An Introduction to Applied Topology

Henry Adams University of Florida

Bringing together researchers across the world to develop and use applied and computational topology.

Find out how you can <u>participate and join AATRN</u> (membership is free and so are all events), or check out all our content on our <u>YouTube channel</u>. We invite you to join the following activities, which we are currently organizing:

Service

www.aatrn.net

Frédéric Chazal interviewed by Steve Oudot 7022

2023

Yasa Wang interviewed by Tamal Deg DCC 7TH

For Zoom coordinates, become a member at **MATRN.NET** Konstantin Mischaikow interviewed by Tomas Gedeon OCT 2011

> Claudia Landi interviewed by Barbara Giunti FCB IST

> > Leonidas Guibas interviewed by Primoz Skraba JUN 215T

Meet Adetayo (Taxo for short), born January 20!

Research Themes

Combinatorial Topology Quantitative lopology Nerve Complexes Hilling radius Borsuk-Ulam Theorems Gromov-Hausdorff distances Applied Topology Persistent Homology Victoris-Rips complexes. Geometric lopology Geometric Group heory Uptimal Transport Bestvina - Brady Thick-thin decompositions Wasserstein distance Morse theory Kantarovich-Rubenstein Urysohn widths

Bridging Applied and Quantitative Topology

An Introduction to Applied Topology

Henry Adams University of Florida

Datasets have shapes Example: Diabetes study 145 points in 5-dimensional space

An attempt to define the nature of chemical diabetes using a multidimensional analysis by G. M. Reaven and R. G. Miller, 1979

Datasets have shapes Example: Cyclo-Octane (C_8H_{16}) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Datasets have shapes

Topology studies shapes

A donut and coffee mug are "homotopy equivalent", and considered to be the same shape. You can bend and stretch (but not tear) one to get the other.

Topology studies shapes Klein bottle

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

Homology

- *i*-dimensional homology H_i "counts the number of *i*-dimensional holes"
- *i*-dimensional homology H_i actually has the structure of a vector space!

0-dimensional homology H_0 : rank 6 1-dimensional homology H_1 : rank 0

0-dimensional homology H₀: rank 1 1-dimensional homology H₁: rank 3

0-dimensional homology H₀: rank 1 1-dimensional homology H₁: rank 6

Homology

- *i*-dimensional homology "counts the number of *i*-dimensional holes"
- *i*-dimensional homology actually has the structure of a vector space!

0-dimensional homology H₀: rank 1 1-dimensional homology H₁: rank 0 2-dimensional homology H₂: rank 1

0-dimensional homology H₀: rank 1
1-dimensional homology H₁: rank 2
2-dimensional homology H₂: rank 1

Be careful! (Same as torus over $\mathbb{Z}/2\mathbb{Z}$)

Image credit: https://plus.maths.org/content/imaging-maths-inside-klein-bottle

Topology studies shapes What shape is this?

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $\bigcap_{i=0}^k B(x_i, r) \neq \emptyset$.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

- vertex set X
- finite simplex $\{x_0, x_1, \ldots, x_k\}$ when $d(x_i, x_j) \leq r$ for all i, j.

Input: Increasing spaces. Output: barcode.

• Significant features persist.

0

• Cubic computation time in the number of simplices.

400

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

Sub

 $\omega \leq -1.5$ $\omega \le 0$ (b) $\omega \leq 1.5$ $\omega \leq 0.$ 200 (c) (d)

Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology by Miroslav Kramár, Rachel Levanger, Jeffrey Tithof, Balachandra Suri, Mu Xu, Mark Paul, Michael F Schatz, Konstantin Mischaikow

- Input: Increasing spaces. Output: barcode.
- Significant features persist.
- Cubic computation time in the number of simplices.

Sublevelset persistence

Balachandra Suri, Mu Xu, Mark Paul, Michael F Schatz, Konstantin Mischaikow

(c)

(d)

es.

 $T^* = 100$

250

200

<u></u> 150

bểr

 $T^* = 100$

- Input: Increasing spaces. Output: barcode. PD1
- Significant features persis
- Cubic computation time

Persistent homology applied to data Example: Cyclo-Octane (C₈H₁₆) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data Example: Cyclo-Octane (C₈H₁₆) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data

Persistence intervals in dimension 0:

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010. Persistent homology applied to data Example: Cyclo-Octane (C_8H_{16}) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data Example: Cyclo-Octane (C₈H₁₆) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data Example: Cyclo-Octane (C_8H_{16}) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010. Persistent homology applied to data Example: Cyclo-Octane (C_8H_{16}) data 1,000,000+ points in 24-dimensional space

Non-Manifold Surface Reconstruction from High Dimensional Point Cloud Data by Shawn Martin and Jean-Paul Watson, 2010.

Persistent homology applied to data Example: Equilateral pentagons in the plane

Persistent homology applied to data

Why is applied topology popular when few datasets have Klein bottles?

- Many datasets have clusters & flares (as in the diabetes example)
- Motivates interesting questions in many pure disciplines: mathematics, computer science (computational geometry), statistics
- Interest from domain experts in biology, neuroscience, computer vision, dynamical systems, sensor networks, ...
- Materials science, pattern formation
- Machine learning: small features matter
- Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset.

y

Measures of Order for nearly hexagonal lattices by Francis Motta, Rachel Neville, Patrick Shipman, Daniel Pearson, and Mark Bradley, 2018.

• Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset.

Why is applied topology popular when few datasets have Klein bottles?

- Many datasets have clusters & flares (as in the diabetes example)
- Motivates interesting questions in many pure disciplines: mathematics, computer science (computational geometry), statistics
- Interest from domain experts in biology, neuroscience, computer vision, dynamical systems, sensor networks, ...
- Materials science, pattern formation
- Machine learning: small features matter
- Agent-based modeling (swarming)

Possible answer: Persistent homology measures both the local geometry and the global topology of a dataset.

Persistent homology applied to data

• <u>Stability Theorem.</u>

If X and Y are metric spaces, then

 $d_b(\operatorname{PH}(\operatorname{\check{C}ech}(X)), \operatorname{PH}(\operatorname{\check{C}ech}(Y))) \le 2d_{\operatorname{GH}}(X, Y)$

An Introduction to Applied Topology

Henry Adams University of Florida