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ABSTRACT

PERSISTENCE AND SIMPLICIAL METRIC THICKENINGS

This dissertation examines the theory of one-dimensional persistence with an emphasis on sim-

plicial metric thickenings and studies two particular filtrations of simplicial metric thickenings in

detail. It gives self-contained proofs of foundational results on one-parameter persistence mod-

ules of vector spaces, including interval decomposability, existence of persistence diagrams and

barcodes, and the isometry theorem. These results are applied to prove the stability of persis-

tent homology for sublevel set filtrations, simplicial complexes, and simplicial metric thickenings.

The filtrations of simplicial metric thickenings studied in detail are the Vietoris–Rips and anti-

Vietoris–Rips metric thickenings of the circle. The study of the Vietoris–Rips metric thickenings

is motivated by persistent homology and its use in applied topology, and it builds on previous work

on their simplicial complex counterparts. On the other hand, the study of the anti-Vietoris–Rips

metric thickenings is motivated by their connections to graph colorings. In both cases, the homo-

topy types of these spaces are shown to be odd-dimensional spheres, with dimensions depending

on the scale parameters.
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Chapter 1

Introduction

The field of applied topology, or topological data analysis, has developed over the last two to

three decades in an effort to use certain ideas from topology in practical applications. One feature

that has made applied topology an appealing research area is the constant mixing of abstract and

concrete ideas. In particular, it has drawn in many mathematical researchers, such as myself, be-

cause in spite of being a field with an end goal of applications, it requires a large amount of math to

develop the theory. This means that, ironically, there is a large theoretical side to applied topology,

which is both well-developed and continuing as an active research area. This is a consequence of

the field being built on thoroughly studied mathematical concepts, which allows for formal def-

initions to be given, theorems to be proved, and new mathematical questions to be posed. This

dissertation is situated in this area, with the goals of organizing and elaborating on some of the

foundational results in the area, as well as solving some particular problems that have arisen.

The distinction between this modern field of applied topology and other previous instances in

which topology has found its way into applied contexts can be seen from the desire to construct

generally applicable tools that can be added to the large toolbox of data science (hence the term

“topological data analysis”). From the early days of the subject, dating back to the introduction

of persistent homology, computations and algorithms were emphasized [1–4]. This focus has

continued with updated algorithms for persistence [5, 6] and new algorithms created as new tools

are proposed. Meanwhile, the mathematical theory developed rapidly, producing theoretical results

on persistent homology [7–9], increasingly abstract approaches to the subject [10–12], and the

ongoing creation of new techniques [13–15].
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Even restricting to the theoretical side of persistence, the field has continually evolved and

branched into a variety of approaches. Early work was focused on persistent homology with field

coefficients of sequences of spaces; some approaches emphasized algebra and the importance of

interval persistence modules [1], and some emphasized counting dimensions [16]. Eventually,

one-parameter persistence began to focus more on persistence modules of vector spaces indexed

by the real line or general subsets [8]. This led to a proof of interval-decomposability in a very

general setting [17] and approaches treating diagrams indexed by the real line valued in categories

other than just topological spaces and vector spaces [18–20]. Another line of research examined

how the techniques of persistence could be extended to persistence modules indexed by multiple

real parameters rather than just one [21–23], with some of these ideas even dating back to before

persistent homology was well established [24]. This has produced the field of multi-parameter

persistence. Further generalizations have been made to persistence modules indexed by more

general posets [25, 26].

This dissertation resides in the setting of one-parameter filtrations and persistence modules

of vector spaces, focusing in particular on the topological properties of the spaces in certain fil-

trations. After this introductory chapter, the dissertation can be roughly divided into two parts,

which have somewhat different goals. The first part, consisting of Chapters 2 and 3, gives a self-

contained development of the theory of one-parameter persistence modules of vector spaces and

the persistent homology of filtrations, which constitutes some of the most thoroughly developed

and most frequently applied tools of the field. My intent has been to make these chapters useful

to readers who may have had some introductory exposure to the ideas of persistent homology and

are interested in the mathematical foundations of the subject. The second part, consisting of Chap-

ters 4 and 5, contains the new mathematical contributions of this dissertation, providing solutions

to two topological problems that arise in connection with persistence. These chapters are inher-

ently much more specialized and will hopefully guide future work on related problems. A more

detailed summary of the material of this dissertation is given below.
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1.1 Topics and Organization
The goal of Chapters 2 and 3 is to provide a self-contained development of the foundations of

one-parameter persistence modules of vector spaces and filtrations of topological spaces. While

the results here are (mostly) not new, the presentation is. These chapters develop the theory of one-

dimensional persistence in a single, unified storyline, with proofs assuming only common facts

from algebra and topology. Namely, the main results include interval decompositions of certain

persistence modules, the existence of barcodes and persistence diagrams of q-tame persistence

modules, the isometry theorem, and the stability of persistent homology in its various forms. These

chapters include exercises that cover facts and examples that could have been included but were

not central to the storyline. The exercises are meant to provide additional context, but they are not

required to understand the rest of the material.

My motivation for writing these chapters originated from my own experience in learning

this material, which required (not unexpectedly) piecing the story together from multiple papers.

Learning this way comes with the challenge of understanding how the successive developments in

the field form a unified body of knowledge. It carries the risk of mathematical foundations being

obscured and readers temporarily accepting certain results on faith – especially those cited from

outside sources – without a guarantee they will ever return to understand the details. These diffi-

culties are natural for a relatively recent subject like applied topology. But as a subject becomes

more established, the theory tends to be rewritten and reorganized into cohesive summaries that

make it easier to learn, and I hope I have contributed to that process.

My overall approach to Chapter 2 emphasizes persistence modules indexed by the real line

(which were developed after the earlier theory of persistence modules indexed by subsets of the

integers) as well as their algebraic properties. This is reflected in my choice to give the interval

decomposability of pointwise finite-dimensional persistence modules as the first major result (The-

orem 2.2.2). The proof, given in Section 2.6, is based on the techniques of [17], but is reworked

to avoid needing citations of certain algebraic facts. In Section 2.4, I have made an effort to give

a simplified definition of barcodes and persistence diagrams that is equivalent to the commonly
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used definition in [27], without requiring some of the more nuanced machinery used there. Sec-

tion 2.4.2 explains how this approach recovers the theory of persistence modules indexed by the

integers or other subsets of the reals. The method of proof of the isometry theorem in Section 2.5

I had originally believed was new, until I was made aware of the paper [28], which establishes the

result for interval-decomposable modules (here Theorem 2.5.3) by similar methods. As a result,

the presentation is different, and this is exaggerated since that paper works in the setting of mul-

tiparameter persistence. I believe the method in Section 2.5.3 for extending the result to q-tame

modules (the typical level of generality) is still new.

As for the results of Chapter 3, the proofs of the stability of persistent homology for sublevel

set filtrations and for simplicial complexes (Theorems 3.2.2, 3.4.6, and 3.4.7) follow the methods

from [7] and [9], although the approach to the Gromov–Hausdorff distance differs slightly. The

proofs of the stability of persistent homology for simplicial metric thickenings come from my

master’s thesis [29] and [30]. While much of the material dates back to relatively early in the

history of persistence, Chapter 3 places an additional emphasis on simplicial metric thickenings,

which are a more recent development. This reflects my own personal research interests, along with

the belief (instilled in me by my advisor, of course) that these constructions provide a convenient

setting for the theory of persistent homology. This material also provides some of the background

for the work in the later chapters on simplicial metric thickenings.

Chapters 2 and 3 are not meant as a complete introduction to applied topology (much as I

would have liked them to be). In addition to lacking some of the major topics and most active

areas of research, these chapters do not give the motivated, example-based, visual introduction

that a first exposure to applied topology should have. They do, however, give a more complete

mathematical treatment of the topics than most introductions do, and my hope is that students

of applied topology interested in the mathematical foundations may find them useful. A more

complete, book-length introduction to applied topology would also include: the aforementioned

motivated, example-based, visual introduction (exemplified in [31–33]); algorithms used in applied

topology [1,5,16]; the theory of multiparameter persistence and other generalizations [20–23,26];
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applied sheaf theory [34–36]; other well-established tools such as the mapper algorithm [13] and

the persistent homology transform [14]; and finally, examples of applications1.

Moving on to the second part of the dissertation, Chapters 4 and 5 study the topology of specific

simplicial metric thickenings. They contain the new mathematical results of this dissertation; the

content of Chapter 4 is published in [39], and the content of Chapter 5 is part of ongoing joint

work [40].

The main results of Chapter 4 are the homotopy types of the Vietoris–Rips metric thickenings

of the circle (Theorem 4.7.3). This problem and older variants of it that were solved previously are

initially motivated by improving the understanding and interpretation of persistent homology. In

particular, it leads to a better understanding of Vietoris–Rips persistent homology in low dimen-

sions, which are some of the most practical versions of persistent homology. The problem itself,

however, belongs to algebraic topology, and it has the feel of a combinatorial problem despite be-

ing in a continuous setting. While many of the techniques of this chapter were designed around

specific spaces, an additional goal of this project was to demonstrate how simplicial metric thick-

enings lend themselves to such techniques, with the hope of motivating more general work in the

future.

Chapter 5 considers a similar problem, although the motivation is quite different. While the

techniques still come from persistence, the objects of study arise mainly from graph coloring prob-

lems. The main results here are the homotopy types of the anti-Vietoris–Rips metric thickenings

of the circle (Theorem 5.2.1). Despite having different origins, these spaces are closely related to

the metric thickenings studied in Chapter 4, making them a natural next step, and the techniques

of the proof are similar. Ongoing work related to this project is exploring the connection between

topological properties of simplicial metric thickenings and graph colorings.

Finally, before beginning the main content in Chapter 2, the following section handles some of

the mathematical background that will be encountered frequently and deserves some introduction.

1Rather than try to provide a representative set of citations for applications here, which would take quite a bit of space,
I will refer to a couple of existing summaries of applications: one survey can be found in [37], and a chapter of [38]
includes case studies that discuss various applications in more depth.
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The concepts are relatively simple, but they are not especially “standard” in that they are less often

taught or used in the foundations of subjects, and some mathematicians, especially students, may

have never had a need for them. We give definitions and basic facts here and refer to them often in

the later chapters.

1.2 Preliminaries
The background knowledge required in this dissertation will mostly come from topology and

algebra. In particular, Chapters 2 and 3, which cover the foundations of persistent homology,

will primarily require linear algebra, some point-set topology, and the basics of homology. We

will occasionally take a category-theoretic viewpoint, but most of the material should be readable

without an in-depth knowledge of category theory. Chapters 4 and 5 will draw more heavily from

both point-set and algebraic topology and in particular will require some facts from homotopy

theory.

There are a few basic concepts that end up playing a significant role in applied topology despite

being somewhat less common in other areas. In this section, we will give an overview of a few such

concepts that will appear often, each of which can be seen as a generalization of a more familiar

mathematical object. The material here can be read immediately or skipped and referenced as it is

mentioned later.

1.2.1 Generalizations of Metric Spaces

Applied topology and persistence heavily use the language of metric spaces. It turns out to be

useful to generalize the notion of a metric slightly to allow infinite distances and to allow distinct

points to be at distance zero. We introduce the following terminology that will allow us to work

in various levels of generality; briefly, “extended” will mean we allow infinite distances, while the

prefix “pseudo” will mean that distances between distinct points can be zero.

Given a set X , a function d : X ×X → R≥0 ∪ {∞} is called an extended pseudometric on X

if it satisfies the following axioms:
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1. d(x, x) = 0 for all x ∈ X

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

In the third axiom (the triangle inequality), since distances can be ∞, we use the convention that

r +∞ = ∞+ r = ∞+∞ = ∞ for any r ∈ R≥0.

From here, additional requirements give special cases. If d is an extended pseudometric that

takes only finite values (i.e. its codomain can be restricted to R≥0), then it is called a pseudometric.

Next, if d is an extended pseudometric such that d(x, y) = 0 implies x = y, then it is called an

extended metric. Alternately, an extended metric can be defined by replacing axiom 1 above with

“d(x, y) = 0 if and only if x = y.” Finally, we recover the normal definition of a metric by

requiring that d take only finite values and that d(x, y) = 0 implies x = y; that is, d is a metric

if it is both a pseudometric and an extended metric. There are also generalizations of metrics that

remove the assumption of symmetry (axiom 2 above), although we will not need these.

If d is an extended pseudometric on X (or specifically a pseudometric, extended metric, or

metric), we will call the pair (X, d) an extended pseudometric space (or respectively a pseudomet-

ric space, extended metric space, or metric space). We will often suppress d from the notation and

simply say X is an extended pseudometric space. In cases where it is helpful or multiple spaces

are involved, we may write an extended pseudometric on X as dX .

Like a metric, an extended pseudometric d on a set X defines a topology on X . For any

ε > 0 and x ∈ X , define the open ball Bd(x, ε) = {y ∈ X | d(x, y) < ε}. The topology on

X induced by d is defined by taking the collection of all open balls as a basis. Equivalently, in

this topology, a set U is open in X if and only if for every x ∈ U , there is some ε > 0 such that

Bd(x, ε) ⊆ U . The biggest difference in topology between general extended pseudometric spaces

and the more familiar metric spaces is their separation. While every metric space is Hausdorff,

an extended pseudometric space is generally not, as it may contain distinct points x and y with

d(x, y) = 0; in this case, every open set containing x contains y and vice versa, so x and y are

7



topologically indistinguishable. In this way, the points at distance zero exactly determine whether

the Hausdorff condition is met: an extended pseudometric space is Hausdorff if and only if it is in

fact an extended metric space.

In fact, topology alone cannot distinguish between a metric space and an extended metric

space, as we can show that every extended metric space is metrizable. Given an extended metric

space (X, d), define d : X × X → R≥0 by d(x, y) = min{d(x, y), 1}. It can be checked that d

defines a metric on X (this is called the standard bounded metric corresponding to d; see [41,

Theorem 20.1]). Furthermore, the extended metric d and the metric d define the same topology on

X , since any open ball Bd(x, ε) contains some ball Bd(x, ε
′) and vice versa. Thus, topologically

there is no distinction between metric spaces and extended metric spaces. If instead we begin with

an extended pseudometric d, the same definition of d produces a pseudometric that defines the

same topology as d; so similarly, there is no topological difference between extended pseudometric

spaces and pseudometric spaces.

In addition to the topology, other familiar definitions related to metric spaces apply to extended

pseudometric spaces. The definition of a Lipschitz map is the same as usual. The definition of

an isometry or distance preserving map is also the same as usual, although an isometry need not

be injective because distinct points may have a distance of zero. The term “isometric embedding”

can be used for an injective distance preserving map, since such a map is necessarily a homeomor-

phism onto its image. Sequence convergence can be defined by the usual ε-N definition, and this

agrees with the general notion of convergence in a topological space; of course, since in general

distinct points may have a distance of zero, the limit of a sequence may not be unique. Similarly,

the usual ε-δ definition of continuity is equivalent to the topological definition of continuity for

extended pseudometric spaces. Cauchy sequences and completeness are also defined as usual. The

definitions of bounded and totally bounded spaces are the same as usual, and of course, a bounded

extended pseudometric space is necessarily a pseudometric space. The usual characterization of

compact metric spaces can be used to show that an extended pseudometric space is compact if
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and only if it is complete and totally bounded, which holds if and only if every sequence has a

convergent subsequence.

Finally, given any extended pseudometric space (X, dX), we can perform the intuitive process

of identifying any two points at distance zero, producing an extended metric space2, which we write

as Q(X). The points of Q(X) are the equivalence classes [x] of points x ∈ X , where [x] = [x′]

if and only if dX(x, x′) = 0, and the extended metric of Q(X) is defined by dQ(X)([x], [x
′]) =

dX(x, x
′). This formalizes the idea that points at distance zero are mostly indistinguishable, and

even in cases where Q(X) is not explicitly used, we will often think of points at distance zero

as essentially the same. The map qX : X → Q(X) is continuous and is in fact a quotient map

and a (generally non-injective) isometry. Given an extended metric space Y , a continuous map

f : Q(X) → Y corresponds to the map f̃ : X → Y given by f̃(x) = f([x]) and vice versa. In

categorical terms,Q is a functor from the category of extended pseudometric spaces and continuous

functions to the category of extended metric spaces and continuous functions, Q is left adjoint to

the inclusion functor, and the map qX : X → Q(X) is the unit of the adjunction. All of this can be

restricted to the case of pseudometric spaces X , in which case we get metric spaces Q(X).

The operations (X, d) 7→ (X, d) and X 7→ Q(X) both turn extended pseudometric spaces

into more restrictive objects; the first removes “extended” and the second removes “pseudo.” We

have noted that Q is a functor that has a right adjoint, and the unit qX : X → Q(X) is an isom-

etry, although generally not a homeomorphism. Similarly, (X, d) 7→ (X, d) is a functor from

the category of extended (pseudo)metric spaces to the category of (pseudo)metric spaces, in each

case with continuous functions as morphisms. Along with the inclusion in the reverse direction,

it forms an equivalence of categories; ultimately, this equivalence results from our choice of mor-

phisms, which are purely topological in nature. Thus, the identity function (X, d) → (X, d) is a

homeomorphism, although generally not an isometry. These operations perhaps show why metric

spaces are typically given more attention than any of these generalizations. On the other hand, the

2For instance, in a function space such as an Lp space, two functions will often be considered the same if the norm of
their difference is zero – here the initial pseudometric space is a set of functions and the resulting metric space is the
function space that is typically studied.
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generalizations considered in this section prove to be convenient in a number of settings and have

become common in applied topology. We will focus our attention on metric spaces in situations

where they are typically used, but we will also find many cases in which the generalizations are

warranted.

1.2.2 Matchings and Correspondences

Recall that a relation between sets X and Y is a subset R ⊆ X × Y . There are two types of

relations that make an appearance in applied topology that are somewhat less common, so we give

an overview here. We know that a relation R ⊆ X ×Y describes a function f : X → Y if for each

x ∈ X , there is exactly one y ∈ Y such that (x, y) ∈ R: the y corresponding to x is called f(x)

so that R consists of the pairs (x, f(x)) for all x. Letting πX : X × Y → X and πY : X × Y → Y

be the projection maps, we can rephrase this characterization as follows: a relation R ⊆ X × Y

describes a function X → Y if and only if the restriction πX |R : R → X is a bijection. An inverse

function exists exactly when πY |R is a bijection as well, so R describes a bijection if and only if

both πX |R and πY |R are bijections. The two types of relations we will introduce here weaken the

requirement that these projections be bijections while keeping the symmetry between the two sets:

in this sense, they can both be thought of as generalizations of bijections.

We call a relation R ⊆ X ×Y a correspondence if both πX |R and πY |R are surjective. If (x, y)

is in a correspondence R, we will say that x and y “correspond” to each other under R. Explicitly,

this definition means that each element in either X or Y corresponds to at least one element of the

other set. For an example, let (M,d) be a metric space (or an extended pseudometric space), let

ε > 0, and define a correspondence R ⊆ M ×M by R = {(m1,m2) | d(m1,m2) < ε}. Both

projections are surjective since (m,m) ∈ R for each m ∈ M . This correspondence provides an

approximation of the identity function, allowing for an error of up to ε. Similarly, we will later

consider correspondences between different metric spaces that can be thought of as approximate

isometries, allowing for an ε of error.
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Next, we call a relation R ⊆ X × Y a matching if both πX |R and πY |R are injective. In this

case, if (x, y) ∈ R, we will say x and y are “matched” to each each other, and the definition means

that each element of X or Y is matched to at most one element of the other set. Our definition is

related to the use of the word “matching” in graph theory, meaning a subset of edges of a graph

that do not share any common vertices. A matching in our sense corresponds to a matching in the

graph-theoretic sense in the complete bipartite graph with parts X and Y , that is, the graph with

vertex setX⊔Y with edges connecting each vertex inX with each vertex in Y . More generally, we

can write a bipartite graph on parts X and Y as (X, Y,E) with E ⊆ X×Y ; an element (x, y) ∈ E

then represents an edge connecting X to Y (instead of the more common representation of an

edge as {x, y}). With this convention, a matching in the graph-theoretic sense in a bipartite graph

(X, Y,E) is a matching R ⊆ X×Y in our sense such that R ⊆ E. We will exploit this connection

in Section 2.5, using ideas from graph theory to understand the matchings that arise in the study of

persistence.

Finally, correspondences and matchings behave well under composition. In general, the com-

position of two relations S ⊆ Y × Z and R ⊆ X × Y , denoted S ◦ R ⊆ X × Z, is defined

by

S ◦R = {(x, z) ∈ X × Z | ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S }.

If S and R are both correspondences, then for any x ∈ X , there is a y ∈ Y such that (x, y) ∈ R

and a z ∈ Z such that (y, z) ∈ S, so (x, z) ∈ S ◦ R. Symmetrically, given any z′ ∈ Z, there is an

x′ ∈ X such that (x′, z′) ∈ S ◦ R, so S ◦ R is a correspondence. Now suppose instead that both

S and R are matchings. If (x, z) ∈ S ◦ R and (x′, z) ∈ S ◦ R, then there exist y, y′ ∈ Y such that

(x, y) ∈ R, (y, z) ∈ S, (x′, y′) ∈ R, and (y′, z) ∈ S. Since S is a matching, we must have y = y′,

and sinceR is a matching, this implies x = x′. Therefore the projection S◦R → Z is injective, and

similarly so is the projection S◦R → X , so S◦R is a matching. Thus, we see that the composition

of matchings is a matching, and the composition of correspondences is a correspondence. This is

analogous to the fact that the composition of injective functions is injective, and the composition

of surjective functions is surjective.
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1.2.3 Multisets

Multisets will provide a helpful language for our study of persistence. Roughly speaking, a

multiset is like a set, but is allowed to contain multiple copies of the same element; the number

of times that element occurs is called the multiplicity of the element. The notion of multiplicity

is familiar even in cases where the language of multisets is not explicitly used – maybe the most

familiar example is the multiplicity of a root of a polynomial. Soon we will develop tools to

count features present in spaces, and since some features will be deemed to be indistinguishable,

we will count features with multiplicities. These ideas will expand on the technique of counting

homological features using the dimensions of vector spaces.

