Metric Thickenings of Euclidean Submanifolds

Advisor: Dr. Henry Adams
Committee: Dr. Chris Peterson, Dr. Daniel Cooley

Joshua Mirth
Masters Thesis Defense – October 3, 2017
Introduction
Can we recover the object on the right from the one on the left?
Motivation

Can we recover the object on the right from the one on the left?

They share essentially no topological properties (connectedness, loops, dimension).
Can we recover the object on the right from the one on the left?

They share essentially no topological properties (connectedness, loops, dimension).

A reconstruction method should work given a perfect sample.
Background
Definition

Let V be a set, called the set of vertices. An \textit{abstract simplicial complex} K on vertex set V is a subset of the power set of V with the property that if $\sigma \in K$, then all subsets of σ are in K. For example:

$V = \{a, b, c, d, e\}$

$K = \{\{abc\}, \{ac\}, \{bc\}, \{ac\}, \{ad\}, \{cd\}, \{a\}, \{b\}, \{c\}, \{d\}, \{e\}\}$
Definition

Let V be a set, called the set of vertices. An **abstract simplicial complex** K on vertex set V is a subset of the power set of V with the property that if $\sigma \in K$, then all subsets of σ are in K.

For example:

\[
V = \{a, b, c, d, e\}
\]

\[
K = \{[abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e]\}
\]
Simplicial Complexes

Every simplicial complex has a geometric realization:

\[V = \{ a, b, c, d, e \} \]

\[K = \{ [abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e] \} \]
Every simplicial complex has a geometric realization:

\[V = \{a, b, c, d, e\} \]
\[K = \{[abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e]\} \]
Every simplicial complex has a geometric realization:

\[V = \{a, b, c, d, e\} \]

\[K = \{[abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e]\} \]
Every simplicial complex has a geometric realization:

\[V = \{a, b, c, d, e\} \]

\[K = \{[abc], [ac], [bc], [ac], [ad], [cd], [a], [b], [c], [d], [e]\} \]
Every simplicial complex has a geometric realization:

The topology on a finite simplicial complex is the subspace topology of its geometric realization in \mathbb{R}^n.
The Vietoris–Rips Complex

Definition

Let X be a metric space and $r > 0$ a scale parameter. The **Vietoris–Rips complex**, $\text{VR}_\leq(X; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\text{diam}(\sigma) \leq r$.
The Vietoris–Rips Complex

Definition

Let X be a metric space and $r > 0$ a scale parameter. The **Vietoris–Rips complex**, $\text{VR}_{\leq}(X; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\text{diam}(\sigma) \leq r$.

![Diagram showing a Vietoris–Rips complex with vertices a, b, c, d, e connected by edges based on the scale parameter r.](attachment:diagram.png)
The Vietoris–Rips Complex

Definition

Let X be a metric space and $r > 0$ a scale parameter. The **Vietoris–Rips complex**, $\text{VR}_{\leq}(X; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\text{diam}(\sigma) \leq r$.

![Diagram showing the Vietoris–Rips complex with vertices a, b, c, d, e and a triangle formed by b, c, and a, with e and d outside the triangle, indicating the complex's structure based on distance.]
The Vietoris–Rips Complex

Definition

Let X be a metric space and $r > 0$ a scale parameter. The Vietoris–Rips complex, $\text{VR}_{\leq}(X; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\text{diam}(\sigma) \leq r$.
Definition

Let X be a metric space and $r > 0$ a scale parameter. The **Vietoris–Rips complex**, $\text{VR}_{\leq}(X; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that $\text{diam}(\sigma) \leq r$.
Definition

Let $X \subseteq Y$ be a submetric space and $r > 0$ a scale parameter. The Čech complex $\check{C}_\leq(X, Y; r)$, of X, has vertex set X and a simplex for every finite subset $\sigma \subseteq X$ such that

$$\bigcap_{x_i \in \sigma} \overline{B}(x_i, r/2) \neq \emptyset.$$
The Čech Complex
Definition

Let $f: X \to Y$ and $g: X \to Y$ be continuous maps. Then f is homotopic to g, denoted $f \simeq g$, if there exists a continuous function $H: X \times [0, 1] \to Y$ such that $H(x, 0) = f(x)$, $H(x, 1) = g(x)$.

