have shapes
Example: Cyclo-Octane (CgH, ) data

1,000,000+ points in 24-dimensional space

CZ,I,x
Caiy

Cai,z

216.x

216,y

h
h
h

216,z

1,031,644

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Datasets have shapes




Topology studies shapes

A donut and coffee mug are “homotopy equivalent”, and
considered to be the same shape. You can bend and stretch
(but not tear) one to get the other.




Topology studies shapes

Torus




Topology studies shapes
Klein bottle
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Topology studies shapes
Klein bottle

“
Image credit:

https://plus.maths.org/content/imaging-maths-inside-klein-bottle




Homology

* i-dimensional homology H; “counts the number of i-dimensional holes™

* i-dimensional homology H; actually has the structure of a vector space!

0-dimensional homology H: rank 6
1-dimensional homology H;: rank 0

0-dimensional homology H,: rank 1

1-dimensional homology H,: rank 3

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 6




Homology

* i-dimensional homology “counts the number of i-dimensional holes”™
* i-dimensional homology actually has the structure of a vector space!

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 0
2-dimensional homology H,: rank 1

0-dimensional homology H,: rank 1
1-dimensional homology H;: rank 2

2-dimensional homology H,: rank 1

Be careful! (Same as torus over 7, / 27,)

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle



Topology studies shapes
What shape 1s this?

























For a data set X C R"” and scale r > 0, the
Cech simplicial complex Cech(X; r) has

@ vertex set X

o finite simplex {xg, x1, ..., Xk} when ﬂff:OB(X,-, r) # 0.
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Nerve Lemma. Cech(X;r) ~ union of balls

Definition

For a data set X C R"” and scale r > 0, the
Cech simplicial complex Cech(X; r) has

@ vertex set X

o finite simplex {xg, x1, ..., Xk} when ﬂff:OB(X,-, r) # 0.




For a data set X C R"” and scale r > 0, the
Vietoris—Rips simplicial complex VR(X; r) has

@ vertex set X

o finite simplex {xo, x1, ..., Xk} when d(x;,x;) < r for all i,j.
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Persistent homology
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Input: Increasing spaces. Output: barcode.
Significant features persist.
Cubic computation time in the number of simplices.



Persistent homology
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* |nput: Increasing spaces. Output: barcode.

e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

| —T
0.12 0.2 0.28 0.36 0.44 0.52 0.6 098 0.76
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Betti plot: Dimension 0
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Betti plot: Dimension 1

* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Betti plot: Dimension 0

| | | i i !

il 1 1 1
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Betti plot: Dimension 1
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Betti plot: Dimension 2

* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Persistence barcode
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Persistence barcode
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Persistence barcode
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Persistence barcode
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Persistence barcode
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* |nput: Increasing spaces. Output: barcode.
e Significant features persist.
* Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence

Analysis of Kolmogorov flow and Rayleigh—Bénard
convection using persistent homology by Miroslav
Kramar, Rachel Levanger, Jeffrey Tithof,
Balachandra Suri, Mu Xu, Mark Paul, Michael F
Schatz, Konstantin Mischaikow

Input: Increasing spaces. Output: barcode.
e Significant features persist.

Cubic computation time in the number of simplices.



Persistent homology

Sublevelset persistence
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Analysis of Kolmogorov flow and Rayleigh—Bénard
convection using persistent homology by Miroslav
Kramar, Rachel Levanger, Jeffrey Tithof, \
Balachandra Suri, Mu Xu, Mark Paul, Michael F §

Schatz, Konstantin Mischaikow
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o

(c) (d)
Input: Increasing spaces. Output: barcode.

e Significant features persist.

Cubic computation time in the number of simplices.



Persistent homology applied to data

Example: Cyclo-Octane (CgH, ) data
1,000,000+ points in 24-dimensional space

lazyCycloOctane (dimension 0)

I i I

| | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
lazyCycloOctane (dimension 1)
= | | | | | | | i | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
lazyCycloOctane (dimension 2)
>
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|
0 0.05 0.1

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data
Example: Cyclo-Octane (CgH, ) data
1,000,000+ points in 24-dimensional space

lazyCycloOctane (dimension 0)
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
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by Shawn Martin and Jean-Paul Watson, 2010.
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Persistent homology applied to data

Persistence intervals in dimension 0O:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
L 1 1 ] | ] ] | 1 1 ] ] ] |

Persistence intervals in dimension 1:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
L | | | | | | | | | | | | |

Persistence intervals in dimension 2:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L | | | | | | | | |

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.
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Persistent homology applied to data
Example: Cyclo-Octane (C¢H () data
1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.




Persistent homology applied to data
Example: Cyclo-Octane (CgH, ) data
1,000 000+ points 1n 24-dimensional space

©
°
0..

oooooo

e,

-
°

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data
Example: Cyclo-Octane (CgH, ) data
1,000,000+ points in 24-dimensional space
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Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data
Example: Cyclo-Octane (C¢H () data
1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data
by Shawn Martin and Jean-Paul Watson, 2010.



Persistent homology applied to data

Example: Equilateral pentagons 1n the plane

O

Image credit: Clayton Shonkwiler
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Persistent homology applied to data

pentagon (dimension 0)

£
1 1 1 1
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pentagon (dimension 1)
1 1 1 1
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pentagon (dimension 2)
=
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Image credit: Clayton Shonkwiler 0



Why is applied topology popular when few datasets have Klein bottles?

* Many datasets have clusters & flares (as in the diabetes example)

* Motivates interesting questions in many pure disciplines:
mathematics, computer science (computational geometry), statistics

* Interest from domain experts in biology, neuroscience, computer
vision, dynamical systems, sensor networks, ...

* Materials science, pattern formation
* Machine learning: small features matter

* Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry
and the global topology of a dataset.
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Measures of
Patrick Shipman, Daniel Pearson, and Mark Bradley, 2018.
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Persistent homology applied to data

 Stability Theorem.
If X and Y are metric spaces, then

dy(PH(Cech(X)),PH(Cech(Y))) < 2dgu(X,Y)
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