There are multiple ways to define multisets; we will give two definitions that are sufficient for

our purposes. To begin, a multiset is commonly defined as a tuple (S,m) of a set S and a function

m : S → Z+. Here the function m is interpreted as recording the multiplicity of each element, i.e.

m(s) is interpreted as the number of times s occurs in the multiset. This definition is sufficient if

we only wish to allow for finite multiplicities, but to allow for infinite multiplicities, we can modify

our definition to allow m to be a function m : S → Z+∪{∞}; in the area of applied topology, this

approach is taken in [27], for instance3.

For a different approach, suppose we only wish to define multisets consisting of elements in

some fixed set U (the “universe” for this definition). We will use the suggestive name indexed

multiset in U to refer to an indexed collection of elements of U , i.e. a function s : A → U where

A is any index set. Then we will call two indexed multisets s : A → U and t : B → U equivalent

if there exists a bijection f : A→ B such that s = t ◦ f and define a multiset to be an equivalence

class of indexed multisets. In category theoretic terms, we are working in the slice category Set/U

and have defined a multiset as an isomorphism class4 of this category; see for instance [43]. The

3With this definition, the use of a single symbol ∞ does not distinguish between different infinite cardinal numbers,
which is acceptable for most situations of interest in applied topology. If we wish to allow different infinite cardinals
as multiplicities, we can either define a multiset as a set S with a functionm with domain S whose values are cardinal
numbers [42], or we can step away from sets and allow functionsm from S to the proper class of all cardinal numbers.

4Note that we are working outside the confines of set theory, as the collection of all functions with codomain U is not
a set, so the equivalence we have defined is not an equivalence relation in the set-theoretic sense. Hence, we need to
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notion of equivalence agrees with our intuition that a multiset does not change if its elements are

reindexed. With this perspective, operations or properties of multisets are operations or properties

of indexed collections that respect our definition of equivalence. Our first description of a multiset

as a set with a multiplicity function can be recovered from this one: an indexed multiset A s−→ U

yields a pair (s(A),m), where for any u ∈ s(A), m(u) = |s−1({u})| (with any infinite cardinality

indicated by ∞), and this pair is unchanged if the multiset is reindexed. In the reverse direction,

given a subset S ⊆ U and a multiplicity function m : S → Z+ ∪ {∞}, we can construct a corre-

sponding indexed multiset, although there will generally be arbitrary choices involved (including

the choice of an arbitrary infinite cardinality corresponding to any s ∈ S with m(s) = ∞).

The majority of our work with multisets will take the approach of indexed multisets, as it allows

us to simply use the familiar notion of indexed collections. In each case, the universe U will be

clear. For instance, in Section 2.4, we will work with “multisets of intervals in R.” In this case, the

universe U is the set of intervals in R and such a multiset can be expressed as an indexed multiset

{Ja}a∈A, with each Ja an interval in R.

Finally, we will address some basic set theoretic operations with multisets. We will not attempt

to give a comprehensive set of definitions, as there are multiple choices of definitions depending

on the setting, but we will instead provide enough of a foundation to serve our purposes here.

To begin, if we use the first definition of a multiset as a tuple (S,m) with multiplicity function

m : S → Z+ ∪ {∞}, then (S,m) is a submultiset of (T, n) if S ⊆ T and m(s) ≤ m(s) for all

s ∈ S. Unions and intersections of such multisets are typically defined as follows:

⋃
i

(Si,mi) =

(⋃
i

Si,m

)

trust the logical foundations of category theory for this definition. This footnote and the previous suggest that these
set-theoretic issues inevitably arise when looking for a good definition of multisets.
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where m(s) = sup{mi(s) | s ∈ Si} and

⋂
i

(Si,mi) =

(⋂
i

Si,m
′

)

wherem′(s) = infimi(s). These operations treat multisets as sharing elements whenever possible:

for instance, if the element s has maximal multiplicity in Si0 , then since the union assigns s this

same multiplicity, all copies of s in any Si are treated as if they are in Si0 . This is a useful

definition in cases where this interpretation makes sense, although it is not the only possibility.

For instance, in certain situations, we may want to treat different multisets as containing distinct

elements, and in this case, a reasonable alternate definition of the union would use the multiplicity

function m(s) =
∑

imi(s). This is indeed sometimes used as an alternate definition of the union

of multisets, but we will instead take a different approach of letting this multiplicity function define

a different operation, the sum of multisets [43]. There is also an analogous definition of the product

of multisets, given by multiplying multiplicities. The operations we have described so far will be

enough for most of our purposes, and those not interested in more abstract definitions can skip the

remainder of this section.

Our second definition of multisets in U based on using indexed collections provides more flex-

ibility in generalizing set-theoretic operations, at the expense of requiring some more abstraction:

this marks the first time we will make essential use of category theory. We will base our definitions

on the category Set/U . A map of indexed multisets from s : A → U to t : B → U is then just a

function over U , that is, a function f : A → B such that s = t ◦ f . Instead of defining submul-

tisets, we can work with monomorphisms in Set/U , which are those f as above that are injective

functions (alternately, we could define a submultiset as an equivalence class of monomorphisms

in the usual way). Instead of unions and intersections, we can instead use colimits and limits re-

spectively, both of which exist in Set/U ; of course, these are more complicated than unions and

intersections, as there is a choice of maps in a diagram. All of these definitions respect isomor-

phisms, so by passing to isomorphism classes, they provide definitions of maps, monomorphisms,
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limits, and colimits of multisets (in the case of limits and colimits, the relevant fact is that naturally

isomorphic diagrams have isomorphic limits; see Corollary 3.6.3 of [44]).

In certain cases, the use of colimits and limits matches our definition above of unions and inter-

sections of multisets defined by multiplicity functions, while in other cases, they behave somewhat

differently. For instance, the union of a nested sequence of multisets can be reformulated as a

colimit. The nested sequence corresponds to a diagram A in Set/U indexed by a totally ordered

set J , in which all arrows are monomorphisms. Write a generic arrow in this diagram as

Aj Ak

U

Aj≤k

sj sk

Each indexed multiset Aj
sj−→ U corresponds to a pair (sj(Aj),mj), where mj(u) = |s−1

j ({u})|.

The colimit of this diagram is colimi∈J Ai =
(∐

i∈J Ai
)
/ ∼, where for aj ∈ Aj and ak ∈ Ak,

we have aj ∼ ak if and only if Aj≤k(aj) = ak. The induced map s : colimi∈J Ai → U sends an

equivalence class [aj] to sj(aj). Thus, s(colimi∈J Ai) =
⋃
i∈J si(Ai), and because all Aj≤k are

injective, for any u in the image of s, we have |s−1(u)| = supi∈J |s−1
i ({u})|. So the indexed mul-

tiset colimi∈J Ai
s−→ U corresponds to the pair

(⋃
i∈J si(Ai),m

)
where m(u) = supi∈J |s−1

i ({u})|,

which agrees with our notion of union for multisets defined by multiplicity functions. Unions

of nested sequences of multisets will appear in Section 2.4, and our work here shows that either

definition of multisets can be used in that case.

For a case in which colimits and limits in Set/U do not agree with our first definitions of unions

and intersections, suppose we have a diagram {Ai
si−→ U}i∈J in Set/U where J is now a discrete

category. The colimit is now a coproduct and is given by the induced function
∐

i∈J Ai → U .

This corresponds to the pair
(⋃

i∈J si(Ai),m
)

with m(u) =
∑

i∈J |s
−1
i ({u})|. This corresponds to

the sum of multisets mentioned above, in which multiplicities are added. On the other hand, the

limit of the diagram is given by
{
{ai}i∈J ∈

∏
i∈J Ai | for all j, k ∈ I , sj(aj) = sk(ak)

}
, which
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corresponds to the pair
(⋂

i∈J si(Ai),m
′) with m′(u) =

∏
i∈J |s

−1
i ({u})|. This corresponds to the

product of multisets we mentioned briefly, in which multiplicities are multiplied.
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Chapter 2

Persistence Modules

The theory of persistence involves an interesting interaction between geometric spaces and

algebraic information extracted from these spaces. In this chapter, we will focus on the algebraic

foundations of this theory, centered around objects called persistence modules. A persistence

module records information as a collection of vector spaces parameterized by one real variable5,

often imagined as time. A collection of linear maps describes how the vector spaces evolve over

time. The vector spaces are often produced from geometric spaces evolving over time, in which

case elements of the vector spaces represent features of the geometric spaces. With some effort,

we can find how long particular generators of the vector spaces persist before they are sent to zero,

thus showing how long the corresponding features of the geometric spaces persist as the spaces

evolve.

This chapter is based on several main references. The basic definitions of persistence modules

and related concepts, as well as the overall approach to the subject, are based on [8, 27, 45]. We

will sometimes take a categorical view of persistence modules, as described in [18]. Our work on

the existence of interval decomposition will be based on that in [17], which was further developed

in [11]. For the isometry theorem, we give a proof based on Hall’s Marriage Theorem, beginning

with an approach similar to that of [28] and then extending to q-tame persistence modules.

5We limit our scope here to the case in which vector spaces are parameterized by one real variable, which is usually
called one-parameter persistence. This case is the oldest and most frequently used in applications. Generalizations
beyond a single parameter produce multiparameter persistence and more generally persistence modules indexed by
posets, and these settings are subjects of active research [20–23,25,26]. Some of these generalizations further replace
the vector spaces with objects in a different category – we will perform a similar substitution soon when we consider
filtrations of topological spaces in Chapter 3.
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2.1 Definitions
We will work with vector spaces over an arbitrary fixed field K and an index set R ⊆ R, with

the order inherited from R. A persistence module V over an index set R ⊆ R consists of

• a vector space Vt for each t ∈ R

• for elements s ≤ t in R, a linear map Vs≤t : Vs → Vt

such that Vt≤t = 1Vt for all t ∈ R and Vs≤t ◦ Vr≤s = Vr≤t whenever r ≤ s ≤ t in R. The maps

Vs≤t are called the structure maps of V . We can imagine Vt as recording information at “time”

t, in which case the last condition of the definition says that the maps advance forward in time

consistently. In context, we will often just refer to persistence modules as “modules.” A morphism

φ : V → W of persistence modules over the same index set R consists of a collection of linear

maps φt for all t ∈ R such that if s ≤ t in R, then φt ◦ Vs≤t = Ws≤t ◦ φs; that is, the following

diagram commutes:

Vs Vt

Ws Wt.

Vs≤t

φs φt

Ws≤t

In our analogy based on time, a morphism translates the information of one persistence module to

another in a way that respects their dependence on time.

Composition of morphisms is defined pointwise: that is, given morphisms φ : V → W and

ψ : W → X , we define ψ ◦ φ by setting (ψ ◦ φ)t = ψt ◦ φt. For any persistence module V over

R, we have an identity morphism 1V defined by the collection of identity maps 1Vt for all t ∈ R.

An isomorphism of persistence modules is a morphism with an inverse. That is, φ : V → W is

an isomorphism if there exists a ψ : W → V such that ψ ◦ φ = 1V and φ ◦ ψ = 1W , and in this

case we can write ψ as φ−1. If there exists an isomorphism φ : V → W , then V and W are called

isomorphic, and we will write V ∼= W to indicate that V and W are isomorphic. Since morphisms

are defined pointwise, we can see that φ is an isomorphism if and only if each φt is an isomorphism

(an invertible linear map).
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These definitions can be described succinctly in categorical terms: a persistence module is a

functor from the poset R, considered as a category, to the category of vector spaces over K, and

a morphism of persistence modules is a natural transformation. Furthermore, the collection of

persistence modules over R and morphisms between them form a category. In short, the category

of persistence modules over R is the functor category VectR.

2.1.1 Interval Persistence Modules

Let R ⊆ R be a fixed index set. We will say a nonempty subset J ⊆ R is an interval in R if

whenever r ≤ s ≤ t in R and r, t ∈ J , we have s ∈ J . If J ⊆ R is an interval, we can define a

persistence module V by setting

Vt =


K if t ∈ J

0 it t /∈ J,

letting Vs≤t = 1K if s, t ∈ J and s ≤ t, and letting all other Vs≤t be zero maps. Define an interval

persistence module to be any persistence module isomorphic to such a V . We call J the support

of the interval module, and we may describe a module isomorphic to V as an “interval module

supported on J .” Interval modules will play a prominent role in our study of persistence modules.

We will show later how they may be viewed as the building blocks for many other persistence

modules.

While the definition above applies to any R ⊆ R, the case of R = R covers much of the theory,

so we will develop some techniques for working with interval modules in this case. We will use

the following convenient notation for intervals in R, described, for instance, in [27]. Define the set

of decorated real numbers, written as real numbers with a superscript of either + or −, and ordered

by letting a± < b± if a < b and letting a− < a+. That is, they can be constructed as R × {+,−}

and given the lexicographic (dictionary) order with − < +. Define the extended decorated real

numbers by including maximal and minimal elements ±∞. We can use the decorated real numbers

to describe open and closed endpoints of intervals. For bounded intervals, we make the following
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definitions, with the usual notation for intervals on the right:

⌈a−, b−⌋ = [a, b)

⌈a−, b+⌋ = [a, b]

⌈a+, b−⌋ = (a, b)

⌈a+, b+⌋ = (a, b].

In the second case, we require a ≤ b and let ⌈a−, a+⌋ = [a, a] = {a}, and in all other cases we

require a < b. Similarly, we can use ±∞ to write unbounded intervals, for instance, ⌈a+,∞⌋ =

(a,∞). This provides a uniform notation for all intervals in R: we can write an arbitrary interval

as ⌈l, u⌋, where the lower and upper endpoints l and u are in the extended decorated real numbers.

If a± is in the extended decorated real numbers, then removing the decorations produces an

element of the usual extended real numbers R = R ∪ {±∞}. We will extend the usual distance in

R to R in an intuitive way: define

dR(x, x
′) =


|x− x′| if x, x′ ∈ R

+∞ if x = ±∞ and x′ ̸= x or if x′ = ±∞ and x ̸= x′

0 if x = x′ = ±∞.

It can be checked that dR is an extended metric on R (see Section 1.2.1 for the definition of an

extended metric and other generalizations of metrics).

Finally, we can shift the endpoints of intervals by allowing real numbers to be added to extended

decorated real numbers. For a, s ∈ R, define a− + s = (a + s)− and a+ + s = (a + s)+, and

further define ±∞+ s = ±∞. Then for any interval ⌈l, u⌋, we can describe intervals with shifted

endpoints, such as ⌈l + s, u + s⌋. We must make sure the new interval still has appropriately

ordered endpoints: for instance, if s ≥ 0 and ⌈l, u⌋ is an interval, then ⌈l − s, u + s⌋ is a well-

defined interval, but ⌈l + s, u − s⌋ is not necessarily, as we may have l + s > u − s. Note that
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by these definitions, shifting endpoints by s has the effect of leaving infinite endpoints unchanged,

for instance, ⌈−∞+ s, u⌋ = ⌈−∞, u⌋.

The following lemma examines how the set of morphisms between interval modules depends

on their supports.

Lemma 2.1.1. Let V and W be interval modules over R with supports ⌈lV , uV ⌋ and ⌈lW , uW ⌋

respectively. If lV < lW or uV < uW , then the only morphism V → W is the zero morphism.

This can be generalized to other index sets as well, but the statement for intervals in R will be

sufficient for us. We will prove this lemma using the following straightforward fact, which will

also be useful later.

Lemma 2.1.2. Let the diagrams below be commutative diagrams of vector spaces. In the left

diagram, if g is injective, then f is the zero map. Similarly, in the right diagram, if g is surjective,

then h is the zero map.
A 0 B C

B C 0 D

f

g

h

g

Proof. Since the left diagram commutes, g◦f(A) = 0, so if g is injective, we must have f(A) = 0.

In the right diagram, h ◦ g(B) = 0, so if g is surjective, then h is the zero map.

Proof of Lemma 2.1.1. Suppose φ : V → W is a morphism, so that for any s ≤ t, we have the

commutative diagram below.

Vs Vt

Ws Wt

Vs≤t

φs φt

Ws≤t

If lV < lW , then there exists an s ∈ ⌈lV , uV ⌋ such that s < t for all t ∈ ⌈lW , uW ⌋. Then Ws = 0

and for any t ∈ ⌈lV , uV ⌋∩⌈lW , uW ⌋, the map Vs≤t is an isomorphism, so applying Lemma 2.1.2 to

the diagram, φt is the zero map. All other φt are zero as well, since any t /∈ ⌈lV , uV ⌋ ∩ ⌈lW , uW ⌋

is outside the support of at least one of the modules, so φ is the zero morphism.
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Similarly, if uV < uW , then there is a t ∈ ⌈lW , uW ⌋ such that s < t for all s ∈ ⌈lV , uV ⌋. Then

Vt = 0, so applying Lemma 2.1.2 again, we find φs is the zero map for all s ∈ ⌈lW , uW ⌋∩⌈lV , uV ⌋,

and thus for all s.

2.1.2 Interleavings

Often, the notion of an isomorphism of persistence modules will be too strict of a condition to

expect. We would like a way to compare persistence modules that allows us to say two are “approx-

imately isomorphic,” or somehow “close” algebraically. For instance, if two interval modules are

supported on intervals with close endpoints, we should expect they are close in some sense. Here

we introduce interleavings of persistence modules, which allow us to make such comparisons.

Given a persistence module V over R, we can form a new persistence module by simply shift-

ing the parameter: for any ε ∈ R, we can define the persistence module V_+ε, which has t com-

ponent Vt+ε. The new module inherits the maps of V as well: the map of V_+ε corresponding to

the inequality s ≤ t is Vs+ε≤t+ε : Vs+ε → Vt+ε. This construction behaves well with respect to

morphisms. For any morphism φ : V → W , we get a shifted morphism φ_+ε : V_+ε → W_+ε, and

for ε ≥ 0, we get a morphism ν : V → V_+ε by setting νt = Vt≤t+ε for all t.

For persistence modules V andW over R and any ε ≥ 0, we will say a pair (φ, ψ) of morphisms

φ : V → W_+ε and ψ : W → V_+ε is an ε-interleaving between V and W if for any t we have

ψt+ε◦φt = Vt≤t+2ε and φt+ε◦ψt = Wt≤t+2ε. We will say V andW are ε-interleaved if there exists

an ε-interleaving between them. The interleaving conditions above are equivalent to requiring the

following diagrams commute for all t:

Vt Vt+2ε Vt+ε

Wt+ε Wt Wt+2ε.

φt

Vt≤t+2ε

φt+ε

ψt+ε

ψt

Wt≤t+2ε
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The slanted arrows remind us that the maps increase the parameter by ε. It is also convenient to

visualize the commutativity requirement for the morphisms in similar diagrams:

Vs Vt Vs+ε Vt+ε

Ws+ε Wt+ε Ws Wt.

Vs≤t

φs

φt

Vs+ε≤t+ε

Ws+ε≤t+ε

ψs

Ws≤t

ψt

Thus, checking that collections of linear maps {φt}t∈R and {ψt}t∈R form an interleaving amounts

to checking that the diagrams above commute for all t and s.

If δ > 0 and (φ, ψ) is an ε-interleaving between V and W , then the commutative diagrams

can be used to check that the morphisms φ′ : V → W_+ε+δ and ψ′ : W → V_+ε+δ defined by

φ′
t = Wt+ε≤t+ε+δ ◦ φt and ψ′

t = Vt+ε≤t+ε+δ ◦ ψt form an (ε + δ)-interleaving between V and

W . Thus, if V and W are ε-interleaved, then they are ε′-interleaved for any ε′ ≥ ε. We can also

compose interleavings in a reasonable way. If (φ, ψ) is an ε-interleaving between V and W and

(φ′, ψ′) is an ε′-interleaving betweenW andX , then (φ′
_+ε◦φ, ψ_+ε′ ◦ψ′) is an (ε+ε′)-interleaving

between V and X .

We began with the goal of describing “approximate isomorphisms” and “closeness” of persis-

tence modules. Interleavings do in fact generalize the notion of isomorphisms between persistence

modules: note that a 0-interleaving is a pair of inverse isomorphisms. We can also formalize

the idea that an interleaving tells us two persistence modules are “close.” Define the interleaving

distance dI between two persistence modules V and W over R by

dI(V,W ) = inf{ε ≥ 0 | V and W are ε-interleaved},

where the infimum is taken to be +∞ if no interleaving between V and W exists. If V and

W are ε-interleaved and W and X are ε′-interleaved, then V and X are (ε + ε′)-interleaved by

composing interleavings as above. This implies the triangle inequality for dI , that is, dI(V,X) ≤

dI(V,W ) + dI(W,X). Furthermore, dI is symmetric and dI(V, V ) = 0 for any V , since (1V , 1V )
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forms a 0-interleaving between V and itself. Thus, dI defines an extended pseudometric (see

Section 1.2.1) on any set of persistence modules over R. Note that the infimum in the definition of

dI is not always attained: for instance, an interval module with support [0, 1] is ε-interleaved with

an interval module with support (0, 1) for any ε > 0 but not for ε = 0. In particular, this example

shows that distinct persistence modules can have an interleaving distance of zero.

The interleaving distance will play an important role in our understanding of persistence mod-

ules. For now, we show that it gives a reasonable notion of distance between interval modules.

Example 2.1.3. Let V andW be interval modules over R supported on the intervals JV = ⌈lV , uV ⌋

and JW = ⌈lW , uW ⌋, and let lV , uV , lW , and uW be obtained by removing decorations. We show

dI(V,W ) = min
{
max

{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
, 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}}
.

In words, the interleaving distance is the lesser of the following values: the greater of the distances

between corresponding endpoints of the intervals and one half of the length of the longer interval.

Suppose ε > 0. To examine when nonzero interleaving maps can exist, we use Lemma 2.1.1.