Let X and Y be topological spaces. Then X is homotopy equivalent to Y, written $X \simeq Y$, if there exists a pair of continuous functions $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq \text{id}_X$ and $f \circ g \simeq \text{id}_Y$.
Homotopy Equivalence

Definition
Let $f: X \to Y$ and $g: X \to Y$ be continuous maps. Then f is homotopic to g, denoted $f \simeq g$, if there exists a continuous function $H: X \times [0, 1] \to Y$ such that $H(x, 0) = f(x)$, $H(x, 1) = g(x)$.

Definition
Let X and Y be topological spaces. Then X is **homotopy equivalent** to Y, written $X \simeq Y$, if there exists a pair of continuous functions $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq \text{id}_X$ and $f \circ g \simeq \text{id}_Y$.
Homotopy equivalence permits “stretching and bending” in a way that allows the dimension to change:
Homotopy equivalence permits “stretching and bending” in a way that allows the dimension to change:
Homotopy equivalence permits “stretching and bending” in a way that allows the dimension to change:
Lemma (Nerve Lemma: Convex Version)

Let U_α for $\alpha \in A$ an index set be convex subsets of \mathbb{R}^n. Then $\mathcal{N}(\{U_\alpha\}) \simeq \bigcup_{\alpha \in A} U_\alpha$.

The ˇCech complex is the nerve of balls of radius $r/2$, so it is homotopy equivalent to the underlying space for a good cover.
Lemma (Nerve Lemma: Convex Version)

Let U_α for $\alpha \in A$ be convex subsets of \mathbb{R}^n. Then $\mathcal{N}([U_\alpha]) \simeq \cup_{\alpha \in A} U_\alpha$.

The Čech complex is the nerve of balls of radius $r/2$, so it is homotopy equivalent to the underlying space for a good cover.
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $\text{VR}(M; r) \simeq M$ \[4\].
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $VR(M; r) \simeq M$ [4].

- The bound on r depends upon the curvature of M.
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $\text{VR}(M; r) \simeq M$ [4].

- The bound on r depends upon the curvature of M.
- $\text{VR}(M; r)$ does not inherit the metric of M.
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $\text{VR}(M; r) \cong M$ [4].

- The bound on r depends upon the curvature of M.
- $\text{VR}(M; r)$ does not inherit the metric of M. Thus:
 - Hausmann’s proof only gives a map $T: \text{VR}(M; r) \to M$, and proves the equivalence using algebraic techniques.
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $\text{VR}(M; r) \simeq M$ [4].

- The bound on r depends upon the curvature of M.
- $\text{VR}(M; r)$ does not inherit the metric of M. Thus:
 - Hausmann’s proof only gives a map $T : \text{VR}(M; r) \to M$, and proves the equivalence using algebraic techniques.
 - T depends upon a total order of the points in M.
Hausmann’s Theorem

Theorem

Let M be a compact Riemannian manifold and $r > 0$ be sufficiently small. Then $\text{VR}(M; r) \simeq M$ [4].

- The bound on r depends upon the curvature of M.
- $\text{VR}(M; r)$ does not inherit the metric of M. Thus:
 - Hausmann’s proof only gives a map $T: \text{VR}(M; r) \to M$, and proves the equivalence using algebraic techniques.
 - T depends upon a total order of the points in M.
 - In particular, the inclusion $\iota: M \hookrightarrow \text{VR}(M; r)$ does not provide the inverse (in fact, ι is not even continuous.)
Metric Thickenings
The Metric thickening of a simplicial complex was first introduced by Adamaszek, Adams, and Frick [1].

It puts the 1-Wasserstein metric on the geometric realization of a simplicial complex.