Since W_+ε is an interval module with support ⌈lW − ε, uW − ε⌋, there can only be a nonzero

morphism V → W_+ε if lW − ε ≤ lV and uW − ε ≤ uV . Similarly, there can only be a nonzero

morphism W → V_+ε if lV − ε ≤ lW and uV − ε ≤ uW . Together, these show that there can be an

ε-interleaving between V and W with some ψt+ε ◦φt or some φt+ε ◦ψt nonzero only if ⌈lV , uV ⌋ ⊆

⌈lW − ε, uW + ε⌋ and ⌈lW , uW ⌋ ⊆ ⌈lV − ε, uV + ε⌋. Thus, such an interleaving does not exist

if ε < max
{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
. Furthermore, if ε < 1

2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}
,

there will be some t with either Vt≤t+2ε or Wt≤t+2ε nonzero, so there cannot be an ε-interleaving

where all ψt+ε ◦ φt and all φt+ε ◦ ψt are zero maps. Thus, we have shown

dI(V,W ) ≥ min
{
max

{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
, 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}}
.

To show the reverse inequality, we will construct an explicit interleaving. Suppose either

ε > max
{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
or ε > 1

2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}
. Replacing V and
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W with isomorphic interval modules if necessary, we have

Vt =


K if t ∈ JV

0 it t /∈ JV

and Wt =


K if t ∈ JW

0 it t /∈ JW ,

where the maps of V and W are the identity 1K whenever possible and are zero maps otherwise.

We define morphisms φ : V → W_+ε and ψ : W → V_+ε. Let φt = 1K whenever t ∈ JV and

t+ε ∈ JW , let ψt = 1K whenever t ∈ JW and t+ε ∈ JV , and let all other φt and ψt be zero maps.

If ε > 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}
, then for all t, either Vt or Vt+2ε is zero, and similarly for

W , so the interleaving conditions are met. If ε > max
{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
, then for any t

such that Vt = Vt+2ε = K, we must have t, t + 2ε ∈ JV , and thus the bounds on the endpoints

show t + ε ∈ JW . Then ψt+ε ◦ φt = 1K = Vt≤t+2ε, as required. Similarly, the other interleaving

condition is met, so in either case, (φ, ψ) does in fact form an interleaving. This shows the reverse

inequality, so we have verified the interleaving distance is as shown above.

Exercises

Exercise 2.1.1. This exercise gives a partial justification of the naming of persistence modules –

that is, persistence modules are in fact equivalent to modules, categorically speaking6.

1. (Theorem 3.1 of [1]) Show a persistence module V over N can be interpreted as a graded

module over the graded ring K[x], where the action of the indeterminate x on a v ∈ Vt

is given by x · v = Vt≤t+1(v). In more detail, show there is an equivalence of categories

between the category of persistence modules over N and the category of graded modules

over K[x].

2. Find an equivalence of categories, similar to that in the previous part, between the category

of persistence modules over R and a category of graded modules (the ring and the modules

6Alternately, those who are familiar with the Freyd-Mitchell embedding may see how it applies here. See also Exer-
cise 2.2.2.
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will need to be graded over index sets other than the usual nonnegative integers). A similar

result appears in [46].

Exercise 2.1.2. This exercise provides a method of proof of the interpolation lemma, which is a

historically important result that can be used to prove the isometry theorem [27, 45, 47]. However,

we will not need this result later, as our proof of the isometry theorem in Section 2.5 will use a

different method. Suppose V and W are ε-interleaved persistence modules over R. The interpo-

lation lemma states that there exists a family {Ua}a∈[0,ε] of persistence modules over R such that

U0 ∼= V , U ε ∼= W , and for all a, b ∈ [0, ε], the modules Ua and U b are |a− b|-interleaved.

1. Prove the interpolation lemma by choosing an interleaving between V and W and defining

Ua
t to be the colimit of the diagram including all Vs with s ≤ t − a with the maps of V

between them, all Wr with r ≤ t − (ε − a) with the maps of W between them, and all

applicable maps from the interleaving between V and W . It is helpful to visualize this by

drawing V and W as parallel lines and placing Ua
t at the appropriate point between them.

2. Show that we can replace the colimit in the construction above with an isomorphic colimit

over a smaller index set.

3. For those familiar with Kan extensions: check (or observe) that this is a left Kan extension

of certain functors. Could a right Kan extension be used instead?

See [48] for generalizations of these ideas.

2.2 Direct Sums and Interval-Decomposable Modules
Having seen the basic concepts of persistence modules, we now consider how to build new

persistence modules from existing ones and how to decompose large persistence modules into

smaller ones. Interval modules, our simple, concrete examples of persistence modules, will serve

as the “small” modules from which larger ones are built.
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2.2.1 Direct Sums

Given an index set R ⊆ R and persistence modules V and W over R, we can form the direct

sum V ⊕W by setting (V ⊕W )t = Vt ⊕Wt for each t ∈ R and (V ⊕W )s≤t = Vs≤t ⊕Ws≤t

for all s ≤ t in R. The direct sum V ⊕W comes with projection maps πV : V ⊕W → V and

πW : V ⊕W → W , which are morphisms of persistence modules defined pointwise for each t ∈ R

by the usual projection maps for the direct sum Vt ⊕Wt. Similarly, V ⊕W has injection maps

ιV : V → V ⊕W and ιW : W → V ⊕W , again defined pointwise for each t ∈ R by the injection

maps for Vt ⊕Wt. These maps satisfy7 the expected properties:

πV ◦ ιV = 1V , πW ◦ ιW = 1W ,

πV ◦ ιW = 0, πW ◦ ιV = 0,

ιV ◦ πV + ιW ◦ πW = 1V⊕W .

More generally, given an indexed set {V a}a∈A of persistence modules over R, we can form the

direct sum V =
⊕

a∈A V
a by setting Vt =

⊕
a∈A V

a
t for all t ∈ R and setting Vs≤t =

⊕
a∈A V

a
s≤t

for all s ≤ t in R. The direct sum inherits the categorical properties of direct sums of vector

spaces: if the set A is finite, then the direct sum is both a product and a coproduct, but if A

is infinite, the direct sum is a coproduct but generally not a product. If A is empty, the direct

sum is the zero persistence module, that is, the module V with Vt = 0 for all t ∈ R. Defining

the projections πa0 :
⊕

a∈A V
a → V a0 and injections ιa0 : V a0 →

⊕
a∈A V

a as above, we have

properties analogous to those above: πa ◦ ιa = 1V a for all a and πa0 ◦ ιa1 = 0 if a0 ̸= a1. We also

have
∑

a∈A ι
a
t ◦ πat (v) = v for all t and all v ∈ Vt; note that the sum is well defined, since only

finitely many summands are nonzero. We can write this fact as
∑

a∈A ι
a ◦ πa = 1V .

Morphisms between direct sums of persistence modules can be described by how they behave

on the summands. Given a morphism φ :
⊕

a∈A V
a →

⊕
b∈BW

b, for each a0 ∈ A and b0 ∈ B,

7These properties are in fact enough to abstractly define a direct sum: see Proposition I.4.1 of [49].
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let φb0,a0 be the composite

V a0
⊕

a∈A V
a

⊕
b∈BW

b W b0 ,
φ

where the unlabeled morphisms are the injection and the projection. The collection {φb,a}a∈A,b∈B

is analogous to a matrix. In fact, we have a formula for composition of morphisms analogous to

that for matrix multiplication: given morphisms

⊕
a∈A V

a
⊕

b∈BW
b

⊕
c∈C X

c,
φ ψ

we have (ψ ◦ φ)c,a =
∑

b∈B ψ
c,b ◦ φb,a. Again, this sum is well defined because at any t, the sum

will always be evaluated with finitely many nonzero summands.

2.2.2 Decomposition and Indecomposable Persistence Modules

Expressing a persistence module as a direct sum allows us to see how it can be built from other

persistence modules. Any isomorphism V ∼=
⊕

a∈A V
a may be called a direct sum decomposition

of V , as it decomposes V into a sum of the V a. We will be particularly interested in cases where

the summands cannot be decomposed any further, as these provide the most refined view of V

possible. We will see that such a decomposition is possible in many cases, is unique when it

exists, and consists of particularly simple, easily describable summands. Call a nonzero persistence

module V decomposable if it can be written as V ∼= W ⊕ X with both W and X nonzero and

indecomposable otherwise.

Proposition 2.2.1 (Proposition 1.2 of [27]). Any interval module over R ⊆ R is indecomposable.

Proof. This is proved by examining the endomorphisms of persistence modules. For any persis-

tence module V , let End(V ) be the vector space8 of all endomorphisms of V , that is, morphisms

8End(V ) is also a ring with multiplication given by composition, and it is referred to as the endomorphism ring of V .
This makes it a K-algebra. For our current purposes the vector space structure is enough, but Exercise 2.2.4 relates
properties of the ring to decomposability.
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from V to V , with addition and scalar multiplication defined pointwise. For any nonzero V and

any c ∈ K, we have an endomorphism φV,c ∈ End(V ) given by φV,ct (v) = cv for all v ∈ Vt. In

particular, these are the only endomorphisms if V is an interval module, since the maps defining

the endomorphism must commute with the maps of V , so in this case End(V ) ∼= K is one-

dimensional. But for any direct sum W ⊕X with W and X nonzero, the set of morphisms of the

form φW,c ⊕ φX,d with (c, d) ∈ K2 forms a two-dimensional subspace of End(W ⊕ X), so an

interval module V cannot be isomorphic to a direct sum W ⊕X with W and X nonzero.

Motivated by this proposition, we will consider when a persistence module can be written

as a direct sum of interval modules: in this case, it will be called interval decomposable. The

following theorem gives a simple and useful condition that implies a persistence module is interval

decomposable. We will use the following terminology: a persistence module V is called pointwise

finite-dimensional if each Vt is a finite-dimensional vector space. The proof of the theorem is

somewhat intricate, and we will postpone it until Section 2.6 (those who would prefer to read the

proof now have all the definitions needed to skip ahead to that section).

Theorem 2.2.2 (Decomposition of Pointwise Finite-Dimensional Persistence Modules). Any

pointwise finite-dimensional persistence module over any index set R ⊆ R is interval decom-

posable.

When a persistence module can be decomposed into a direct sum of interval modules, this

decomposition is essentially unique, as shown in the following theorem. This allows us to char-

acterize interval-decomposable modules by collections of intervals. In more detail, an interval-

decomposable module is described up to isomorphism by a multiset of intervals, since multiple

interval module summands may be supported on the same interval (see Section 1.2.3 for conven-

tions on multisets). Recording these intervals is the job of barcodes and persistence diagrams,

which we will define in Section 2.4. Combining the following theorem with the previous, we

can see that a pointwise finite-dimensional persistence module has a decomposition into interval

modules that is unique up to ordering and isomorphisms of the interval module summands.
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Theorem 2.2.3 (Uniqueness of Interval Decomposition). If
⊕

a∈A V
a ∼=

⊕
b∈BW

b with V a and

W b interval modules for all a ∈ A and b ∈ B, then there is a bijection f : A → B such that

V a ∼= W f(a) for all a.

Note that V a ∼= W f(a) implies V a and W f(a) are supported on the same interval; from our def-

inition of equality of multisets in Section 1.2.3, the bijection f establishes that the two persistence

modules have the same multiset of intervals that form the supports of their summands.

Proof. Suppose V ∼= W where both V andW are direct sums of interval modules overR. We may

write V ∼=
⊕

J V
J , where the direct sum is taken over all intervals J of R and V J is the direct sum

of all those interval module summands of V that have support J . Similarly, write W ∼=
⊕

JW
J .

Note that if s, t ∈ J with s ≤ t, then V J
s≤t and W J

s≤t are isomorphisms. Let φ : V → W be an

isomorphism. We consider components of φ and its inverse, as described in Section 2.2.1, written

as φJ2,J1 and (φ−1)J1,J2 for intervals J1 and J2.

We show (φ−1)J1,J2 ◦φJ2,J1 = 0 and φJ2,J1 ◦ (φ−1)J1,J2 = 0 if J1 ̸= J2. For s ≤ t, we have the

following commutative diagrams.

V J1
s V J1

t V J1
s V J1

t

W J2
s W J2

t W J2
s W J2

t

V
J1
s≤t

φ
J2,J1
s φ

J2,J1
t

V
J1
s≤t

W
J2
s≤t W

J2
s≤t

(φ−1)
J1,J2
s (φ−1)

J1,J2
t

Suppose there is an r ∈ R such that r /∈ J1 and r ∈ J2. Applying Lemma 2.1.2 to the two diagrams

above (setting t = r in the first diagram and setting s = r in the second), we find that for all t

either φJ2,J1t = 0 or (φ−1)J1,J2t = 0, and thus φJ2,J1t ◦ (φ−1)J1,J2t = 0 and (φ−1)J1,J2t ◦ φJ2,J1t = 0.

Similarly, if there is an r ∈ R such that r ∈ J1 and r /∈ J2, then applying Lemma 2.1.2 to the

diagrams above shows φJ2,J1t ◦ (φ−1)J1,J2t = 0 and (φ−1)J1,J2t ◦ φJ2,J1t = 0 for all t.

Composing φ with its inverse, we have
∑

J2
(φ−1)J1,J2 ◦ φJ2,J1 = 1V J1 . As shown above,

(φ−1)J1,J2 ◦ φJ2,J1 = 0 if J1 ̸= J2, so we have a single nonzero term in the sum, which shows

(φ−1)J1,J1 ◦ φJ1,J1 = 1V J1 . Similarly, φJ1,J1 ◦ (φ−1)J1,J1 = 1WJ1 . We therefore have an isomor-
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phism V J ∼= W J for each interval J . Decomposing V J and W J into the original direct sums of

interval modules supported on J , we find that these interval modules are in bijection.

Exercises

Exercise 2.2.1 (The Elder Rule). Suppose W and X are interval modules over R on overlapping

intervals ⌈l1, u1⌋ and ⌈l2, u2⌋ with l1 < l2 and l2 < u1, and let V = W ⊕ X . Here we give an

algebraic criterion to determine which interval ends later. Let t1 ∈ ⌈l1, u1⌋− ⌈l2,∞⌋ and choose a

nonzero x1 ∈ Vt1 . Show that the following are equivalent:

1. u1 > u2

2. there exists a t2 ∈ ⌈l2,min{u1, u2}⌋ and an x2 ∈ Vt2 such that Vt1≤t2(x1) and x2 are linearly

independent and Vt1≤t3(x1) = Vt2≤t3(x2) ̸= 0 for some t3.

Further show that in this case, there is an interval decomposition of V such that x2 has a component

of zero in the interval module supported on ⌈l1, u1⌋. This gives an algebraic derivation of the Elder

Rule, which states that if two generators merge (as described in 2 above), then the older of the two

intervals continues.

Exercise 2.2.2. Define the following algebraic constructions for persistence modules by defining

them pointwise for each t in the index set R ⊆ R, like we did for direct sums, and checking that

the structure maps are well-defined. Check the appropriate universal properties.

1. The product
∏

a∈A V
a of a collection {V a}a∈A of persistence modules – note that this is

different from the direct sum (the coproduct) if A is infinite.

2. A submodule of a persistence module V .

3. The quotient of V by a submodule.

4. The limit and colimit of a diagram of persistence modules.
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5. The image, kernel, and cokernel of a morphism φ : V → W . Those who are interested can

check that the category of persistence modules over R forms an abelian category9.

Exercise 2.2.3. Given persistence modules V and W over R ⊆ R, define Hom(V,W ) to be the

set of morphisms V → W .

1. Show Hom(V,W ) has the structure of a vector space.

2. Find Hom(V,W ) if V and W are arbitrary interval modules.

3. Show that for a finite index set A, there are natural isomorphisms Hom(
⊕

a∈A V
a,W ) ∼=⊕

a∈AHom(V a,W ) and Hom(U,
⊕

a∈A V
a) ∼=

⊕
a∈AHom(U, V a). What would need to

be adjusted for infinite index sets?

4. Give a description of Hom(V,W ) if V andW are both finite direct sums of interval modules.

Again, what would need to be adjusted if we remove the assumption of finiteness?

Exercise 2.2.4. Here we work with the endomorphism ring End(V ) of a persistence module V ,

where the ring multiplication is given by composition.

1. If φ ∈ End(V ) is idempotent, use it to decompose V into a direct sum U ⊕W . Show the

direct sum is nontrivial when φ is not an isomorphism and not the zero morphism.

2. Use this relationship between idempotent endomorphisms and direct sums to provide an

alternate proof10 of Proposition 2.2.1.

3. Generalize to show that a finite collection of idempotent endomorphisms {φa}a∈A satisfying

φa ◦ φb = φb ◦ φa = 0 for all a ̸= b determines a direct sum decomposition of the form

V ∼= U ⊕
⊕

a∈AW
a.

9Abstractly, this follows from the fact that it is a functor category valued in an abelian category: see Proposition IX.3.1
of [49]. Also see [10], which develops homological algebra for persistence modules.

10This is the approach taken in Propositions 1.1 and 1.2 of [27].
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2.3 Finiteness Conditions
Finiteness conditions appear throughout mathematics to ensure that objects are of a manageable

size. In our case, a large amount of the theory of persistence modules is built around persistence

modules satisfying certain finiteness conditions. These are conditions either on the summands

of an interval-decomposable persistence module or on the vector spaces or maps of an arbitrary

persistence module, requiring that it is not too large.

We have already seen the simplest of these conditions appear in Theorem 2.2.2: a persistence

module V over an index set R ⊆ R is called pointwise finite-dimensional if every Vt is a finite-

dimensional vector space11. We can relax this definition slightly by looking at the maps rather

than the individual vector spaces. We will say V is q-tame if whenever s < t, the map Vs≤t

has finite rank12. Every pointwise finite-dimensional persistence module is q-tame, but a q-tame

persistence module is not necessarily pointwise finite-dimensional: for instance, suppose V0 is

infinite-dimensional and all other Vt are zero. We will see that q-tame persistence modules provide

a useful setting for much of the theory of persistence modules and persistent homology13, as they

account for most persistence modules that are reasonable to study.

The theory of q-tame persistence modules still depends heavily on the notion of interval-

decomposable modules, so we will also consider finiteness conditions that apply specifically to

interval-decomposable modules. Beginning again with the most obvious condition, we can con-

sider interval-decomposable modules that are direct sums of finitely many interval modules. Such

modules will appear later (Theorem 2.5.3), but it will be more useful to generalize this condition

slightly. If V ∼=
⊕

a∈A V
a is a persistence module over R with each V a an interval module with

11Infinite-dimensional vector spaces will sometimes be relevant to us, and we will always work with them as purely
algebraic objects. That is, we will not need to discuss infinite sums, and a basis will mean a set of linearly indepen-
dent vectors such that each vector in the space can be written as a finite linear combination of basis vectors (in some
areas, this is referred to as a Hamel basis, to distinguish from other definitions involving infinite sums).

12The term “q-tame” is short for “quadrant-tame” [27,45]. This refers to upper left quadrants of persistence diagrams,
described in Section 2.4. The meaning of the term “q-tame” is further explained in Exercise 2.4.2.

13We will see in Chapter 3 that when working with geometric spaces, q-tameness arises in the context of spaces
meeting certain finiteness conditions, such as totally bounded metric spaces and finite simplicial complexes. See
Propositions 3.2.1, 3.4.5, and 3.6.3.
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support Ja, we say V is locally finite if for any t ∈ R, there is an open neighborhood of t in R

that intersects only finitely many of the Ja. If V is locally finite, then in fact any bounded in-

terval J ⊆ R intersects only finitely many of the Ja: we may cover the closure of J with open

neighborhoods of its points, each intersecting finitely many of the Ja, and apply compactness of

a closed bounded interval to pick a finite subcover. Any locally finite module is pointwise finite-

dimensional, but it is possible that a pointwise finite-dimensional module is not locally finite: for

instance, take the direct sum of interval modules over R with supports ( 1
n+1

, 1
n
) for all n ≥ 1.

We thus have the following implications:

locally finite pointwise finite-dimensional q-tame,

where the converses do not hold. By Theorem 2.2.2, we also have

pointwise finite-dimensional interval decomposable,

where the converse also does not hold, as an interval-decomposable module may be an infinite

direct sum.

The relationship between q-tame modules and interval-decomposable modules is initially less

clear: neither condition implies the other (see Exercise 2.3.2). However, they are both closely

related to locally finite modules and pointwise finite-dimensional modules, and this will allow us

to think of q-tame modules as “approximately interval decomposable.” We can begin to see this

connection with a construction known as the ε-smoothing of a persistence module V over R, which

is another persistence module written as V ε. For ε > 0, define

V ε
t = imVt−ε≤t+ε
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for each t, with maps given by the restrictions of the maps of V . The collection of maps below, for

all t, define an ε-interleaving between V and V ε.

Vt−ε Vt+ε

V ε
t

Vt−ε≤t+ε

Thus, we have a bound dI(V, V ε) ≤ ε, which we state as part of the lemma below. If V is q-tame,

then each Vt−ε≤t+ε has finite rank, so V ε is pointwise finite-dimensional. We show it is in fact

locally finite.

Lemma 2.3.1. If V is a q-tame persistence module over R, then for any ε > 0, the ε-smoothing

V ε is locally finite and dI(V, V ε) ≤ ε.

Proof. Since V ε is pointwise finite-dimensional, it is interval decomposable by Theorem 2.2.2.

Let V ε =
⊕

a∈A V
a with each V a an interval module supported on the interval Ja. Fix t ∈ R

and let A′ ⊆ A be the set of a such that (t − ε
2
, t + ε

2
) intersects Ja; we show |A′| is finite. For

each a ∈ A′, choose an sa ∈ Ja ∩ (t − ε
2
, t + ε

2
) and a nonzero xa ∈ V a

sa ⊆ Vsa+ε. By definition

of V ε, for each a there exists a ua ∈ Vsa−ε such that Vsa−ε≤sa+ε(ua) = xa. For each a, define

va = Vsa−ε≤t− ε
2
(ua) and wa = Vsa−ε≤t+ ε

2
(ua). The maps of V then send these elements to each

other: ua 7→ va 7→ wa 7→ xa. We show that the collections {va}a∈A′ and {wa}a∈A′ are linearly

independent sets in Vt− ε
2

and Vt+ ε
2

respectively. This will show that Vt− ε
2
≤t+ ε

2
has rank at least |A′|,

and since V is q-tame, this will imply |A′| is finite.