This lets us use the theory of metric spaces to prove results analogous to Hausmann and the Nerve Lemma.
Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \geq 0$, the Vietoris–Rips thickening $\text{VR}^m(X; r)$ is the set

$$\text{VR}^m(X; r) = \left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, x_i \in X, \text{ and diam} \{x_0, \ldots, x_k\} \leq r \right\},$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$, equipped with the 1-Wasserstein metric.[1]
Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \geq 0$, the Vietoris–Rips thickening $\text{VR}^m(X; r)$ is the set

$$\text{VR}^m(X; r) = \left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, x_i \in X, \text{ and } \text{diam} \{x_0, \ldots, x_k\} \leq r \right\},$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$, equipped with the 1-Wasserstein metric.[1]

- As a set this is identical to the geometric realization of $\text{VR}(X; r)$, but the topology is different.
Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \geq 0$, the Vietoris–Rips thickening $\text{VR}^m(X; r)$ is the set

$$\text{VR}^m(X; r) = \left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, \ x_i \in X, \text{ and } \text{diam}([x_0, \ldots, x_k]) \leq r \right\},$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$, equipped with the 1-Wasserstein metric.[1]

- As a set this is identical to the geometric realization of $\text{VR}(X; r)$, but the topology is different.
- By identifying $x \in X$ with $\delta_x \in \mathcal{P}(X)$, we can view $\text{VR}^m(X; r)$ as a subset of $\mathcal{P}(X)$, the set of all Radon probability measures on X.
Metric Vietoris–Rips Thickenings

Definition (Adamaszek, Adams, Frick)

For a metric space X and $r \geq 0$, the Vietoris–Rips thickening $\text{VR}^m(X; r)$ is the set

$$\text{VR}^m(X; r) = \left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, x_i \in X, \text{ and diam}\{x_0, \ldots, x_k\} \leq r \right\},$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i = 1$, equipped with the 1-Wasserstein metric.[1]

- As a set this is identical to the geometric realization of $\text{VR}(X; r)$, but the topology is different.
- By identifying $x \in X$ with $\delta_x \in \mathcal{P}(X)$, we can view $\text{VR}^m(X; r)$ as a subset of $\mathcal{P}(X)$, the set of all Radon probability measures on X.
- This makes $\text{VR}^m(X; r)$ a (metric) thickening of X.

[1]
Let $x, x' \in \text{VR}^m(X; r)$ with $x = \sum_{i=0}^{k} \lambda_i x_i$ and $x' = \sum_{i=0}^{k'} \lambda'_i x'_i$. Define a matching p between x and x' to be any collection of non-negative real numbers \{p_{i,j}\} such that $\sum_{j=0}^{k'} p_{i,j} = \lambda_i$ and $\sum_{i=0}^{k} p_{i,j} = \lambda'_j$. Define the cost of the matching p to be $\text{cost}(p) = \sum_{i,j} p_{i,j} d(x_i, x'_j)$.

Definition

The 1-Wasserstein metric on $\text{VR}^m(X; r)$ is the distance d_W defined by

$$d_W(x, x') = \inf \left\{ \text{cost}(p) \mid p \text{ is a matching between } x \text{ and } x' \right\}.$$
Euclidean Submanifolds
Sets of Positive Reach

We will prove an analogue of Hausmann’s theorem in the context of subsets of Euclidean space, rather than Riemannian manifolds.

This is a natural setting for data analysis.

Positive reach was first introduced by Federer [3].

In particular, any C^k submanifold of \mathbb{R}^n has positive reach, for $k \geq 2$, so sets of positive reach include many potentially interesting objects.
Sets of Positive Reach

The medial axis of $X \subseteq \mathbb{R}^n$ is the closure, \overline{Y}, of

$$Y = \{ y \in \mathbb{R}^n \mid \exists x_1 \neq x_2 \in M \text{ with } d(y, x_1) = d(y, x_2) = d(y, X) \}.$$

The reach, τ, of X is the minimal distance $\tau = d(X, \overline{Y})$ between X and its medial axis.
Sets of Positive Reach

- Sets with “corners” have zero reach.

\[\tau = 0 \]

\[\tau = r \]
Sets of Positive Reach

- Sets with “corners” have zero reach.
- Smooth manifolds embedded in \mathbb{R}^n have positive reach.
Sets of Positive Reach