We show the va are linearly independent in Vt− ε
2
; the proof for the wa follows the same

technique. Suppose
∑n

i=1 civai = 0, with a1, . . . , an ∈ A′ and c1, . . . , cn constants. Let s =
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max1≤i≤n sai , and without loss of generality, suppose s = san . Then applying Vt− ε
2
≤s+ε gives

0 =
n∑
i=1

ciVt− ε
2
≤s+ε(vai)

=
n∑
i=1

ciVsai+ε≤s+ε ◦ Vt− ε
2
≤sai+ε(vai)

=
n∑
i=1

ciVsai+ε≤s+ε(xai)

=
n∑
i=1

ciyai ,

where we let yai = Vsai+ε≤s+ε(xai) for each i. Since xai ∈ V ai
sai

for each ai, we also have yai ∈ V ai
s

for each ai. Each yai is nonzero if and only if s ∈ Jai , since it is the image of the nonzero xai in

the interval module V ai . Letting B = {i | s ∈ Jai}, we have we have 0 =
∑

i∈B ciyai . The set

{yai | i ∈ B} is linearly independent, as each of these yai is a nonzero element of V ai
s , so ci = 0

for each i ∈ B. Since n ∈ B by our choice of s, we find cn = 0. Repeating the argument shows

all ci are in fact zero, so {va | a ∈ A′} is a linearly independent set of vectors, as required.

This result shows that any q-tame persistence module V over R can be approximated arbitrarily

well by locally finite modules. Since locally finite modules are interval decomposable, we have a

way to approximate q-tame modules by interval-decomposable modules, which suggests that we

may be able to understand a q-tame module as a sort of limiting object of a collection of interval-

decomposable modules. We develop these ideas in the next section, using the following result on

the ε-smoothing of an interval-decomposable module.

Lemma 2.3.2. Suppose V =
⊕

a∈A V
a is a persistence module over R with each V a an inter-

val module supported on Ja = ⌈la, ua⌋. For any ε > 0, the ε-smoothing of V is an interval-

decomposable module given by
⊕

a∈A′ W a, where A′ is the set of a ∈ A such that Ja contains

a closed interval of length 2ε and for each a ∈ A′, W a is an interval module supported on

⌈la + ε, ua − ε⌋.
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Proof. Here we reserve superscripts for elements of A indexing persistence modules, so we will

write the ε-smoothing of V as W and write the ε-smoothing of each V a as W a. The W a are given

by

W a
t = imV a

t−ε≤t+ε =


V a
t+ε if t− ε, t+ ε ∈ Ja

0 otherwise.

If Ja = ⌈la, ua⌋ contains a closed interval of length 2ε, then W a is an interval module supported

on ⌈la+ε, ua−ε⌋, and if Ja does not contain a closed interval of length 2ε, then W a is zero. Thus,

we have

V ε
t = imVt−ε≤t+ε = im

⊕
a∈A

V a
t−ε≤t+ε =

⊕
a∈A

imV a
t−ε≤t+ε =

⊕
a∈A

W a
t =

⊕
a∈A′

W a
t .

Exercises

Exercise 2.3.1 (Theorem 4.19 of [27]). Show that if a persistence module over R can be approx-

imated arbitrarily well in the interleaving distance by locally finite modules, then it is q-tame.

Together with Lemma 2.3.1, this shows a persistence module over R is q-tame if and only if it can

be approximated arbitrarily well by locally finite modules.

Exercise 2.3.2. For each n ∈ Z+, let V n be the interval persistence module over R supported on the

interval [0, 1
n
]. Let V =

∏
n V

n be the product persistence module, defined by (
∏

n V
n)t =

∏
n V

n
t

along with the product maps. Show V is q-tame but not interval decomposable14 (use the fact that

V0 has uncountable dimension15). Also find an example of a persistence module that is interval

decomposable but not q-tame.

14This example is attributed to Crawley-Boevey in [27], after the proof of Theorem 4.19.

15V0 is isomorphic to the vector space S of all sequences in K, which has uncountable dimension. Those who have
not seen this fact may appreciate an outline of a proof. Begin by showing that the power set of N, partially ordered
by inclusion, has an uncountable chain (totally ordered subset) using a bijection between N and Q (or between N
and N × N). Then use this uncountable chain to construct an uncountable set of linearly independent sequences in
S, with each term of each sequence either a 0 or a 1.

37



Exercise 2.3.3. Define the dual of a persistence module over R ⊆ R by applying the dual space

functor (decide how to allow for the fact that this functor is contravariant). Show that the dual of

an interval module is an interval module and the dual of a q-tame module is q-tame. Show that the

dual of an interval-decomposable module is not necessarily an interval-decomposable module.

2.4 Barcodes and Persistence Diagrams
We have seen in Theorem 2.2.3 that interval-decomposable persistence modules are classified,

up to isomorphism, by collections of intervals. These collections of intervals must in fact be

multisets, to allow for the case that multiple interval module summands are supported on the same

interval. Here we introduce two standard ways of summarizing these collections of intervals, first

restricting our attention to persistence modules over R, and then generalizing in Section 2.4.2. For

an interval-decomposable persistence module V =
⊕

a∈A V
a over R with each V a an interval

module supported on Ja = ⌈la, ua⌋, we define the barcode of V to be the multiset16

bar(V ) = {Ja | a ∈ A}.

Each interval may be referred to as a “bar” of the barcode. A barcode is often depicted as a set of

horizontal segments line placed by a coordinate line to indicate the intervals; see Figure 2.1.

Each interval in bar(V ) can be described completely by its two endpoints in the extended

decorated real numbers. By ignoring decorations, we get a slightly simplified view of the intervals.

Letting la, ua ∈ R be obtained from la and ua by removing decorations, we define the persistence

diagram17 of V to be the multiset

dgm(V ) =
{
(la, ua) | a ∈ A, la < ua

}
.

16See Section 1.2.3 for background on multisets, including a discussion on indexing.

17This is sometimes called the undecorated persistence diagram. If instead the decorations are kept, we get the
decorated persistence diagram, which records equivalent information to the barcode [27].
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Figure 2.1: A barcode and persistence diagram for the same persistence module with three interval module
summands.

Also define the extended half plane H =
{
(x, y) ∈ R× R | x < y

}
, so that all persistence dia-

grams are multisets of points in H . Note that persistence diagrams do not contain any points on

the diagonal
{
(x, x) ∈ R× R

}
, so singleton intervals are recorded by barcodes but ignored by

persistence diagrams. A persistence diagram is visualized as a set of points in the plane above the

diagonal; see Figure 2.1. Horizontal and vertical lines are sometimes added to the plot to represent

coordinates of ±∞ when needed.

In the previous section, we considered the idea that q-tame modules should be thought of

as “approximately interval decomposable.” This idea was partially formalized by Lemma 2.3.1,

which showed that we can approximate a q-tame module arbitrarily well in the interleaving dis-

tance by its ε-smoothings. With this in mind, we would like to be able to extend the definition of

39



barcodes and persistence diagrams to q-tame modules. We will define the barcode to be a sort of

limit of the barcodes of the ε-smoothings.

Suppose V is a q-tame persistence module over R and ε > ε′ > 0. Then V ε is in fact the (ε−ε′)-

smoothing of V ε′: in both cases, the vector space indexed by t is imVt−ε,t+ε. By Lemma 2.3.1 and

Theorem 2.2.2, V ε′ is locally finite and is thus interval decomposable. By Lemma 2.3.2, bar(V ε)

is obtained by shrinking the intervals of bar(V ε′) by (ε− ε′) on either side, removing any intervals

that do not contain a closed interval of length 2(ε− ε′).

For any interval-decomposable module W over R, define barε(W ) to be the multiset of in-

tervals ⌈l − ε, u + ε⌋ such that ⌈l, u⌋ ∈ bar(W ), with the same multiplicities. Similarly, let

dgmε(W ) be the multiset of points (x − ε, y + ε) such that (x, y) ∈ dgm(W ), with the same

multiplicities. If ε > ε′ > 0, then for any q-tame module V over R, barε(V ε) ⊆ barε′(V
ε′), with

barε(V
ε) consisting of those intervals of barε′(V ε′) that contain a closed interval of length 2ε. Sim-

ilarly, dgmε(V
ε) ⊆ dgmε′(V

ε′), with dgmε(V
ε) consisting of the points (x, y) ∈ dgmε′(V

ε′) with

y−x > 2ε. We can see the motivation to consider barε(V ε) and dgmε(V
ε) from Lemma 2.3.2: for

interval-decomposable modules, ε-smoothings shrink intervals by ε on each side, so we would like

to expand the intervals of bar(V ε) by ε on each side to recover some of the intervals of bar(V ).

We therefore define18,19, for any q-tame module V over R,

bar(V ) =
⋃
ε>0

barε(V
ε),

dgm(V ) =
⋃
ε>0

dgmε(V
ε).

By the discussion above, the multiplicity of an interval in bar(V ) is the same as its multiplicity

in any barε(V
ε) containing it and is thus finite, since any interval in the barcode of a locally

18This approach to defining the (undecorated) persistence diagram for q-tame modules is equivalent to the one given
in [27] by their Proposition 4.16.

19Here we are using the union of a collection of nested multisets, which can be formally defined in multiple equivalent
ways: see Section 1.2.3. These definitions simply capture the intuitive idea of the union containing the elements
from all multisets in the collection, with multiplicities as they appear there.
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finite module has finite multiplicity. Similarly, points in dgm(V ) have finite multiplicity. Note

that if V is interval decomposable, then this definition of dgm definition matches our original

definition above, since then for each interval ⌈l, u⌋ of positive length supporting an interval module

summand of V , the point (l, u) appears in some dgmε(V
ε), by Lemma 2.3.2. Thus, we use the same

notation and can unambiguously refer to the persistence diagram of any interval-decomposable or

q-tame module. However, for an interval-decomposable V , the newly defined bar(V ) may differ

slightly from bar(V ): since singleton intervals do not appear in any barε(V
ε), the elements of

bar(V ) are exactly the intervals of bar(V ) of positive length. Because of this, we will mostly use

persistence diagrams when working with q-tame modules, and we will see in Section 2.5 that they

store an appropriate amount of information to let us distinguish between modules that differ in

the interleaving distance. Nevertheless, barcodes still provide a useful visualization and remind us

that the theory is constructed from interval modules. We will typically only use barcodes when

a persistence module is interval decomposable and will not pay much attention to the distinction

between bar and bar. This choice, along with our definition of the persistence diagram, makes

explicit a theme of ignoring singleton intervals and more generally considering a short interval

to be less notable than a long one. This idea will also appear in the notion of distance between

persistence diagrams that we define in the following section.

2.4.1 The Bottleneck Distance

We now look for a way to compare persistence diagrams. We have already seen that the in-

terleaving distance provides a comparison between two persistence modules. Since the points of

a persistence diagram correspond to intervals, we will define a notion of distance between two

persistence diagrams based on the interleaving distance between two interval modules, given in

Example 2.1.3.

A persistence diagram is a multiset of points in the extended half plane H . To work with

sets rather than multisets, we will consider each multiset to be indexed by a set, as described in

Section 1.2.3; this indexing was already present in our definition of the persistence diagram in
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the case of interval-decomposable modules and can be applied to the case of q-tame modules as

well. Given two indexed multisets D1 = {(xa, ya)}a∈A and D2 = {(x′b, y′b)}b∈B of points in H , we

define a matching20 between D1 and D2 to be a matching between their index sets, that is, a subset

M ⊆ A×B with projections to A and B that are both injective (see Section 1.2.2). If (a, b) ∈M ,

we will say a and b are matched by M , and we may also say that the corresponding elements of

the multisets (xa, ya) and (x′b, y
′
b) are matched. Any a ∈ A or any b ∈ B not appearing in any pair

in M will be called unmatched.

We will compare distances between matched points, but to do this, we will need an appropriate

notion of distance in H . Recall we have extended the usual metric of R to the extended metric d∞

on R (Section 2.1.1). Define an extension of the L∞ distance in R2 to R× R by

d∞
(
(x, y), (x′, y′)

)
= max

{
dR(x, x

′), dR(y, y
′)
}
.

It can be checked that this is an extended metric: in particular, we will use the fact that it satisfies

the triangle inequality. We will call a matching M between the multisets D1 and D2 above an

ε-matching if the d∞ distance between any two points matched to each other is at most ε and all

unmatched points are within ε of the diagonal {(x, x) ∈ R × R} in the d∞ distance21. These

conditions can also be written in terms of dR:

• if (a, b) ∈M , then dR(xa, x
′
b) ≤ ε and dR(ya, y

′
b) ≤ ε

• if a ∈ A is unmatched, then dR(xa, ya) ≤ 2ε

• if b ∈ B is unmatched, then dR(x
′
b, y

′
b) ≤ 2ε.

These conditions mirror the terms appearing in the interleaving distance between interval modules

(Example 2.1.3).

20In Section 4.2 of [27], this is referred to as a “partial matching” between multisets.

21The condition allowing points within ε of the diagonal to be unmatched is also sometimes described by saying these
points are “matched to the diagonal” and thus matched to points within a distance of ε [8].
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Define the bottleneck distance dB between two multisets in H as follows:

dB(D1, D2) = inf{ε ≥ 0 | there exists an ε-matching between D1 and D2},

where the infimum is taken to be +∞ if there does not exist an ε-matching for any ε. This definition

does not depend on the choice of how the multisets are indexed: since two different indexing sets

of a multiset D are in bijection, the existence of an ε-matching does not depend on the choice of

index set.

We can verify that the bottleneck distance satisfies the triangle inequality. Suppose we have

indexed multisets D1, D2, and D3, indexed by sets A1, A2, and A3, along with an ε1,2-matching

M1,2 ⊆ A1 × A2 between D1 and D2 and an ε2,3-matching M2,3 ⊆ A2 × A3 between D2 and D3.

Define22

M1,3 = {(a1, a3) ∈ A1 × A3 | ∃a2 ∈ A2 such that (a1, a2) ∈M1,2 and (a2, a3) ∈M2,3 }.

Each a1 ∈ A1 can be matched by M1,2 to at most one a2 ∈ A2, which can be matched by M2,3 to

at most one a3 ∈ A3, so it follows that M1,3 is a matching between D1 and D3. We check that M1,3

is an (ε1,2 + ε2,3)-matching. If any a1 ∈ A1 is unmatched by M1,3, then either it is unmatched by

M1,2 or it is matched to an a2 ∈ A2 that is unmatched by M2,3. In either case, the point indexed

by a1 must be within (ε1,2 + ε2,3) of the diagonal in the d∞ distance, by the triangle inequality for

d∞. A symmetric argument applies to unmatched elements of A3. If (a1, a3) ∈ M1,3, then there is

an a2 ∈ A2 such that (a1, a2) ∈M1,2 and (a2, a3) ∈M2,3, so the triangle inequality for d∞ implies

that the points indexed by a1 and a3 are within a distance of (ε1,2 + ε2,3). This shows that M1,3 is

an (ε1,2 + ε2,3)-matching, which implies dB(D1, D3) ≤ dB(D1, D2) + dB(D2, D3). Additionally,

dB is symmetric, and dB(D,D) = 0 for any D since there is a 0-matching between D and itself.

Thus, dB is an extended pseudometric on any set of multisets in H .

22This M1,3 is defined as the usual composition of relations M2,3 ◦M1,2.
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Although the definition is made for arbitrary multisets in H , we are of course interested in the

bottleneck distance between persistence diagrams. The following example justifies the definition

of the bottleneck distance, at least in the setting of interval modules (compare it to Example 2.1.3).

Example 2.4.1. Let V andW be interval modules over R supported on the intervals JV = ⌈lV , uV ⌋

and JW = ⌈lW , uW ⌋, and let lV , uV , lW , and uW be obtained by removing decorations. We show

dB(dgm(V ), dgm(W )) is given by

min
{
max

{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
, 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}}
.

If either lV = uV or lW = uW , then dB(dgm(V ), dgm(W )) = 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}
,

given by the empty matching, so we will suppose that lV ̸= uV and lW ̸= uW . Since

dgm(V ) = {(lV , uV )} and dgm(W ) = {(lW , uW )}, there are only two possible matchings:

either (lV , uV ) is matched with (lW , uW ) or both are unmatched. In the first case, the d∞ dis-

tance between the two points is max
{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
, so this is an ε-matching for

ε ≥ max
{
dR
(
lV , lW

)
, dR
(
uV , uW

)}
and is not for lesser ε. In the second case, the distances

of the points to the diagonal are 1
2
dR(lV , uV ) and 1

2
dR(lW , uW ), so this is an ε-matching for

ε ≥ 1
2
max

{
dR
(
lV , uV

)
, dR
(
lW , uW

)}
and is not for lesser ε. This shows the bottleneck dis-

tance is as claimed. By Example 2.1.3, this shows that dB(dgm(V ), dgm(W )) = dI(V,W ) for

interval modules V and W .

Since the bottleneck distance between persistence diagrams agrees with the interleaving dis-

tance in the case of interval modules, we might guess that these distances are closely related in

general. In fact, we show in Section 2.5 that dB(dgm(V ), dgm(W )) = dI(V,W ) for all q-tame

modules V and W over R. This result is known as the isometry theorem. In preparation, we prove

the analog of the distance bound in Lemma 2.3.1 for ε-smoothings.

Lemma 2.4.2. If V is a q-tame persistence module over R, then for any ε > 0, the ε-smoothing

V ε satisfies dB(dgm(V ), dgm(V ε)) ≤ ε.
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Proof. We defined dgm(V ) =
⋃
ε>0 dgmε(V

ε) after observing that if 0 < ε′ < ε, then dgmε(V
ε)

consists of the points (x, y) ∈ dgmε′(V
ε′) with y − x > 2ε (with the same multiplicities). This

implies dgm(V ε) is the multiset {(x + ε, y − ε) | (x, y) ∈ dgm(V ), y − x > 2ε}. We can thus

match each (x + ε, y − ε) ∈ dgm(V ε) with the corresponding (x, y) ∈ dgm(V ) to define an

ε-matching.

The following lemma shows q-tameness, one of our finiteness conditions for persistence mod-

ules, implies a finiteness condition for persistence diagrams.

Lemma 2.4.3. Let V be a q-tame persistence module over R. For any (x, y) ∈ H , there ex-

ists an open neighborhood of (x, y) that contains finitely many points of dgm(V ) (counted with

multiplicities)23.

Proof. By the definition of dgm(V ), it is sufficient to prove the statement holds for locally finite

V , since smoothings are locally finite by Lemma 2.3.1. We split into cases of finite and infinite

coordinates. Given any (x, y) ∈ H , with x and y finite, since V is locally finite, there exist open

neighborhoods Ux and Uy of x and y in R that intersect finitely many of the intervals of V . This

implies the open set (Ux×Uy)∩H must contain only finitely many points of dgm(V ). On the other

hand, if (x, y) ∈ H with x finite and y = +∞, then since V is locally finite, we can choose an

open neighborhood Ux of x in R that intersects finitely many of the intervals of V , so the open set

Ux×{+∞} contains only finitely many points of dgm(V ). A similar argument applies if x = −∞

and y is finite. If x = −∞ and y = +∞, then applying local finiteness of V at any point in R

shows that the multiplicity of (−∞,+∞) is finite, so the open set {(−∞,+∞)} contains finitely

many points of dgm(V ).

This lemma leads to the following theorem and corollary, which show that persistence diagrams

of q-tame modules are especially well behaved with respect to the bottleneck distance. The results

23Multisets in H satisfying this condition are sometimes called locally finite (for instance, in [27]). This is distinct
from the use of the term “locally finite” for persistence modules, but they are related: since locally finite persistence
modules are q-tame, this lemma implies they have locally finite persistence diagrams. However, not every locally
finite multiset in H can be obtained as the diagram of a locally finite persistence module.
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do not hold for arbitrary multisets in H (see Exercise 2.4.1), so this gives further motivation for

making q-tame modules our primary focus.

Theorem 2.4.4 (Theorem 4.10 of [27]). Let V and W be q-tame persistence modules over R with

dB(dgm(V ), dgm(W )) = ε. Then there exists an ε-matching between dgm(V ) and dgm(W ).

Proof. Choose a countable dense subset of H , for instance, the set of points with both coordinates

in Q∪{−∞,+∞}. Applying Lemma 2.4.3 to this countable set implies that dgm(V ) and dgm(W )

can be indexed by countable sets A and B, and we can also index A × B as {(am, bm)}m∈Z+ .

Since dB(dgm(V ), dgm(W )) = ε, for each n ∈ Z+, there exists an (ε + 1
n
)-matching Mn ⊆

A × B between dgm(V ) and dgm(W ). We use this sequence of matchings to construct a single

ε-matching.

For each n, let χn : A × B → {0, 1} be the indicator function associated to Mn, where

χn(a, b) = 1 indicates that (a, b) ∈ Mn. We will construct a subsequence of {χn}n∈Z+ that con-

verges to the indicator function of an ε-matching. There exists a subsequence {χ1
n}n of {χn}n such

that {χ1
n(a1, b1)}n is constant, as either infinitely many of the χn(a1, b1) are 0 or infinitely many are

1. Repeating the argument, we can recursively define {χmn }n to be a subsequence of {χm−1
n }n such

that {χmn (am, bm)}n is constant. Then the diagonal sequence {χnn}n converges pointwise, meaning

its value at each (a, b) ∈ A × B is eventually constant. Letting χ be the limit, we show that χ is

the indicator function of an ε-matching.