- Sets with “corners” have zero reach.
- Smooth manifolds embedded in \mathbb{R}^n have positive reach.
- Reach is \leq half the distance between non-connected components.
Define the α-offset of $X \subseteq \mathbb{R}^n$:

$$\text{Tub}_\alpha = \{ x \in \mathbb{R}^n \mid d(x, X) < \alpha \} = \bigcup_{x \in X} B(x, \alpha).$$

If X has reach τ, then $\pi: \text{Tub}_\tau \to X$ where x maps to its nearest point in X is well-defined and continuous [3].
Proposition (Niyogi, Smale, Weinberger)

Let $X \subseteq \mathbb{R}^n$ have reach $\tau > 0$. Let $p \in X$ and suppose $x \in \text{Tub}_\tau \setminus X$ satisfies $\pi(x) = p$. If $c = p + \tau \frac{x - p}{\|x - p\|}$, then $B(c, \tau) \cap X = \emptyset$.

Proof.

For any $0 < t < \tau$, let $y_t = p + t \frac{x - p}{\|x - p\|}$. Since $y_t \in \text{Tub}_\tau$, we have $\overline{B}(y_t, t) \cap X = \{p\}$ and $d(y_t, p) = t$, so $B(c, t) \cap X = \emptyset$. Note that $B(c, \tau) = \bigcup_{0 < t < \tau} B(y_t, t)$. Indeed, to see the inclusion \subseteq, suppose that $z \in B(c, \tau)$, so that $d(z, c) = \tau - \epsilon$ for some $\epsilon > 0$. Let $t = \tau - \frac{\epsilon}{3}$. By the triangle inequality, $d(y_t, z) \leq d(y_t, c) + d(c, z) = \tau - \frac{2\epsilon}{3} < t$, giving $z \in B(y_t, t)$. The reverse inclusion \supseteq is straightforward. It follows that $B(c, \tau) \cap X = \emptyset$. \qed
Results
Main Theorem

Theorem (Metric Hausmann)

Let $X \subseteq \mathbb{R}^n$ and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris–Rips thickening $\text{VR}^m(X; r)$ is homotopy equivalent to X.
Main Theorem

Theorem (Metric Hausmann)

Let $X \subseteq \mathbb{R}^n$ and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris–Rips thickening $\text{VR}^m(X; r)$ is homotopy equivalent to X.

\[\pi \quad \text{VR}^m(X; r) \quad \text{X with Tub}_\tau \]
Theorem (Metric Nerve Theorem)

Let X be a subset of Euclidean space \mathbb{R}^n, equipped with the Euclidean metric, and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Čech thickening $\check{C}^m(X; 2r)$ is homotopy equivalent to X.

\[
\xymatrix{ f \ar@{~}[r] & X \text{ with } \text{Tub}_\tau \ar@{~}[r]^-{\pi} & \check{C}^m(X; 2r) \ar@{~}[r]^-{i} & X }
\]
Lemma

For $X \subseteq \mathbb{R}^n$ and $r > 0$, the linear projection map $f : \text{VR}^m(X; r) \to \mathbb{R}^n$ has its image contained in $\overline{\text{Tub}_r}$.
Lemma

For $X \subseteq \mathbb{R}^n$ and $r > 0$, the linear projection map $f : \text{VR}^m(X;r) \to \mathbb{R}^n$ has its image contained in \overline{Tub}_r.

Proof.

Let $x = \sum_{i=0}^{k} \lambda_i x_i \in \text{VR}^m(X;r)$; we have

$$\text{diam}(\text{conv}\{x_0, \ldots, x_k\}) = \text{diam}([x_0, \ldots, x_k]) \leq r.$$

Since $f(x) \in \text{conv}\{x_0, \ldots, x_k\}$, it follows that $d(f(x), X) \leq d(f(x), x_0) \leq r$, and so $f(x) \in \overline{Tub}_r$. \qed
Lemma

For $X \subseteq \mathbb{R}^n$ and $r > 0$, the linear projection map $f : \text{VR}^m(X; r) \rightarrow \mathbb{R}^n$ has its image contained in $\overline{\text{Tub}}_r$.

Proof.

Let $x = \sum_{i=0}^{k} \lambda_i x_i \in \text{VR}^m(X; r)$; we have

$$\text{diam}(\text{conv}\{x_0, \ldots, x_k\}) = \text{diam}([x_0, \ldots, x_k]) \leq r.$$

Since $f(x) \in \text{conv}\{x_0, \ldots, x_k\}$, it follows that $d(f(x), X) \leq d(f(x), x_0) \leq r$, and so $f(x) \in \overline{\text{Tub}}_r$. \qed

Lemma

Let $x_0, \ldots, x_k \in \mathbb{R}^n$, let $y \in \text{conv}\{x_0, \ldots, x_k\}$, and let C be a convex set with $y \notin C$. Then there is at least one x_i with $x_i \notin C$.

22
Lemma

Let $X \subseteq \mathbb{R}^n$ have positive reach τ, let $[x_0, \ldots x_k]$ be a simplex in $\text{VR}(X; r)$ with $r < \tau$, let $x = \sum \lambda_i x_i \in \text{VR}^m(X; r)$, and let $p = \pi(f(x))$. Then the simplex $[x_0, \ldots, x_k, p]$ is in $\text{VR}(X; r)$.

Proof.
We are now prepared to prove our main result.

Theorem

Let X be a subset of Euclidean space \mathbb{R}^n, equipped with the Euclidean metric, and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Vietoris–Rips thickening $\text{VR}^m(X; r)$ is homotopy equivalent to X.
Proof.

By [1, Lemma 5.2], map \(f : \text{VR}^m(X; r) \to \mathbb{R}^n \) is 1-Lipschitz and hence continuous. It follows from Lemma 12 that the image of \(f \) is a subset of \(\text{Tub}_\tau \). Let \(i : X \to \text{VR}^m(X; r) \) be the inclusion map. Note that \(\pi \circ f \circ i = \text{id}_X \).
Proof.

Consider $H : \text{VR}^m(X; r) \times I \to \text{VR}^m(X; r)$ defined by $H(x, t) = t \cdot \text{id}_{\text{VR}^m(X; r)} + (1 - t)i \circ \pi \circ f$. H is well-defined by Lemma 14, and continuous by [1, Lemma 3.8]. It follows that H is a homotopy equivalence from $i \circ \pi \circ f$ to $\text{id}_{\text{VR}^m(X; r)}$.
Theorem

Let X be a subset of Euclidean space \mathbb{R}^n, equipped with the Euclidean metric, and suppose the reach τ of X is positive. Then for all $r < \tau$, the metric Čech thickening $\check{C}^m(X; 2r)$ is homotopy equivalent to X.

Proof.

The proof uses similar techniques to that of Theorem 15.
Conclusion
Conclusions

• Metric analogue of Hausmann in Euclidean space.
Conclusions

- Metric analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

*If N is a smooth, compact, Riemannian manifold, there exists a $\tau > 0$ such that $\text{VR}^m(N; r) \simeq N$ for all $0 < r < \tau$.***

Proof.

This follows from the Nash Embedding theorem [7].
Conclusions

- Metric analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

If N *is a smooth, compact, Riemannian manifold, there exists a* $\tau > 0$ *such that* $\VR^m(N; r) \simeq N$ *for all* $0 < r < \tau$.

Proof.

This follows from the Nash Embedding theorem [7].

- The same techniques hold for metric Čech thickenings.
Conclusions

- Metric analogue of Hausmann in Euclidean space.
- For a Riemannian version see [1]. Or:

Corollary

If N *is a smooth, compact, Riemannian manifold, there exists a* $\tau > 0$ *such that* $\text{VR}^m(N; r) \simeq N$ *for all* $0 < r < \tau$.

Proof.

This follows from the Nash Embedding theorem [7].

- The same techniques hold for metric Čech thickenings.
- Worth considering version for dense-samplings [6, 2].