To show χ is the indicator function of a matching, fix a ∈ A. For any b, b′ ∈ B, we have

χ(a, b) = χnn(a, b) and χ(a, b′) = χnn(a, b
′) for all sufficiently large n. Since each χnn is an indicator

function of a matching, at most one of χ(a, b) and χ(a, b′) is equal to 1. Thus, χ matches a to at

most one element of B, and symmetrically, it matches each element of B to at most one element

of A, so it is the indicator function of a matching. To show it is an ε-matching, suppose that

(x, y) ∈ dgm(V ) is indexed by a ∈ A and is at a distance greater that ε from the diagonal in the

d∞ distance. For a fixed, sufficiently large N , the region

S =
[
x− (ε+ 1

N
), x+ (ε+ 1

N
)
]
×
[
y − (ε+ 1

N
), y + (ε+ 1

N
)
]
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does not intersect the diagonal. So for n ≥ N , this implies (x, y) must be matched by Mn to some

point of dgm(W ) in S. To bound the number of possibilities, apply Lemma 2.4.3 at every point in

S, giving an open cover. S is compact, as it is homeomorphic to either a closed square, a closed

interval, or a singleton (x and y may be infinite), so after extracting a finite subcover, we see that

S must contain only finitely many points of dgm(W ). This finiteness implies that for all large

enough n, χnn(a, b) = χ(a, b) for all (a, b) such that b indexes a point of dgm(W ) in S. Since a

is matched for all large enough n, we have χ(a, b) = 1 for exactly one such b. If (x′, y′) is the

point indexed by b, then since χnn(a, b) = 1 for all large enough n and our original sequence {χn}n

consisted of indicator functions of (ε+ 1
n
)-matchings, we have d∞((x, y), (x′, y′)) ≤ ε+ 1

n
for all

n. Therefore d∞((x, y), (x′, y′)) ≤ ε, so χ is the indicator function of an ε-matching.

Corollary 2.4.5. If V andW are q-tame persistence modules over R and dB(dgm(V ), dgm(W )) =

0, then dgm(V ) = dgm(W ). Thus, dB is an extended metric on any set of persistence diagrams of

q-tame modules.

2.4.2 Changing Index Sets

Given a persistence module V over R ⊆ R and a subset S ⊆ R, we can restrict the index set to

get a persistence module over S that takes values Vt for all t ∈ S and reuses the applicable maps of

V . Viewing persistence modules as functors, this new persistence module is the composite functor

V ◦G, where G : S ↪→ R is the inclusion.

S Vect

R
G V

Restricting the domain behaves well on interval-decomposable modules: if V is interval decom-

posable, then each interval module summand restricts to either an interval module over S or a zero

module if its support does not intersect S, so V ◦G is interval decomposable.

Restricting the domain is a straightforward operation, but a reverse process is less obvious: we

can ask whether there is a natural way to extend a persistence module V over R to a larger subset.
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There is a good reason to ask for such a process: it will allow us to define persistence diagrams for

persistence modules over any R ⊆ R by first extending to a module over R (until now, we have

only defined persistence diagrams when R = R). The case of R = Z is particularly important,

since persistence modules indexed by discrete sets are the most useful in applications. We will

see that the persistence diagram of an interval-decomposable module over R can be defined by

the following convention: an interval module supported on an interval J ⊆ R of positive length is

represented by a point (x, y), where the birth time x is the infimum of J in R and death time y is the

infimum in R of those elements of R greater than all elements of J . This matches the conventions

established early on in the history of persistent homology for discrete index sets [1, 16]. What

follows is an algebraic justification of this rule; those who are happy to accept it as a convention

can skip the details and simply look ahead to Proposition 2.4.6 at the end of the section.

Given an interval-decomposable persistence module V over any R ⊆ R, it seems most natural

to picture its intervals as intervals in R, so we can ask if there is a way to extend a persistence

module to all of R that behaves reasonably on interval-decomposable modules. Rather than work

in full generality, we will focus on the case of extending fromR to R, as this will allow us to define

the barcode and persistence diagram of V as the barcode and persistence diagram of its extension.

The same technique could, however, be used to extend to another index set containing R.

Given a persistence module V over R ⊆ R, define the extension of V to R to be the persistence

module V over R given by

V t = colim
s∈R∩(−∞,t]

Vs.

The maps of V are those given by the universal property of colimits. Intuitively, V t takes into

account what has happened in V up to time t, providing a best guess, based on history, of what

happens at time t. For all t ∈ R, we have a natural isomorphism ηt : Vt → V t. Viewing the

persistence modules as functors, we can visualize the extension as follows:

R Vect

R

V

F V
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where the functor F is the inclusion and η is a natural isomorphism V → V ◦ F . Given two

modules V and W over R and a morphism φ : V → W , the universal property of colimits gives

a morphism φ : V → W . It can be checked that the assignments V 7→ V and φ 7→ φ define a

functor.

This operation of extension behaves well on interval-decomposable modules. If V =
⊕

a∈A V
a

is an interval-decomposable persistence module overR, with each V a an interval module supported

on Ja, then

V t = colim
s∈R∩(−∞,t]

⊕
a∈A

V a
s
∼=
⊕
a∈A

colim
s∈R∩(−∞,t]

V a
s =

⊕
a∈A

V a
t .

This isomorphism follows from the fact that colimits commute with colimits (Theorem 3.8.1

of [44]), or it can be checked directly. Each V a is an interval module, supported on the inter-

val consisting of all t ∈ R satisfying

• t ≥ r for some r ∈ Ja

• t < s for all s ∈ R such that s > j for all j ∈ Ja.

Furthermore, the isomorphism is natural in t, so this shows V is interval decomposable. This

allows us to define barcodes and persistence diagrams for any interval-decomposable persistence

module over anyR ⊆ R: simply set bar(V ) = bar(V ) and dgm(V ) = dgm(V ). This is consistent

with the definitions for persistence modules over R, since V ∼= V if R = R.

Extensions of persistence modules have other appealing categorical properties that further jus-

tify their use. First, these extensions are in fact left Kan extensions24, meaning there is a natural

bijection

VectR(V ,W ) ∼= VectR(V,W ◦ F )

for persistence modules W : R → Vect. This follows from the construction of Kan extensions (see

Theorem 6.2.1 of [44], for instance) or can be checked using the universal property of colimits.

SettingW = X for a persistence moduleX : R → Vect, we find VectR(V ,X) ∼= VectR(V,X◦F ).

24Kan extensions have appeared in the study of persistence before; [48] uses them in a similar way.
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Applying the natural isomorphism X ◦ F ∼= X , we have a bijection

VectR(V ,X) ∼= VectR(V,X),

which sends φ : V → X to φ : V → X . Thus, the functor defined by V 7→ V and φ 7→ φ is full

and faithful, so it embeds VectR as a full subcategory of VectR. In short, we can study persistence

modules over R by studying appropriate persistence modules over R, and this justifies developing

most of the theory of persistence modules in terms of persistence modules over R. The fact that

this embedding preserves interval-decomposability is what allows us to define barcodes for any

interval-decomposable module over any index set R ⊆ R.

Finally, we conclude this section by examining barcodes and persistence diagrams for an im-

portant class of persistence modules, those indexed by the integers (or other discrete subsets of R).

Our definition above gives an intuitive description of their barcodes and persistence diagrams. An

interval module V over Z supported on a bounded interval has the form

Vt =


K if m ≤ t < n

0 otherwise

for all t ∈ R, where m,n ∈ Z and m < n (and where K is the fixed field of scalars for our vector

spaces, as before). By our work above, the extension V is in fact given by the same formula, where

t is now allowed to take any real value. Thus, the barcode consists of the single interval [m,n),

and the persistence diagram consists of the single point (m,n). Note that the right endpoint n

is the first integer after the support of V , rather than the last integer in the support. Similarly,

interval modules supported on unbounded intervals yield bars of the forms [m,+∞), (−∞, n), or

(−∞,+∞). Taking direct sums of these interval modules, we see that any interval-decomposable

module (in particular, any pointwise finite-dimensional module) over Z has a barcode in which all

bars are of the forms listed above.
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Given a pointwise finite-dimensional persistence module V over Z, we can give a formula for

the multiplicity of a bar in the barcode. The rank of Vm≤n is equal to the number of bars beginning

at or before m and ending strictly after n. This means rankVm≤n − rankVm−1≤n is the number of

bars beginning at exactlym and ending strictly after n, and similarly rankVm≤n−1−rankVm−1≤n−1

is the number beginning exactly at m and ending strictly after n − 1. Subtracting gives us the

following formula, used early in the history of persistence [7, 16].

Proposition 2.4.6. If V is a pointwise finite-dimensional persistence module over Z, then the

multiplicity of [m,n) in its barcode (or equivalently, the multiplicity of (m,n) in its persistence

diagram) is given by

(rankVm≤n−1 − rankVm−1≤n−1)− (rankVm≤n − rankVm−1≤n).

Formulas for multiplicities of unbounded intervals will involve limits and colimits of the per-

sistence module: for instance, it can be checked that the multiplicity of the bar [m,+∞) is given

by rank (Vm → colimn∈Z Vn) − rank (Vm−1 → colimn∈Z Vn). The ideas presented here for per-

sistence modules over Z can be generalized to persistence modules indexed by any discrete subset

R ⊆ R, with the necessary changes if R contains minimum or maximum elements.

Exercises

Exercise 2.4.1. Find an example to show that Theorem 2.4.4 does not hold if the diagrams dgm(V )

and dgm(W ) are replaced by arbitrary multisets in the upper half plane H .

Exercise 2.4.2 (q-tameness). An upper left quadrant Qx0,y0 = {(x, y) ∈ R× R | x ≤ x0, y ≥ y0}

is contained in the extended half plane H if x0 < y0. Show that if V is a q-tame module and

x0 < y0, then dgm(V ) contains only finitely many points in Qx0,y0 (counted with multiplicities).

Conversely, show that any multiset in H that contains finitely many points in each Qx0,y0 with

x0 < y0 arises as a persistence diagram of some q-tame persistence module. The name “q-tame,”

short for “quadrant-tame,” comes from this characterization of persistence modules [27, 45].
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Exercise 2.4.3. We showed in this section that extension of the index set of a persistence module

preserves interval-decomposability; this exercise examines the effect of extension on some of our

other properties of persistence modules.

1. Find an example to show that if V is a pointwise finite-dimensional (and thus q-tame) per-

sistence module over R ⊆ R, then V is not necessarily pointwise finite-dimensional and not

necessarily q-tame.

2. Show that if V is a pointwise finite-dimensional module over a subset of Z, then V is point-

wise finite-dimensional and thus interval decomposable.

3. The following gives a condition on a persistence module V over R ⊆ R that ensures V is

locally finite (recall that we have only defined locally finite persistence modules over R).

Show that if V over R is interval decomposable and any t ∈ R has an open neighborhood

that intersects only finitely many of the bars of V , then the extension V is locally finite.

2.5 The Isometry Theorem
We have shown in Theorem 2.2.3 that if two interval-decomposable persistence modules are

isomorphic, then there is a bijection between their interval module summands, matching each

summand to one supported on the same interval. This implies they have identical barcodes and

persistence diagrams. Here we provide a relaxed version of this result, known as the isometry

theorem [27, 47]. Instead of beginning with an isomorphism of persistence modules, we begin

with an ε-interleaving, which we can think of as an “approximate isomorphism.” The maps of

this interleaving will roughly specify how to match interval module summands of one persistence

module with those of the other, such that the endpoints of matched intervals are within ε of each

other. This will show the persistence diagrams are “approximately equal.” In more detail, we

will show that the interleaving distance between q-tame persistence modules is the same as the

bottleneck distance between their persistence diagrams. The proof will progress through different
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levels of generality: we first handle finite direct sums and bounded intervals, then extend to locally

finite modules, and finally extend to q-tame modules.

2.5.1 Finding Matchings

The problem of matching intervals with close endpoints can be considered more abstractly

as a problem of matching elements of sets A and B, with restrictions on which elements can

be matched. We begin by considering the problem in this general setting, along with a standard

combinatorial approach to the problem. As described in Section 1.2.2, we will denote a bipartite

graph with parts A and B by G = (A,B,E), where E ⊆ A×B is the set of edges. A matching in

G is a subset M ⊆ E such that no two edges of M share a vertex; equivalently, a matching in G is

a matching between the sets A and B that is contained in E. Our goal will be to use a matching in

a certain bipartite graph to construct a matching between persistence diagrams. For a subset S of

the vertices, define the neighborhood NG(S) to be the set of vertices adjacent to some vertex in S.

Note that if S ⊆ A, then NG(S) ⊆ B, and vice versa. We say that a subset S contained in either

A or B has the marriage property if for all subsets T ⊆ S, we have |NG(T )| ≥ |T |. The name

comes from the following standard result from graph theory. We include a proof for completeness,

following the method in [50].

Theorem 2.5.1 (Hall’s Marriage Theorem). Suppose G = (A,B,E) is a finite bipartite graph.

If A has the marriage property, then there exists a matching in G such that each vertex in A is

matched.

Proof. Let M be a matching in G of maximal cardinality, which exists because G is finite. We

show that if some vertex a ∈ A is unmatched, then for some A′ ⊆ A, |NG(A
′)| < A′, and thus

A does not satisfy the marriage property. Let P be the set of alternating paths in G starting at

a, that is, paths with sequences of edges that alternate between edges in M and edges not in M .

Let A′ be the set of vertices in A that can be reached by paths in P , including a, and let B′ be

the set of vertices in B that can be reached by paths in P . We check that every maximal path in

P , that is, a path that is not part of a longer path in P , must end at a vertex in A′. If a maximal
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path in P ends in B′, it begins and ends with an edge not in M , and it must end in an unmatched

vertex in B′, otherwise the path could be extended. Then replacing the edges of M in the path by

those in the path that are not in M , we obtain a strictly larger matching, contradicting our choice

of M . This shows the maximal paths in P all end in A′. Thus, for each b ∈ B′, a path in P ending

at b can be extended to a path in P ending in A′, and this shows b is matched to some vertex in

A′. This implies that the edges of M in A′ × B′ give a bijection between A′ − {a} and B′, so

|A′| = |B′| + 1. Furthermore, we can check that B′ = NG(A
′). If b ∈ B − B′ were adjacent to

c ∈ A′, we would have (c, b) /∈ M , since a is unmatched and all other vertices of A′ are matched

to an element of B′. But then adding (c, b) to any alternating path from a to c, we would get an

alternating path ending at b, contradicting the assumption that b /∈ B′. Thus, B′ = NG(A
′), so

|NG(A
′)| = |B′| = |A′| − 1 < |A′|.

We will use Hall’s Marriage Theorem in combination with the following result, which will

allow us to find matchings covering subsets on both sides of a bipartite graph. Although we will

later use the lemma for finite graphs, we give a proof that applies to infinite graphs as well. This

result in fact generalizes the Cantor–Schröder–Bernstein theorem25 of set theory [28, 51, 52].

Lemma 2.5.2. Suppose G = (A,B,E) is a (possibly infinite) bipartite graph, A′ ⊆ A, and

B′ ⊆ B. If MA is a matching that matches every vertex in A′ and MB is a matching that matches

every vertex inB′, then some subset ofMA∪MB is a matching that matches every vertex inA′∪B′.

Proof. Consider the subgraph of G consisting of the edges in MA ∪MB and their vertices, which

by our assumption contains all vertices in A′ ∪ B′. It is sufficient to construct a matching in each

connected component C of this subgraph that matches all vertices of A′ ∪ B′ appearing in C; we

check that this is possible case by case. If C contains an edge in MA ∩MB, then since MA and

MB are matchings, this is the only edge in C, so it provides a matching in C. For all remaining

cases, C contains no edges in MA ∩MB, so color the edges in MA red and the edges in MB blue

and note that each vertex has degree at most two. If all vertices in C have degree two, then either

25The Cantor–Schröder–Bernstein theorem states that if there are injective functions f : A→ B and g : B → A, then
there exists a bijection h : A→ B. To see this from Lemma 2.5.2, let E = A×B, A′ = A, and B′ = B.
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the red or blue edges form a matching that matches all vertices in C (this includes both cycles and

the “infinite cyclic” graph). If not, then C is a (possibly infinite) path beginning at some vertex

v of degree one, and without loss of generality, suppose that v ∈ A. This path must alternate

between red and blue edges, since MA and MB are matchings. If the path is infinite or has an odd

number of edges, then the edges colored the same as the edge incident to v form a matching that

matches all vertices in C. If the path has an even number of edges, then without loss of generality

the path begins with a red edge incident to v and ends with a blue edge incident to a vertex w ∈ A

with degree one. Then w is unmatched in MA as there is no red edge incident to it, so w /∈ A′.

Therefore, the red edges provide a matching in C that matches every vertex of C except w and thus

matches every vertex of C that is in A′ ∪B′.

2.5.2 Stability for Finite Persistence Modules

As Theorem 2.5.1 applies to finite sets, we begin by considering the problem of matching a

finite number of interval module summands, and we further restrict to interval modules supported

on bounded intervals. The following theorem establishes matchings in this setting and will be used

to extend the result to more general persistence modules later. A similar method has previously

appeared in [28] in the more general setting of decomposable persistence modules parameterized

by multiple variables. A related approach can also be found in [53].

Theorem 2.5.3. Suppose there is an ε-interleaving between persistence modules V =
⊕

a∈A V
a

and W =
⊕

b∈BW
b over R, where A and B are disjoint finite sets, all V a and W b are interval

persistence modules supported on bounded intervals ⌈la, ua⌋ and ⌈lb, ub⌋ respectively, and ε ≥ 0.

Then there exists a matching between their persistence diagrams such that the following hold:

• if a ∈ A is unmatched, then ⌈la, ua⌋ does not contain a closed interval of length 2ε

• if b ∈ B is unmatched, then ⌈lb, ub⌋ does not contain a closed interval of length 2ε

• if a ∈ A is matched with b ∈ B, then ⌈la, ua⌋ ⊆ ⌈lb−ε, ub+ε⌋ and ⌈lb, ub⌋ ⊆ ⌈la−ε, ua+ε⌋.

In particular, this is an ε-matching, so dB(dgm(V ), dgm(W )) ≤ ε.
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Figure 2.2: The matching between persistence diagrams is constructed as a matching in a bipartite graph,
pictured here in an example with the corresponding barcodes.

Proof. This follows from Theorem 2.2.3 if ε = 0, so we will suppose ε > 0. Define a bipartite

graph G = (A,B,E), where E ⊆ A×B consists of all (a, b) such that ⌈la, ua⌋ ⊆ ⌈lb − ε, ub + ε⌋

and ⌈lb, ub⌋ ⊆ ⌈la − ε, ua + ε⌋. Below, we will verify the marriage property for the subset A =

{a ∈ A | ⌈la, ua⌋ contains a closed interval of length 2ε}. Specifically, letting A′ ⊆ A and letting

B′ = NG(A
′) be the neighborhood of A′ in G, we will show |B′| ≥ |A′|. Assuming this holds,

Theorem 2.5.1 implies there is a matching in the induced subgraph on the vertices A∪B, and thus

a matching in G, that matches every vertex in A. Symmetrically, there is also a matching in G that

matches every b ∈ B such that ⌈lb, ub⌋ contains a closed interval of length 2ε, so Lemma 2.5.2

implies there is a matching that satisfies the desired properties.

We show |B′| ≥ |A′| algebraically by comparing dimensions of vector spaces. Suppose

φ : V → W_+ε and ψ : W → V_+ε define an ε-interleaving. Intuitively, ψ is nearly an inverse

to φ, so we would like to use a dimension argument to say that
⊕

b∈B′ W b must be “at least

as big” as
⊕

a∈A′ V a, implying |B′| ≥ |A′|. Thus, we begin as in the proof of Theorem 2.2.3,

replacing the isomorphism with the “approximate isomorphisms” φ and ψ, and considering com-

ponents φb,a : V a → W b
_+ε and ψa,b : W b → V a

_+ε for any a ∈ A and b ∈ B. For simplic-

ity, we can replace V a and W b with isomorphic interval modules in which all nonzero vector

spaces are K and the maps between them are identity maps. Then any two nonzero maps φb,as

and φb,at must be equal, and similarly for ψ. Let φ̃b,a = φb,at for any t such that t ∈ ⌈la, ua⌋

and t + ε ∈ ⌈lb, ub⌋, or let φ̃b,a = 0 if no such t exists. Define ψ̃a,b similarly. Since these are

maps between one-dimensional vector spaces, we can identify all φ̃b,a and ψ̃a,b with elements
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of K. We thus have matrices ψ̃ =
{
ψ̃a,b

}
a∈A′,b∈B′ and φ̃ =

{
φ̃b,a
}
a∈A′,b∈B′ , with product

χ̃ = ψ̃φ̃ =
{∑

b∈B′ ψ̃a1,b ◦ φ̃b,a0
}
a1,a0∈A′ . We will show that χ̃ is in fact upper triangular with

every diagonal entry equal to 1. This will show it is invertible, implying φ̃ has rank A′, and thus

showing |B′| ≥ |A′| as required.

The rest of the proof is a careful analysis of when maps are zero or nonzero. For a ∈ A and

b ∈ B, since V a
_+ε is an interval module supported on ⌈la − ε, ua − ε⌋ and W b

_+ε is an interval

module supported on ⌈lb − ε, ub − ε⌋, Lemma 2.1.1 gives us the following facts:

φb,a ̸= 0 =⇒ lb − ε ≤ la and ub − ε ≤ ua (2.1)

ψa,b ̸= 0 =⇒ la − ε ≤ lb and ua − ε ≤ ub. (2.2)

In particular, these imply that if φb,a ̸= 0 and ψa,b ̸= 0 for fixed a ∈ A and b ∈ B, then

⌈la, ua⌋ ⊆ ⌈lb − ε, ub + ε⌋ and ⌈lb, ub⌋ ⊆ ⌈la − ε, ua + ε⌋, so (a, b) ∈ E.

For any a0, a1 ∈ A′ and any t, we have

V a1,a0
t≤t+2ε =

∑
b∈B

ψa1,bt+ε ◦ φ
b,a0
t =

∑
b∈B′

ψa1,bt+ε ◦ φ
b,a0
t +

∑
b∈B−B′

ψa1,bt+ε ◦ φ
b,a0
t .

Suppose a0 ̸= a1, in which case V a1,a0
t≤t+2ε = 0. We find for which a0 and a1 it is possible that∑

b∈B′ ψ
a1,b
t+ε ◦φ

b,a0
t ̸= 0. The equation above shows this can only happen if

∑
b∈B−B′ ψ

a1,b
t+ε ◦φ

b,a0
t ̸=

0, in which case ψa1,b0t+ε ◦φb0,a0t ̸= 0 for some b0 ∈ B−B′. Then (2.1) and (2.2) imply lb0 − ε ≤ la0 ,

ub0 − ε ≤ ua0 , la1 − ε ≤ lb0 , and ua1 − ε ≤ ub0 . Since b0 /∈ B′, we further have either lb0 < la0 − ε

or ub0 < ua0 − ε, and similarly, either la1 < lb0 − ε or ua1 < ub0 − ε. Considering these case by

case, we end up with three possibilities:

• la1 < la0 − 2ε and ua1 ≤ ua0 + 2ε

• ua1 < ua0 − 2ε and la1 ≤ la0 + 2ε

• la1 < la0 and ua1 < ua0 .
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These suggest that the values of ⌈la1 , ua1⌋ should be on average less than those of ⌈la0 , ua0⌋, which

motivates the following ordering of A′. For any a ∈ A′, let ma be the midpoint of ⌈la, ua⌋, that

is, ma = la+ua
2

(recall we have assumed the intervals ⌈la, ua⌋ are bounded). If ma < ma′ , we

will say a < a′. If ⌈la, ua⌋ and ⌈la′ , ua′⌋ have the same midpoint, compare the decorations on

their endpoints: let a < a′ if there are more +’s in the two endpoints of ⌈la′ , ua′⌋ than in those of

⌈la, ua⌋. Finally, if a ̸= a′ and the midpoints and the number of +’s in the decorations agree, break

the tie arbitrarily to define a total order on A′. The cases above then show that
∑

b∈B′ ψ
a1,b
t+ε ◦ φ

b,a0
t

can be nonzero only if a1 ≤ a0. Identifying the linear transformations between one-dimensional

vector spaces with elements of the field K, the matrix χt =
{∑

b∈B′ ψ
a1,b
t+ε ◦ φ

b,a0
t

}
a1,a0∈A′ is upper

triangular when the elements of A′ are ordered as described above.

Equipped with this understanding of the matrices χt, we move on to the matrix χ̃. For the

diagonal entries, if a ∈ A′, then there is a t such that t, t+2ε ∈ ⌈la, ua⌋. For b ∈ B, (2.1) and (2.2)

imply that if ψa,bt+ε ◦ φ
b,a
t ̸= 0, then (a, b) ∈ E, and thus b ∈ B′. Therefore,

1 = V a,a
t,t+2ε =

∑
b∈B

ψa,bt+ε ◦ φ
b,a
t =

∑
b∈B′

ψa,bt+ε ◦ φ
b,a
t =

∑
b∈B′

ψ̃a,b ◦ φ̃b,a = χ̃a,a.

Now consider the entries below the diagonal: let a0, a1 ∈ A′ with a0 < a1. Letting m0

and m1 be the midpoints of ⌈la0 , ua0⌋ and ⌈la1 , ua1⌋, we have m0 ≤ m1. Furthermore, since

these intervals contain closed intervals of length 2ε, we have m0 − ε,m0 + ε ∈ ⌈la0 , ua0⌋ and

m1 − ε,m1 + ε ∈ ⌈la1 , ua1⌋. For any b ∈ B′, we aim to show that ψ̃a1,b ◦ φ̃b,a0 = ψa1,bm0
◦ φb,a0m0−ε.

If either ψ̃a1,b = 0 or φ̃b,a0 = 0, then ψa1,bm0
◦ φb,a0m0−ε = 0 by our definition of ψ̃a1,b and φ̃b,a0 , so we

will suppose ψ̃a1,b ̸= 0 and φ̃b,a0 ̸= 0. Applying (2.1) and (2.2) gives:

lb − ε ≤ la0 , ub − ε ≤ ua0 , la1 − ε ≤ lb, and ua1 − ε ≤ ub.

So m0 ∈ ⌈la0 + ε, ua0 + ε⌋ implies m0 ∈ ⌈lb,+∞⌋ and m1 ∈ ⌈la1 − ε, ua1 − ε⌋ implies m1 ∈

⌈−∞, ub⌋, and thusm0 ∈ ⌈−∞, ub⌋. Therefore,m0 ∈ ⌈lb, ub⌋. Applying all the inequalities above
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shows la1 ≤ la0+2ε and ua1 ≤ ua0+2ε, som0 ≤ m1+2ε. This showsm1−ε ≤ m0+ε ≤ m1+ε,

so m0 + ε ∈ ⌈la1 , ua1⌋.

We have thus seen that m0 − ε ∈ ⌈la0 , ua0⌋, m0 ∈ ⌈lb, ub⌋, and m0 + ε ∈ ⌈la1 , ua1⌋, so we have

verified that ψ̃a1,b = ψa1,bm0
and φ̃b,a0 = φb,a0m0−ε. Summing all ψ̃a1,b ◦ φ̃b,a0 , we get

χ̃a1,a0 =
∑
b∈B′

ψ̃a1,b ◦ φ̃b,a0 =
∑
b∈B′

ψa1,bm0
◦ φb,a0m0−ε = χa1,a0m0−ε = 0,

since we showed above that each χt is upper triangular. Thus, χ̃ is upper triangular, as required.

2.5.3 Extension to q-tame Modules

We now extend the results of Theorem 2.5.3 to more general persistence modules, starting

first with locally finite modules and then continuing to q-tame modules. We will start with the

following operation: given any persistence module V over R and an interval U ⊆ R, we define

V |U by letting (V |U)t = Vt if t ∈ U and letting (V |U)t = 0 otherwise. We let (V |U)s≤t = Vs≤t

if s ≤ t and s, t ∈ U , and let (V |U)s≤t be the zero map otherwise. This can be thought of as

“restricting the support” of V , and for this section, we will simply refer to it as “restriction” – note

that it is different from restricting the domain, as we did in Section 2.4.2. This operation respects

direct sums: if V ∼=
⊕

a∈A V
a, then V |U ∼=

⊕
a∈A(V

a)|U .

We will extend Theorem 2.5.3 to locally finite modules by constructing matchings piece by

piece on restrictions. Fix ε > 0 and suppose V =
⊕

a∈A V
a and W =

⊕
b∈BW

b are locally finite

persistence modules over R, where A and B are disjoint and the V a and W b are interval modules

supported on intervals Ja and Jb. Further suppose φ : V → W_+ε and ψ : W → V_+ε define an

ε-interleaving. Then for any interval U ⊆ R, we get an ε-interleaving of V |U and W |U , defined by

reusing the maps φt and ψt whenever t and t+ ε are both in U .

For any bounded interval U , let

A(U) = {a ∈ A | Ja ∩ U ̸= ∅}
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B(U) = {b ∈ B | Jb ∩ U ̸= ∅}.

Then A(U) and B(U) are finite, since V and W are locally finite. Since restriction respects direct

sums, V |U is a direct sum of interval modules supported on intervals Ja ∩U for all a ∈ A(U), and

similarly for W |U . Thus, Theorem 2.5.3 applies to V |U and W |U , so there exists an ε-matching

between their persistence diagrams. The intervals of V |U are indexed by A(U) and the intervals of

W |U are indexed by B(U), so let M(U) be the set of ε-matchings M ⊆ A(U) × B(U) between

dgm(V |U) and dgm(W |U). By definition of an ε-matching, M ∈ M(U) if and only if the follow-

ing hold: M matches all a ∈ A(U) (respectively b ∈ B(U)) such that Ja ∩U (respectively Jb ∩U )

has length greater than 2ε, and for any (a, b) ∈ M , the corresponding undecorated endpoints of

Ja ∩ U and Jb ∩ U differ by at most ε in the dR distance. We will view each M ∈ M(U) as a

subset of A×B and compare such subsets for different U .

Given nested intervalsU ⊆ U ′ and a matchingM ∈ M(U ′), we check thatM∩(A(U)×B(U))

is in M(U). For a ∈ A(U), we check that if the length of Ja ∩ U is greater than 2ε, then a is

matched in M ∩ (A(U)×B(U)), and a symmetric argument applies for elements of B(U). If the

length of Ja ∩ U is greater than 2ε, then the length of Ja ∩ U ′ is as well, so a must be matched

by M . Then (a, b) ∈ M for some b, so the corresponding (undecorated) endpoints of Ja ∩ U ′ and

Jb ∩ U ′ differ by at most ε. Since Ja ∩ U has length greater than 2ε, this implies Jb ∩ U ̸= ∅.

So b ∈ B(U), which shows that a and b are matched in M ∩ (A(U) × B(U)). This verifies that

all the required indices are matched (those corresponding to intervals of length greater than 2ε).

Furthermore, for any (a, b) ∈M∩(A(U)×B(U)), since the endpoints of Ja∩U ′ and Jb∩U ′ differ

by at most ε, the endpoints of Ja ∩ U and Jb ∩ U also differ by at most ε, so M ∩ (A(U)×B(U))

is an ε-matching. We thus get a function M(U ⊆ U ′) : M(U ′) → M(U) defined by

M(U ⊆ U ′)(M) =M ∩ (A(U)×B(U)).
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We furthermore have the property that if U ⊆ U ′ ⊆ U ′′, then

M(U ⊆ U ′′) = M(U ⊆ U ′) ◦M(U ′ ⊆ U ′′).

For bounded U , Theorem 2.5.3 implies M(U) is nonempty. We will extrapolate from an

increasing sequence of bounded intervals to find an ε-matching between dgm(V ) and dgm(W ).

Let U1 = [−1, 1]. If U1 ⊆ U ⊆ U ′, then imM(U1 ⊆ U ′) ⊆ imM(U1 ⊆ U), that is, the image

can only shrink as intervals grow. Since M(U1) is finite, this image can only shrink finitely many

times, so there exists a U2 containing U1 such that for any U containing U2, imM(U1 ⊆ U) =

imM(U1 ⊆ U2). Repeat this construction to recursively define a sequence of intervals Ui such

that for each i, Ui ⊆ Ui+1 and for any U containing Ui+1, imM(Ui ⊆ U) = imM(Ui ⊆ Ui+1).

We further require [−i, i] ⊆ Ui for each i, since at each step, we can expand the interval if needed.

Pick M1 ∈ imM(U1 ⊆ U2). Since imM(U1 ⊆ U3) = imM(U1 ⊆ U2), we can choose

M2 ∈ imM(U2 ⊆ U3) such that M(U1 ⊆ U2)(M2) = M1. Repeating, we can recursively

define Mi so that M(Ui ⊆ Ui+1)(Mi+1) = Mi for all i. This gives a sequence of matchings that

account for increasingly large intervals. By definition of the functions M(Ui ⊆ Ui+1), we have

M1 ⊆M2 ⊆ . . . as subsets of A×B.

Figure 2.3: The construction of the matching: each Mi is chosen from the small region in M(Ui), which
indicates the image of M(Ui+1).
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We now check that
⋃
iMi ⊆ A × B defines an ε-matching between dgm(V ) and dgm(W ).

First,
⋃
iMi is in fact a matching: if (a1, b1), (a2, b2) ∈

⋃
iMi, then (a1, b1), (a2, b2) ∈ Mi for

some i, so since Mi is a matching, a1 = a2 if and only if b1 = b2. Next, if a ∈ A and Ja has

length greater than 2ε, then Ja ∩ Ui does as well for some i, so a is matched by Mi and is thus

matched by
⋃
iMi. The same holds for b ∈ B such that Jb has length greater than 2ε. Finally,

if (a, b) ∈
⋃
iMi, then (a, b) ∈ Mj for some j, so (a, b) ∈ Mi for all i ≥ j. This implies the

corresponding endpoints of Ja ∩ Ui and Jb ∩ Ui differ by less than ε for all large enough i, so the

corresponding endpoints of Ja and Jb differ by less than ε in the dR distance, as required.

We have thus shown that if locally finite modules V and W are ε-interleaved, then there is an

ε-matching between dgm(V ) and dgm(W ), so dB(dgm(V ), dgm(W )) ≤ dI(V,W ). This proves

the more difficult part of the following lemma, which states the two distances are in fact equal.

Lemma 2.5.4 (The Isometry Theorem for Locally Finite Persistence Modules). For locally finite

persistence modules V and W over R,

dB(dgm(V ), dgm(W )) = dI(V,W ).

Proof. Suppose V =
⊕

a∈A V
a and W =

⊕
b∈BW

b are locally finite persistence modules over

R, where A and B are disjoint and the V a and W b are interval modules supported on intervals

Ja and Jb. We just need to show dB(dgm(V ), dgm(W )) ≥ dI(V,W ), so we show that given

an ε-matching M between the persistence diagrams, we can construct an ε′-interleaving (φ, ψ)

between V and W for any ε′ > ε. For any (a, b) ∈ A × B − M , let the components φb,a

and ψa,b be zero morphisms. For any (a, b) ∈ M , since the endpoints of Ja and Jb differ by at

most ε, we can construct an ε′-interleaving between V a and W b (see Example 2.1.3). So let the

morphisms of this interleaving be the components φb,a : V a → W b
_+ε′ and ψa,b : W b → V a

_+ε′ .

Then for each t, ψa,bt+ε′ ◦ φ
b,a
t is equal to V a

t≤t+2ε′ if a and b are matched and is zero otherwise, so

(ψt+ε′ ◦ φt)a,a = V a
t≤t+2ε′ for any a that is matched by M . Furthermore, any ψa1,bt+ε′ ◦ φ

b,a0
t is zero

if a0 ̸= a1, since b cannot be matched to both a0 and a1. Thus, computing ψt+ε′ ◦ φt from its
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components shows ψt+ε′ ◦φt = Vt≤t+2ε′ , since for all unmatched a, the support of Ja has length at

most 2ε, and thus V a
t≤t+2ε′ is the zero map. Similarly, we have φt+ε′ ◦ ψt = Wt≤t+2ε′ . Therefore φ

and ψ form an ε′-interleaving, so dB(dgm(V ), dgm(W )) ≥ dI(V,W ).

We now make the final extension to q-tame modules. Let V andW be q-tame persistence mod-

ules over R and let ε > 0. Here we will write dB(V,W ) for dB(dgm(V ), dgm(W )) to make the

notation more compact. We have seen in Lemma 2.4.2 that the ε-smoothings satisfy dB(V, V ε) ≤ ε

and dB(W,W ε) ≤ ε. The triangle inequality for the bottleneck distance shows

dB(V,W ) ≤ dB(V, V
ε) + dB(V

ε,W ε) + dB(W,W
ε)

≤ dB(V
ε,W ε) + 2ε,

and similarly, dB(V ε,W ε) ≤ dB(V,W ) + 2ε, so dR
(
dB(V,W ), dB(V

ε,W ε)
)
≤ 2ε. We have also

seen in Lemma 2.3.1 that dI(V, V ε) ≤ ε and dI(W,W ε) ≤ ε. So as above, the triangle inequality

for the interleaving distance implies dR
(
dI(V,W ), dI(V

ε,W ε)
)
≤ 2ε. By Lemma 2.3.1, V ε and

W ε are locally finite, so by Lemma 2.5.4, we have dB(V ε,W ε) = dI(V
ε,W ε). Thus,

dR
(
dB(V,W ), dI(V,W )

)
≤ dR

(
dB(V,W ), dB(V

ε,W ε)
)
+ dR

(
dB(V

ε,W ε), dI(V,W )
)

= dR
(
dB(V,W ), dB(V

ε,W ε)
)
+ dR

(
dI(V

ε,W ε), dI(V,W )
)

≤ 4ε.

Since this holds for any ε > 0, we have proved the following main result of this section.

Theorem 2.5.5 (The Isometry Theorem). For any q-tame persistence modules V and W over R,

dB(dgm(V ), dgm(W )) = dI(V,W ).
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This is called the “isometry theorem” because it states that the operation of producing a persis-

tence diagram from a persistence module is an isometry26 with respect to the bottleneck distance

and the interleaving distance. The inequality dB(dgm(V ), dgm(W )) ≤ dI(V,W ) is called “al-

gebraic stability” or the “stability part” of the isometry theorem: it states that the operation of

producing a persistence diagram from a persistence module is stable with respect to these dis-

tances. The reverse inequality is called the “converse stability part” of the theorem. This theorem,

especially the stability part, plays an important role in the theory of persistent homology, where it

is used to show certain ways of associating a persistence diagram to a space are stable. We will see

this in Chapter 3.

Exercises

Exercise 2.5.1. In the proof of Theorem 2.5.3, we showed the matrix χ̃ is always upper triangular.

Find an example in which χ̃ has nonzero entries above the diagonal.

2.6 Decomposition of Pointwise Finite-Dimensional Persistence

Modules
We now return to prove Theorem 2.2.2, which states that any pointwise finite-dimensional

persistence module over any index set R ⊆ R is interval decomposable. The methods used in this

section are based on those in [17], and we begin with some preliminary definitions and a lemma

that appear there.

2.6.1 Sections and Cuts

For a vector space X , define a section of X to be a pair (S−, S+) of subspaces such that

S− ⊆ S+ ⊆ X . We will say that a set of sections {(S−
a , S

+
a ) | a ∈ A} of X is disjoint if for all

a1 ̸= a2, we have either S+
a1

⊆ S−
a2

or S+
a2

⊆ S−
a1

, and we will say that the set of sections covers X

26To be precise, V 7→ dgm(V ) defines a map from any set of q-tame persistence modules over R to the set of
multisets in the half plane H . Any such map is an isometry (of extended pseudometric spaces) onto its image. For a
characterization of which multisets arise as persistence diagrams of q-tame modules, see Exercise 2.4.2.
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if for any proper subspace Y ⊊ X , there is an a ∈ A such that Y + S−
a ̸= Y + S+

a . We will soon

use sections to construct direct sum decompositions, via the following lemma.

Lemma 2.6.1 (Lemma 6.1 of [17]). Suppose {(S−
a , S

+
a ) | a ∈ A} is a disjoint set of sections of a

vector space X , and for each a ∈ A, let Wa be a subspace such that S−
a ⊕Wa = S+

a . Then the sum

of the Wa is a direct sum
⊕

a∈AWa ⊆ X , and if the set of sections covers X , then
⊕

a∈AWa = X .

Note that a disjoint set of sections may contain sections (S−, S+) with S− = S+. Such a

section contributes a summand of 0 in the direct sum.

Proof. To show that the sum of the Wa is a direct sum, suppose wa1 + wa2 + · · · + wan = 0 with

wai ∈ Wai for each i. Since the set of sections is disjoint, we may assume without loss of generality

that S+
ai

⊆ S−
an for all i < n. Then −wan = wa1 + wa2 + · · · + wan−1 is in Wan ∩ S−

an = {0}.

Repeating this argument shows each wai is zero, so we have a direct sum
⊕

a∈AWa. Finally, if

Y =
⊕

a∈AWa ̸= X , then for all a, we have Y + S+
a = Y + S−

a +Wa = Y + S−
a , so the set of

sections does not cover X .

We will also follow [17] by using the language of cuts to describe intervals. Given a totally

ordered set R (in our case, a subset of the reals), a cut c is a pair c = (c−, c+) of subsets of R

such that c− ∪ c+ = R and s < t for any s ∈ c− and t ∈ c+ (thus, c− and c+ are necessarily

disjoint). For instance, any cut of R is either (∅,R) or (R,∅) or is of the form ((−∞, t), [t,+∞))

or ((−∞, t], (t,+∞)) with t ∈ R. Cuts provide a convenient description of intervals, as any

interval J in R can be expressed as c+ ∩ d− for a unique pair of cuts (c, d) given by

c− = {t ∈ R | t < s for all s ∈ J}, c+ = {t ∈ R | t ≥ s for some s ∈ J},

d− = {t ∈ R | t ≤ s for some s ∈ J}, d+ = {t ∈ R | t > s for all s ∈ J}.

2.6.2 The Decomposition

We begin to develop the terms needed for the decomposition, without yet imposing any con-

ditions on dimensions. Throughout this section, let V be a persistence module over an index set
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R ⊆ R. For any cut c, define

Lc = lim
t∈c+

Vt,

Cc = colim
t∈c−

Vt.

In this setting, the limit and colimit are also called the inverse limit and direct limit respectively,

and they have the following explicit constructions:

Lc =

{
{vt}t∈c+ ∈

∏
t∈c+

Vt

∣∣∣∣ for all t1 ≤ t2 in c+, Vt1≤t2(vt1) = vt2

}
,

Cc =

(∐
t∈c−

Vt

)/
∼

where for any t1, t2 ∈ c−, given vt1 ∈ Vt1 and vt2 ∈ Vt2 , we have vt1 ∼ vt2 if and only if there exists

a t3 ∈ c− such that Vt1≤t3(vt1) = Vt2≤t3(vt2). The colimit Cc can be thought of as describing V at

the end of c−, and Lc can be thought of as describing V at the beginning of c+. The limit Lc comes

with the usual projections πct′ : Lc → Vt′ for any t′ ∈ c+, given explicitly by πct′({vt}t∈c+) = vt′ .

Similarly, the colimit Cc comes with the usual injections ιtc : Vt → Cc for any t ∈ c−, sending any

vt ∈ Vt to its equivalence class in Cc.

Given two cuts c and d with c+ ∩ d− ̸= ∅ and s ≤ t in c+ ∩ d−, the projections and injections

commute with the maps of V as in the following diagram. The positions from left to right are a

reminder of the relative locations of cuts and numbers in R.

Lc

Vs Vt

Cd

πcs

πct

Vs≤t

ιsd

ιtd
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We can thus define a map ψcd : Lc → Cd by ψcd = ιtd ◦ πct for any t ∈ c+ ∩ d−. Furthermore, the

universal properties of limits and colimits (or the evident maps using their explicit constructions)

give the maps Lcd and φd in the following commutative diagram.

Lc Ld

Vt

Cd

Lcd

πct

ψcd

ιtd

φd

We will use some additional relationships between these maps, which we list here for reference:

πc2t2 ◦ Lc1c2 = πc1t2 , ψc2c3 ◦ Lc1c2 = ψc1c3 , and πc2t2 ◦ φc2 ◦ ιt1c2 = Vt1≤t2 . These hold whenever

the maps are defined and can be checked either directly using the universal properties of limits and

colimits or by using their explicit constructions. All of the relationships we have mentioned so far

can be found in the following commutative diagram, in which we omit labels of arrows.

Lc1 Lc2

Vt1 Vt2

Cc2 Cc3

With the goal of decomposing V into interval modules, we attempt to determine which el-

ements of the vector spaces of V are alive during the entirety of an interval c+ ∩ d− and dead

outside it. Thus, we define the following subspaces of Lc:

Acd = kerLcd (A for “alive”)

Bcd = imφc (B for “born before”)

Dcd = kerψcd (D for “dies during”).
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The space Acd can be thought of as the subspace of elements of Lc that are alive at the beginning

of the interval c+ ∩ d− and dead at all times after the interval. The space Bcd can be thought of

as the elements that are born before the interval, and it does not depend on d. The space Dcd

can be thought of as the elements that die during the interval; we have Dcd ⊆ Acd. Let Wcd be

any subspace of Acd such that Bcd + Acd = (Bcd + Dcd) ⊕ Wcd; it is sufficient to choose Wcd

to be a vector space complement to (Bcd + Dcd) ∩ Acd in Acd. Then Wcd can be thought of as a

subspace of elements whose lifetimes are exactly the interval c+∩d−. Our goal is to show thatWcd

determines the interval modules supported on c+ ∩ d− in the decomposition27. We begin with the

following lemma, which shows our interpretation of Wcd remains valid when elements are viewed

at a specific time in the interval.

Lemma 2.6.2. For cuts c and d, if t ∈ c+ ∩ d−, then πct|Wcd
is injective and πct(Bcd + Acd) =

πct(Bcd +Dcd)⊕ πct(Wcd).

Proof. To show πct|Wcd
is injective, suppose w ∈ Wcd and πct(w) = 0. Then w ∈ ker ιtd ◦ πct =

kerψcd = Dcd, so w ∈ Wcd ∩Dcd = {0}.

For the direct sum, first note that πct(Bcd + Dcd) + πct(Wcd) = πct(Bcd + Dcd + Wcd) =

πct(Bcd + Acd). So supposing that v ∈ πct(Bcd + Dcd) ∩ πct(Wcd), we must show v = 0. Write

v = πct(b + z) = πct(w) for some b ∈ Bcd, z ∈ Dcd, and w ∈ Wcd. We have ψcd(w − b) =

ιtd(πct(w)−πct(b)) = ιtd(πct(z)) = ψcd(z) = 0. So letting z′ = w−b, we have z′ ∈ kerψcd = Dcd,

so w = b+ z′ ∈ Wcd ∩ (Bcd +Dcd) = {0} and thus v = πct(w) = 0.

Although we are working with vector spaces defined abstractly in terms of limits and colimits,

the following lemma provides more concrete descriptions of some of these spaces in the case that

V is pointwise finite-dimensional. In fact, it is only because of this step that our final result will

27It can be instructive to compare the definition of Wcd with the formula of Proposition 2.4.6 for persistence
modules over Z. By rank–nullity, that formula shows the multiplicity of the interval [m,n) in the barcode is
dimkerVm≤n − dimkerVm−1≤n − dimkerVm≤n−1 + dimkerVm−1≤n−1. Here, the space Wcd is chosen as
a vector space complement to (Bcd + Dcd) ∩ Acd in Acd, and since Dcd ⊆ Acd, we have (Bcd + Dcd) ∩ Acd =
(Bcd∩Acd)+Dcd. Thus, dimWcd = dimAcd−dimBcd∩Acd−dimDcd+dimBcd∩Dcd (at least, as long as these
dimensions are finite). Writing out the definitions of these spaces shows this expression for dimWcd mirrors the
formula above for persistence modules over Z, using subspaces of Lc and replacing vector spaces at the beginnings
and ends of intervals by limits and colimits.
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require pointwise finite-dimensional modules, so other modules satisfying the results of this lemma

are also interval decomposable: see Remark 2.6.5 at the end of this section.

Lemma 2.6.3. If V is pointwise finite-dimensional and c+ ∩ d− ̸= ∅, then

1. if d+ ̸= ∅, then Acd = ker πcr for some r ∈ d+

2. if t ∈ c+ ∩ d−, then πct(Lc) = imVs≤t for some s ∈ c+ with s ≤ t.

Proof. For the first statement, suppose d+ ̸= ∅. Choosing any r1 ∈ d+, we have πcr1 = πdr1 ◦Lcd,

so Acd = kerLcd ⊆ kerπcr1 . If kerLcd ̸= ker πcr1 , let v ∈ kerπcr1 − kerLcd. Then since Lcd(v) ̸=

0 in the limit Ld, there must be an r2 ∈ d+ with r2 < r1 such that πcr2(v) = πdr2(Lcd(v)) ̸= 0, so

kerπcr2 ⊊ kerπcr1 . Since V is pointwise finite-dimensional, this process has produced a subspace

kerπcr2 containing kerLcd with strictly smaller dimension than kerπcr1 . Repeating this process,

we must eventually find an r ∈ d+ with kerLcd = ker πcr.

The proof of the second statement is based on a similar use of finite-dimensional vector spaces,

but it will require some additional steps28. For any s ∈ c+ with s ≤ t, we have πct(Lc) ⊆ imVs≤t

since πct = Vs≤t ◦ πcs, so we must find an s so that the reverse inclusion holds. Set s0 = t.

By an argument similar to the one above, there exists an s1 ∈ c+ with s1 ≤ s0 such that for all

r ∈ c+ with r ≤ s1, imVr≤s0 = imVs1≤s0; set W0 = imVs1≤s0 . Repeat to recursively define a

sequence s0 ≥ s1 ≥ s2 . . . in c+ along with spaces W0,W1,W2, . . . such that Wi = imVsi+1≤si

and Wi = imVr≤si for all r ∈ c+ with r ≤ si+1. We can further assume that given any r ∈ c+,

there is an i such that si ≤ r, since at each step of the construction, we are free to reduce si as

long as it remains in c+. For each i ≥ 1, we have Vsi≤si−1
(Wi) = Vsi≤si−1

◦ Vsi+1≤si(Vsi+1
) =

Vsi+1≤si−1
(Vsi+1

) = Wi−1. Thus, given any x0 ∈ W0 = imVs1≤s0 , we can recursively choose

xi ∈ Wi such that Vsi≤si−1
(xi) = xi−1, which implies Vsj≤si(xj) = xi for j ≥ i. This allows us to

define an element l = {lr}r∈c+ of the limit Lc: for each r ∈ c+, choose some si such that si ≤ r

and set lr = Vsi≤r(xi). Then πct(l) = x0, so we have shown imVs1≤t ⊆ πct(Lc).

28The technique used here is very similar to how we constructed the matching
⋃

iMi in Section 2.5.3; see Figure 2.3
there, replacing M(Ui) with Vsi . The key feature is a system of sets/vector spaces satisfying a Mittag-Leffler
condition; see for instance Section II.9 of [54], and in particular Example 9.1.2. This condition also appears in the
proof of Lemma 4.1 of [17], the paper that provided the first proof of Theorem 2.2.2.
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From here, we show the subspaces of a given Vt considered in Lemma 2.6.2 provide a disjoint

set of sections. This prepares us to use Lemma 2.6.1 to produce a direct sum decomposition of V .

Lemma 2.6.4. For any t ∈ R, we have a disjoint set of sections of Vt consisting of all sections(
πct(Bcd + Dcd), πct(Bcd + Acd)

)
with c and d cuts such that t ∈ c+ ∩ d−. If V is pointwise

finite-dimensional, then this set of sections covers Vt.

Proof. We show the set of sections is disjoint by considering cuts c1, d1, c2, d2 with t ∈ c+1 ∩ d−1

and t ∈ c+2 ∩ d−2 . If c1 ̸= c2, then without loss of generality c+1 ∩ c−2 ̸= ∅, so

πc1t(Bc1d1 + Ac1d1) = πc2t ◦ φc2 ◦ ψc1c2(Bc1d1 + Ac1d1) ⊆ πc2t(imφc2) ⊆ πc2t(Bc2d2 +Dc2d2).

On the other hand, if c1 = c2 = c, then suppose d1 ̸= d2, so without loss of generality, we have

d+1 ∩ d−2 ̸= ∅. Then since ψcd2 = ψd1d2 ◦ Lcd1 , we have Acd1 = kerLcd1 ⊆ kerψcd2 = Dcd2 ,

and thus πct(Acd1) ⊆ πct(Dcd2). Since Bcd1 = imφc = Bcd2 , we further have πct(Bcd1 + Acd1) ⊆

πct(Bcd2 +Dcd2). This shows the set of sections is disjoint.

We now suppose that V is pointwise finite-dimensional and show that the set of sections covers

Vt. Suppose U is a proper subspace of Vt and define

c− = {s ≤ t | imVs≤t ⊆ U}

c+ = {s > t} ∪ {s ≤ t | imVs≤t ⊈ U}.

Then c = (c−, c+) is a cut and t ∈ c+. Next, define

d− = {s < t} ∪ {s ≥ t | πct(Lc) ∩ kerVt≤s ⊆ U}

d+ = {s ≥ t | πct(Lc) ∩ kerVt≤s ⊈ U}.

Then d = (d−, d+) is a cut and t ∈ d−, so t ∈ c+ ∩ d− and (πct(Bcd +Dcd), πct(Bcd + Acd)) is in

the set of sections. We show πct(Bcd+Dcd) ⊆ U and πct(Acd) ⊈ U , which will imply the covering
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property. Intuitively, c and d have been constructed to find an element of Vt not in U that is alive

in the interval c+ ∩ d− and dead outside it.

If c− = ∅, then Bcd = 0 and πct(Bcd) ⊆ U , so we will suppose c− ̸= ∅. If b ∈ Bcd, then

b = φc ◦ ιsc(v) for some s ∈ c− and v ∈ Vs. Then πct(b) = πct ◦ φc ◦ ιsc(v) = Vs≤t(v) ∈ U by

the definition of c−. Thus πct(Bcd) ⊆ U . Next, if x ∈ πct(Dcd), then x ∈ ker ιtd, so Vt≤r(x) = 0

for some r ∈ d− with r ≥ t. Then x ∈ πct(Lc) ∩ kerVt≤r ⊆ U by the definition of d−, so we have

πct(Dcd) ⊆ U , and thus πct(Bcd +Dcd) ⊆ U .

Finally, we apply Lemma 2.6.3 to understand πct(Acd); this will be the only part of the proof

that requires V to be pointwise finite-dimensional. By Lemma 2.6.3(2), πct(Lc) = imVs≤t for

some s ∈ c+ with s ≤ t, so by the definition of c+, we have πct(Lc) ⊈ U . If d+ = ∅, then Ld = 0

andAcd = Lc, so πct(Acd) = πct(Lc) ⊈ U . On the other hand, if d+ ̸= ∅, then by Lemma 2.6.3(1),

Acd = kerπcr for some r ∈ d+. Then πct(Acd) = πct(kerπcr) = πct(Lc) ∩ kerVt≤r ⊈ U by the

definition of d+. We have thus shown πct(Bcd +Dcd) ⊆ U and πct(Acd) ⊈ U , which implies that

the set of sections covers Vt.

Finally, we use these lemmas to prove Theorem 2.2.2.

Proof of Theorem 2.2.2. Suppose V is pointwise finite-dimensional. For any cuts c and d such that

c+ ∩ d− ̸= ∅, we have a submodule V cd of V defined by

V cd
t =


πct(Wcd) if t ∈ c+ ∩ d−

0 if t /∈ c+ ∩ d−

and with maps in the interval c+∩d− defined as the restrictions of the maps of V . By Lemma 2.6.2,

for each t ∈ c+ ∩ d−, πct restricts to an isomorphism Wcd
∼= V cd

t . Thus, the maps of V cd in the

interval c+ ∩ d− are isomorphisms: V cd
s≤t = πct|Wcd

◦ (πcs|Wcd
)−1. Choosing a basis for Wcd, we

find that V cd is a direct sum of dimWcd interval modules on the interval c+ ∩ d−.

The module V is in fact the direct sum of the modules V cd for all pairs of cuts (c, d) with

c+ ∩ d− ̸= ∅. We first verify this for each t. Lemma 2.6.4 gives a set of disjoint sections of the
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form (πct(Bcd + Dcd), πct(Bcd + Acd)) that covers Vt and Lemma 2.6.2 shows that in each case,

πct(Bcd + Acd) = πct(Bcd +Dcd)⊕ πct(Wcd). Therefore, Lemma 2.6.1 shows that Vt is the direct

sum
⊕

c,d πct(Wcd) taken over all cuts c and d with t ∈ c+ ∩ d−. By definition of V cd, we have

Vt =
⊕

c,d V
cd
t , where now the direct sum is taken over all pairs of cuts (c, d) with c+ ∩ d− ̸= ∅.

Finally, we must check that Vs≤t =
⊕

c,d V
cd
s≤t. The map V cd

s≤t is the restriction of Vs≤t if s and t

are in c+ ∩ d− by definition, as well as if s ∈ c− or s ∈ d+ since then they are zero maps. So

it is sufficient to check that Vs≤t(V cd
s ) = 0 if s ∈ c+ ∩ d− and t ∈ d+. If v ∈ V cd

s = πcs(Wcd),

then v = πcs(w) for some w ∈ Wcd ⊆ Acd = kerLcd. Then Vs≤t(v) = Vs≤t(πcs(w)) = πct(w) =

πdt(Lcd(w)) = πdt(0) = 0, as required. This completes the proof that V =
⊕

c,d V
cd.

Remark 2.6.5. The proof of Theorem 2.2.2 only requires that V is pointwise finite-dimensional

in its use of Lemma 2.6.4, which in turn only requires the results of Lemma 2.6.3. This means the

interval decomposition found above is valid for any persistence modules that satisfy the properties

given in Lemma 2.6.3. The papers [11,17] give more general conditions under which a persistence

module indexed by a totally ordered set are interval decomposable.

Exercises

Exercise 2.6.1. Following [11, 27], call a persistence module V over R ephemeral if whenever

s < t, the map Vs≤t is the zero map, and define the radical radV of a persistence module V over

R to be the submodule given by

(radV )t =
⋃
s<t

imVs≤t.

Ephemeral modules have barcodes in which all bars have length zero (that is, all bars are single-

tons), and the paper [11] formalizes the philosophy of ignoring bars of length zero by building

a category that “quotients out” ephemeral modules. This exercise builds some intuition for this

approach.

1. Show that any ephemeral persistence module is interval decomposable, where the support of

each interval module summand is a singleton. This relies on the fact (or axiom) that every

vector space has a basis.
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2. The radical of V can equivalently be defined by colimits: show that

(radV )t = im
(
colim
s<t

Vs → Vt
)
.

How does this relate to the colimits Cc defined in this section?

3. Show that the quotient V/(radV ) is ephemeral. Furthermore, show it is the “universal

ephemeral image of V ” in the sense of the following universal property: given an ephemeral

module E and a morphism φ : V → E, there exists a unique morphism ψ : V/(radV ) → E

such that the following diagram commutes.

V

V/(radV ) E

φ

ψ
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Chapter 3

Filtrations of Spaces and Persistent Homology

Having established firm algebraic foundations in Chapter 2, we now turn to the topological

and geometric side of persistence. Our goal in this chapter is to develop the theory of persistent

homology, the primary tool of applied topology. Just as homology assigns vector spaces to topo-

logical spaces, persistent homology assigns persistence modules and their persistence diagrams

or barcodes to indexed collections of topological spaces. These collections of topological spaces

are generally constructed to embellish a single space or sample of points, which in practice can

be a dataset. If the space or dataset is viewed as the input to persistent homology, the resulting

persistence diagram or barcode is the output, providing a condensed, homological summary of the

input. We will begin by introducing parameterized collections of topological spaces and persistent

homology abstractly, then move on to specific methods of associating them to given inputs and

theoretical properties of these methods.

The primary references for this chapter include [7,9] for the classic stability results for sublevel

set filtrations and simplicial complexes, [55] for the definition of simplicial metric thickenings,

and [29, 30] for their stability. We will refer to [56] when describing connections to Morse theory

and to [16] for general definitions related to filtrations and simplicial complexes. We will end the

chapter with a section summarizing reconstruction results, relating certain simplicial complexes to

spaces on which they are built: references are provided for the theorems given there.
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3.1 Filtrations
A filtration of topological spaces over an index set R ⊆ R consists of

• a topological space Xt for each t ∈ R

• for elements s ≤ t in R, a continuous function Xs≤t : Xs → Xt

such that Xt≤t = 1Vt for all t ∈ R and Xs≤t ◦ Xr≤s = Xr≤t whenever r ≤ s ≤ t in R. In

categorical terms, a filtration of topological spaces is a functor from the poset R, considered as

a category, to the category Top of topological spaces. Note the similarity to the definition of a

persistence module: viewed as functors, the only difference between a persistence module and a

filtration of topological spaces is the target category. Morphisms of filtrations and interleavings of

filtrations over R can be defined similarly to those for persistence modules. Soon we will describe

a slight generalization of interleavings that will be especially useful. Frequently, the maps Xs≤t

will all be inclusions. In this case, imagining t as time, we can picture the filtration as a space

growing over time.

Let {Xt}t∈R be a filtration and let Hn be homology29 in dimension n ≥ 0 over the field K. The

collection {Hn(Xt)}t∈R of vector spaces then forms a persistence module over R, where the maps

are the induced maps on homology: Hn(Xs≤t) : Hn(Xs) → Hn(Xt). Simply put, composing the

functor X : R → Top with the homology functor Hn : Top → Vect gives a functor R → Vect.

This persistence module is the n-dimensional persistent homology module, or simply the persistent

homology, of the filtration {Xt}t∈R. While this is well defined for any R ⊆ R, we will mostly

consider cases where R = R; we will see shortly that there are many standard ways of obtaining a

filtration indexed by R.

The term “persistent homology” also refers to the use of these persistence modules in applied

topology, which typically involves turning an input into a filtration, then into a persistent homology

module, and finally into a persistence diagram or barcode. Persistent homology is one of the most

29We will omit the field K from the notation, writing Hn(X) for the n-dimensional homology of X with coefficients
in K. In general, singular homology may always be used, but in the appropriate settings, it is more convenient to
use simplicial or cellular homology.
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important tools in applied topology, so much so that it is sometimes viewed as synonymous with

the entire field. We will see later in this chapter how filtrations can be constructed to enrich the

structure of a given space or a sample of its points, viewed as the input to persistent homology. The

persistent homology module of the filtrations records homological data from the input. In many

cases, we will be able to show that a persistent homology module is q-tame, which implies it has a

well-defined persistence diagram. This persistence diagram is then viewed as the output of persis-

tent homology. We will also describe persistent homology modules using barcodes, since in most

specific cases, our persistent homology modules will be interval decomposable. Persistent homol-

ogy can thus be understood as giving an incomplete or reductive view of a filtration, providing a

summary of its homological features.

Barcodes and persistence diagrams provide a way to view how these homological features of

a space, i.e. holes or path-connected components, evolve as the space evolves. A bar ⌈l, u⌋ in the

barcode tells us that an n-dimensional feature, i.e. a generator of the n-dimensional homology

vector space, persists over the interval ⌈l, u⌋. Similarly, a point (x, y) in a persistence diagram

records the beginning and end of the interval this feature is present. We will say that the fea-

ture/hole/component/generator/bar is born at x and dies at y and refer to x and y as the birth and

death times. Thus, a point higher above the diagonal represents a feature that is alive longer. This

interpretation is subject to the Elder Rule, which states that if at some point in time two features

merge (for instance, if a gap fills in between two path components), then the older feature contin-

ues and the younger dies (see Exercise 2.2.1). This does not mean that a younger feature cannot

outlive an older one, just that when this happens, the older does not merge with the younger when

it dies.

The isometry theorem (Theorem 2.5.5) will give us a way to understand the persistent ho-

mology of a filtration in terms of the barcode or persistence diagram. To this end, we will want

to construct interleavings of persistent homology modules, and this is typically done following

a specific outline. Given two persistent homology modules {Hn(Xt)}t∈R and {Hn(Yt)}t∈R, we

can attempt to construct the morphisms of an ε-interleaving using the induced maps of continuous
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functions ft : Xt → Yt+ε and gt : Yt → Xt+ε for all t. For the collections of induced maps to

form an interleaving, the diagrams given in Section 2.1.2 must commute. But since homotopic

maps induce equal maps on homology, it is sufficient to check that the corresponding diagrams for

the filtrations of spaces, given below, commute up to homotopy. This means any two composite

maps in a diagram starting and ending at the same spaces must be homotopic (relaxing the usual

requirement that they be equal in a commutative diagram). We will apply this technique in proofs

in both Sections 3.4 and 3.6.

Xt Xt+2ε Xt+ε

Yt+ε Yt Yt+2ε

ft

Xt≤t+2ε

ft+ε

gt+ε

gt

Yt≤t+2ε

Xs Xt Xs+ε Xt+ε

Ys+ε Yt+ε Ys Yt

Xs≤t

fs

ft

Xs+ε≤t+ε

Ys+ε≤t+ε

gs

Ys≤t

gt

Before moving forward with our study of filtrations, we take a moment here to consider persis-

tent cohomology, obtained by applying a cohomology functor Hn to a filtration. If {Xt}t∈R is a fil-

tration, then because cohomology is contravariant, we have mapsHn(Xs≤t) : H
n(Xt) → Hn(Xs).

We can view this collection of maps as defining a persistence module over the opposite poset of R,

giving a contravariant persistence module. Since R with the reversed order is isomorphic to R with

the usual order, all our results on persistence modules over R apply with the appropriate changes in

directions. Since we are only considering homology and cohomology with coefficients in a field,

Hn(Xt) is naturally isomorphic to the dual space of Hn(Xt) by the universal coefficient theorem

for cohomology (see Corollary III.4.2 of [49]). Thus, the persistent cohomology module can be

obtained, up to isomorphism, by applying the dual space functor to the persistent homology mod-

ule (see Exercise 2.3.3). To consider the effect on interval-decomposable modules, we note that the

dual of an interval module is still an interval module on the same interval (albeit with maps in the

77



reverse direction) and the dual of a direct sum is the direct sum of the dual spaces if the direct sum

is finite. Together with Theorem 2.2.2, these imply that a pointwise finite-dimensional persistence

module has a dual module that is interval decomposable, with the same intervals. Thus, in cases

where a persistent homology module over R is pointwise finite-dimensional, persistent homology

and persistent cohomology produce identical barcodes and persistence diagrams. While we will

use this as a justification for our focus on persistent homology, there are still sometimes reasons

to take the perspective of persistent cohomology. For instance, [57] exploits the relationship be-

tween cohomology and homotopy classes of maps to the circle. Experimentally, computations can

be performed faster using persistent cohomology [5]. Recent work has also considered the cup

product for cohomology in a persistent setting [58, 59].

Exercises

Exercise 3.1.1. Just as with topological spaces, we can combine filtrations of spaces into new filtra-

tions. This exercise considers simple operations combining filtrations and their effect on persistent

homology.

1. Given an indexed family {{Xa
t }t∈R}a∈A of filtrations, we can form the filtration of the dis-

joint unions {
⊔
a∈AX

a
t }t∈R, and if the filtrations are in fact filtrations of pointed spaces,

we can form the filtration of wedge sums {
∨
a∈AX

a
t }t∈R. Find the persistence module

{Hn(
⊔
a∈AX

a
t )}t∈R in terms of the persistence modules {Hn(X

a
t )}t∈R. Under appropri-

ate assumptions, find the persistence module {Hn(
∨
a∈AX

a
t )}t∈R in terms of the persistence

modules {Hn(X
a
t )}t∈R. What does this imply about their barcodes and persistence diagrams,

assuming they are well defined? (This will involve a specific operation on multisets; refer to

Section 1.2.3 for conventions on multisets.)

2. For any given interval-decomposable persistence module V and any n ≥ 1, construct a fil-

tration X such that the persistence module {Hn(Xt)}t∈R is isomorphic to V . This shows we

can realize any barcode as a persistent homology barcode of some filtration. What prevents
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this from being true for n = 0? Show we can also include the case of n = 0 by switching to

reduced homology.

3. Given an interval-decomposable module V n for each n ∈ Z≥0, can we find a filtration X

such that {H̃n(Xt)}t∈R ∼= V n for all n?

Exercise 3.1.2. The “Hawaiian earring” is the space defined by

E =
∞⋃
n=1

{
(x, y) ∈ R2 | (x− 1

n
)2 + y2 = ( 1

n
)2
}
.

Define a filtration by setting Xt = ∅ for t < 0, setting

Xt = E ∪
{
(x, y) ∈ R2 | (x− t)2 + y2 ≤ t2

}
for all t ≥ 0, and letting the maps Xs≤t be the inclusions. Show that the persistent homology mod-

ule {H1(Xt)}t∈R is not interval decomposable (use the fact that H1(E) has uncountable dimension

and refer to Exercise 2.3.2).

3.2 Sublevel Set Persistent Homology
Let X be a topological space and let f : X → R be any function (not necessarily continuous).

A subset of X of the form f−1((−∞, t)) or f−1((−∞, t]) is called a sublevel set; we can often

picture f as height, in which case a sublevel set consists of all points below a certain level. For any

s ≤ t, we get inclusions f−1((−∞, s)) ↪→ f−1((−∞, t)) and f−1((−∞, s]) ↪→ f−1((−∞, t]),

so {f−1((−∞, t))}t∈R and {f−1((−∞, t])}t∈R along with inclusion maps define filtrations called

the sublevel set filtrations of X with respect to f . The sublevel sets “filter” X according to f ,

and in addition to picturing f as height, we may also imagine the sublevel sets growing over

time, filling in the space X . The persistent homology module obtained by applying Hn to such

a sublevel set filtration is called the n-dimensional sublevel set persistent homology of X with

respect to f . By default, we will work with sublevel sets f−1((−∞, t]) defined with a closed
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interval; the results apply for the open interval as well, and from the viewpoint of persistence, the

two filtrations {f−1((−∞, t))}t∈R and {f−1((−∞, t])}t∈R are essentially the same, since for any

ε > 0, inclusion maps define an ε-interleaving between them. This implies that, when defined,

their persistence diagrams are equal, and their barcodes will only differ on whether endpoints of

bars are open or closed.

The following theorem establishes that certain sublevel set filtrations have q-tame persistent

homology modules, which allows us to define their persistence diagrams. Notice how the finite-

ness condition in the theorem (the requirement of a finite simplicial complex) yields the finiteness

condition of q-tameness for persistence modules.

Proposition 3.2.1 (Theorem 2.22 of [27]). SupposeX is a topological space that is homeomorphic

to a finite simplicial complex and f : X → R is continuous. Then for any n ≥ 0, the n-dimensional

sublevel set persistent homology module of X with respect to f is q-tame and thus has a well-

defined persistence diagram.

Proof. LetXt = f−1((−∞, t]) for each t. We will supposeX is a finite simplicial complex, which

implies it is compact and metrizable, and we will assume it has been given a metric. Given any

s < t in R, we must show that the mapHn(Xs) → Hn(Xt) induced by the inclusion map is of finite

rank. The preimages f−1(s) and f−1(t) are disjoint closed sets and are thus compact, so the dis-

tance between them is positive. Thus, by subdividing X as many times as needed, we can assume

no simplex intersects both f−1(s) and f−1(t). Letting Y be the union of the simplices that intersect

Xs, we have inclusionsXs ↪→ Y ↪→ Xt, which induce mapsHn(Xs) → Hn(Y ) → Hn(Xt). Since

Y is a finite simplicial complex, Hn(Y ) has finite dimension, so the map Hn(Xs) → Hn(Xt) has

finite rank.

The persistence diagram of the n-dimensional sublevel set persistent homology of X allows us

to view the n-dimensional holes inX as it is filtered by f . A point (x, y) in the persistence diagram

represents a hole formed at time x that is filled in at time y. If f is bounded above by some r ∈ R,

then Xt = X for all t > r, so the collection of persistent homology bars alive after r indicate the

homology of the full space X .
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The following theorem is our first in a set of results known all referred to as the stability of

persistent homology. These results capture a desirable property of persistent homology in the set-

tings of various input spaces and filtrations: a change to the input produces at most a proportional

change to the persistence diagram. In practical settings, the change to the input can be interpreted

as an amount of error or noise in a dataset, so these theorems imply that adding a small amount of

noise produces a small change to the persistence diagram. In our current case, the change to the

input will be a change to the function defining a sublevel set filtration on a fixed space. This change

will be measured by the norm ∥ · ∥∞ on the set of real-valued functions on a space X , defined by

∥f∥∞ = supx∈X |f(x)|.

Theorem 3.2.2 (Stability of Sublevel Set Persistent Homology [7]). Let X be a topological space

and suppose f and g are two real-valued functions on X such that the associated n-dimensional

sublevel set persistent homology modules are q-tame. Then letting Df and Dg be their persistence

diagrams,

dB(Df , Dg) ≤ ∥f − g∥∞.

Proof. The result holds if ∥f−g∥∞ = +∞, so suppose ∥f−g∥∞ is finite. LetXt = f−1((−∞, t])

and let X̃t = g−1((−∞, t]) for each t, and let ε = ∥f − g∥∞. If x ∈ Xt, then g(x) ≤ f(x) +

ε ≤ t + ε, so we have inclusion maps Xt ↪→ X̃t+ε for all t. Similarly, we have inclusion maps

X̃t ↪→ Xt+ε. Applying Hn, we get a ε-interleaving of persistent homology modules, so the result

follows from Theorem 2.5.5.

3.2.1 Connections to Morse Theory

Those familiar with Morse theory may be able to recognize its connection with sublevel set

persistent homology. Both examine the topology of a space through sublevel sets, and in fact, the

main theorems of Morse theory translate into statements about the sublevel set persistent homology

of manifolds. In what follows, we will assume a basic knowledge of Morse theory and cover the

connections to persistent homology; see [56, 60] for the relevant results of Morse theory. Here we

will use cellular homology, described, for instance, in [61].
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For the remainder of this section, let M be a differentiable manifold, let f : M → R be a

Morse function, and let Mt = f−1((−∞, t]) for all t. Each result below will assume Mt is com-

pact for all t; note that this is satisfied automatically if M is compact, since each Mt is a closed

subset of M . Under this assumption, f attains a minimum value, so that Mt is empty for t less

than this minimum. Furthermore, this minimum is attained at a critical point of index 0. We will

rely on the following characterization of critical points of f : the set of critical points of f con-

tained in any Mt is closed and therefore compact, and since the critical points of a Morse function

are isolated, compactness implies there are finitely many. We start by establishing the existence

of persistence diagrams by showing the sublevel set persistent homology modules are pointwise

finite-dimensional. A finiteness condition on the manifold, the compactness of the sublevel sets, is

what implies this finiteness condition on the persistence module.

Proposition 3.2.3. If Mt is compact for all t and n ≥ 0, the persistence module {Hn(Mt)}t∈R is

pointwise finite-dimensional and thus has a well-defined barcode and persistence diagram.

Proof. The proof of Theorem 3.5 of [56] shows that as long as t is not a critical value of f ,

Mt is homotopy equivalent to a CW complex with one cell for each critical point of f in Mt.

The CW complex thus has finitely many cells, so Hn(Mt) has finite dimension. Furthermore,

Remark 3.4 of [56] shows that if t is a critical value of f , then Mt is a deformation retract of Mt+ε

for some sufficiently small ε > 0, so in this case Hn(Mt) still has finite dimension. This shows the

persistence module {Hn(Mt)}t∈R is pointwise finite-dimensional. By Theorem 2.2.2, it is interval

decomposable, so it has a well-defined barcode and persistence diagram.

Theorem 3.2.4. Suppose Mt is compact for all t, and for any n ≥ 0, let V be the persistence

module {Hn(Mt)}t∈R. Then any bar in bar(V ) is of the form [x, y), where x is a critical value

of f corresponding to a critical point of index n, and y either is +∞ or is a critical value of f

corresponding to a critical point of index n+ 1.

The same characterization applies to points (x, y) of dgm(V ), but the statement of the theorem

in terms of the barcode is slightly stronger: it specifies that each bar has a closed left endpoint and

an open right endpoint.
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Proof. By Theorem 3.1 of [56], an inclusion map Ms ↪→Mt is a homotopy equivalence if there is

no critical value of f in [s, t], so endpoints of bars must occur at critical values of f . Furthermore,

by Remark 3.4 of [56], if t is a critical value of f , then the inclusion Mt ↪→ Mt+ε is a homotopy

equivalence for all sufficiently small ε > 0, so each bar has a closed left endpoint and an open

right endpoint. Following the proof of Theorem 3.5 of [56], the homotopy type of each Mt is a

CW complex, where a change in homotopy type occurs when t reaches critical values of f . An

n cell is added for each critical point of index n, so by cellular homology, an Hn bar can only be

born at the critical value of a critical point of index n and can only die at the critical value of a

critical point of index n+ 1.

Theorem 3.2.4 reinterprets the ideas of Morse theory in terms of persistent homology, showing

that the persistent homology bars are connected to the critical values of f . This provides us with

another interpretation of sublevel set persistence that may resonate with those who have previously

learned Morse theory: sublevel set persistent homology generalizes the approach of Morse theory

beyond the setting of differentiable manifolds to consider arbitrary topological spaces and func-

tions (this perspective dates back to early in the history of persistent homology; for instance, see

Section 2 of [7]). In this general setting, endpoints of persistent homology bars represent general-

ized “critical values,” at which the topology of the sublevel set filtration changes. The birth time

of an Hn bar indicates the formation of an n-dimensional hole, which arises in the Morse-theoretic

setting by attaching an n-cell. The death of this Hn bar corresponds to the hole being filled in,

which is achieved in the Morse-theoretic setting by attaching an (n+ 1)-cell.

Exercises

Exercise 3.2.1. Suppose X is a filtration of topological spaces over R such that each map Xs≤t is

an embedding. Show that there exists a sublevel set filtration Y of some topological space such that

X is ε-interleaved with Y for any ε > 0 (as a first step, show that X is isomorphic to a filtration

in which every space is a subset of some fixed topological space Z and all maps are inclusions).

Compare this to Exercise 3.3.1, which gives a similar result.
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3.3 Filtrations of Simplicial Complexes
In this section, we work with some of the most important types of filtrations used in applied

topology, in which the topological spaces are all simplicial complexes and the maps are simplicial

maps; any filtration defined this way is a filtration of simplicial complexes, also called a filtered

simplicial complex. In many cases, these simplicial maps are in fact all inclusions, so this is

sometimes assumed when defining filtrations of simplicial complexes. We will assume the basic

facts of simplicial complexes, as developed in [62], for instance. By default, the topology of

a simplicial complex will mean the coherent topology (also called the weak topology, the final

topology, or the colimit topology), in which a set is open if and only if its intersection with each

simplex is open. We will not explicitly distinguish between a simplicial complex and its geometric

realization; context should always make it clear whether we are discussing a simplex as a finite set

of vertices or as a geometric simplex homeomorphic to one in Euclidean space.

Just as simplicial complexes provide a useful setting for homology, filtrations of simplicial

complexes provide a useful setting for persistent homology. Simplicial complexes are a funda-

mental tool in applied topology because they allow for concrete, combinatorial descriptions of

topological spaces, and it is straightforward to construct simplicial complexes on datasets arising

in applications. Furthermore, simplicial complexes come with the practical technique of simplicial

homology, which makes it possible to compute homology in applications. Simplicial homology

with field coefficients and finite simplicial complexes reduces to matrix computations, and this

in turn has led to algorithms that can compute persistent homology for a filtration of simplicial

complexes [1, 5, 16]. We will also see that simplicial complexes provide a useful setting for theo-

retical aspects of persistent homology: this will be exemplified in Section 3.4 by one of the most

important results in the area, the stability of persistent homology for certain filtrations of simplicial

complexes.

From a practical perspective, the various filtrations of simplicial complexes considered below

provide ways to associate additional topological structure to discrete sets of points, such as those

arising in applications. We will build simplicial complexes that connect points that are sufficiently
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close together, thereby approximating the shape outlined by the initial set of points. This leads to

not just a single simplicial complex, but a filtration, where the interpretation of “sufficiently close”

is controlled by the parameter. In some cases, we may hypothesize that the original set of points

is sampled from some underlying space, in which case the simplicial complexes are an attempt to

reconstruct that space.

From a theoretical perspective, these complexes can be defined for any metric space, including

those that have infinitely many points and are not discrete. They will play a prominent role in

Section 3.4 when we compare the topological features of two metric spaces that are close to each

other (in a distance we will define there).

3.3.1 Vietoris–Rips Complexes

We now come to our first method of constructing filtrations of simplicial complexes. If (X, dX)

is a metric space, define the Vietoris–Rips simplicial complexes of X by

VR≤(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ diam({x1, . . . , xn}) ≤ r
}

VR<(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ diam({x1, . . . , xn}) < r
}
.

Here diam indicates the diameter of a set of points in a metric space, the supremum of distances

between pairs of points in the set; the condition diam
(
{x1, . . . , xn}

)
≤ r is often rewritten as

dX(xi, xj) ≤ r for all i and j. VR≤(X; r) is the Vietoris–Rips complex with the ≤ convention,

and VR<(X; r) is the Vietoris–Rips complex with the < convention. The variable r ∈ R is called

the scale parameter or simply the parameter. Vietoris–Rips complexes provide the most straight-

forward notion of “connecting nearby points,” since a simplex is formed out of any finite collection

of points that are pairwise close, as measured by r. In fact, since the complex is determined by

a condition on pairs of points, the entire complex can be determined once the 1-simplices have

been determined: viewing the 1-skeleton as a graph, each clique in the graph becomes a simplex.

For this reason, Vietoris–Rips complexes are examples of clique complexes on graphs. Note that
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VR≤(X; r) is empty for r < 0 and VR<(X; r) is empty for r ≤ 0, as the diameter of any nonempty

set of points in X is at least 0. Furthermore, if X is bounded, then VR≤(X; r) is contractible for

r ≥ diam(X) and VR<(X; r) is contractible for r > diam(X): in these cases, all finite subsets

are simplices, so a straight line homotopy can be used to contract the simplicial complex to any

vertex.

We have inclusions VR≤(X; r1) ↪→ VR≤(X; r2) whenever r1 ≤ r2, so the collection of

all VR≤(X; r) and inclusion maps forms a filtration, which we write as VR≤(X; _) or simply

VR≤(X). Similarly, for the < convention, we get a filtration denoted VR<(X; _) or VR<(X).

Applying homology Hn gives persistence modules Hn(VR≤(X)) and Hn(VR<(X)), either of

which may be referred to as the Vietoris–Rips persistent homology of X . We will see soon (in

Proposition 3.4.5) that these persistence modules have well-defined persistence diagrams under

reasonable conditions.

Many results we will state about Vietoris–Rips complexes apply to both the < and ≤ conven-

tions. To be able to discuss both concisely, we will adopt the convention, used for instance in [55],

of writing VR(X; r) or VR(X) whenever either convention can be used, with the understanding

that the choice of convention must be applied consistently throughout a statement or proof. As with

sublevel set persistence, the choice of convention is negligible from the viewpoint of persistence:

for any ε > 0, inclusion maps give an ε-interleaving between VR<(X) and VR≤(X). This implies

equal persistence diagrams and barcodes that differ at most at endpoints of bars, as long as they

are defined. We will see other examples of filtrations with < and ≤ conventions in the following

sections: these properties apply verbatim to them as well.

In addition to the inclusions VR(X; r1) ↪→ VR(X; r2) for r1 ≤ r2, we can also consider maps

that arise by changing the metric space rather than the scale parameter. If Y is a subspace of X ,

we have natural maps VR(Y ; r) ↪→ VR(X; r) for all r; these are the simplicial maps induced by

the inclusion Y ↪→ X . More generally, any 1-Lipschitz map Z → X of metric spaces induces

simplicial maps VR(Z; r) → VR(X; r). Using these maps, the Vietoris–Rips filtration can be

considered as a functor from the category consisting of metric spaces and 1-Lipschitz maps to the
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category of filtered simplicial complexes, defined as the category of functors from the poset R to

the category of simplicial complexes and simplicial maps.

Example 3.3.1. For certain spaces, Vietoris–Rips complexes can be identified with combinatorial

approaches: we give a motivating example here. Let X be the vertices of a cyclic graph on 2n

vertices with n ≥ 2. Define a metric on X by letting dX(v1, v2) be the length of the shortest path

between v1 and v2. We find VR≤(X; r) for some values of r; these results could easily be adjusted

to use the < convention as well. For r ∈ [0, 1), the only simplices of VR≤(X; r) are the vertices,

so VR≤(X; r) is a discrete space of 2n points. For r ∈ [1, 2), the only additional simplices are the

edges between adjacent vertices, so we find VR≤(X; r) is the cyclic graph itself, homeomorphic

to S1. For r ∈ [2, 3), we start to distinguish between the various n. For n = 2 and r ∈ [2, 3),

VR≤(X; r) is the entire tetrahedron and is thus contractible. For n = 3 and r ∈ [2, 3), the maximal

simplices consist of all triangles on three consecutive vertices and the two triangles with vertices at

alternating points; VR≤(X; r) is then homeomorphic to the boundary of an octahedron, and thus

to S2. For n ≥ 4 and r ∈ [2, 3), the maximal simplices are just the triangles on three consecutive

vertices, so VR≤(X; r) ∼= S1 × I .

Finally, we consider r ∈ [n − 1, n). In this case, every vertex is within r of all other vertices

except the one opposite it, so σ ⊆ X is in VR≤(X; r) if and only if σ contains no pair of opposite

vertices. This allows us to identify the maximal simplices: they are the simplices consisting of n

vertices, with exactly one chosen from each pair of opposite vertices. This becomes a recognizable

shape when realized in Rn: letting e1, . . . , en be the standard unit vectors, we will let our vertices

be the 2n points ±e1, . . . ,±en. Identify each pair ±ei with a pair of opposite points in the cyclic

graph, so that the maximal simplices are of the form {±e1, . . . ,±en}, where all the signs can be

chosen independently. The simplicial complex formed is the boundary of the cross-polytope: it

is the boundary of a square in R2, the boundary of an octahedron in R3 (we observed this case

directly above), and in general is homeomorphic to an (n − 1)-sphere in Rn. Therefore, we have

VR≤(X; r) ∼= Sn−1 for r ∈ [n− 1, n).
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The cross-polytope also appears for certain other symmetric vertex sets in which each vertex

has a corresponding “opposite” vertex, for instance, the set of 2n vertices of an n-dimensional

hypercube. While we have considered the simplest scale parameters here, the homotopy types of

Vietoris–Rips complexes of cyclic graphs are known at all scale parameters [63]. This inspired

work on the infinite version of the problem: the homotopy types of the Vietoris–Rips complexes of

the circle S1 were found in [64], and we will study related spaces in Chapter 4. The Vietoris–Rips

complexes of hypercubes, on the other hand, are still unknown for many scale parameters [65].

3.3.2 Čech Complexes

Here we consider another approach to building simplicial complexes on top of a metric space.

There are two closely related families of Čech simplicial complexes, and both also come with a

choice between a ≤ or a < convention. Let (X, dX) be a metric space. Define the intrinsic Čech

simplicial complexes of X by

Č≤(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ for some c ∈ X, dX(xi, c) ≤ r for all i
}

Č<(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ for some c ∈ X, dX(xi, c) < r for all i
}
.

Again, we have inclusions Č≤(X; r1) ↪→ Č≤(X; r2) and Č<(X; r1) ↪→ Č<(X; r2) when r1 ≤ r2,

so the collections of simplicial complexes and inclusion maps define filtrations denoted Č≤(X; _)

and Č<(X; _), or more simply Č≤(X) and Č<(X). We will follow the same convention as for

Vietoris–Rips complexes, writing Č(X; r) and Č(X) in cases where either convention may be

used, when applied consistently. Each simplex in a Čech complex is a finite collection of points

that fits inside some ball of radius r inX . For a simplex {x1, . . . , xn} ∈ Č≤(X; r), any c ∈ X such

that d(xi, c) ≤ r for all i is called an r-center, or simply a center, for the simplex, and similarly

for simplices of Č<(X; r). Similarly to the Vietoris–Rips complexes, Č≤(X; r) is empty if r < 0

and Č<(X; r) is empty if r ≤ 0. If X is bounded, then Č≤(X; r) is contractible if r ≥ diam(X)

and Č<(X; r) is contractible if r > diam(X), since in these cases all finite subsets are simplices.
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As with Vietoris–Rips complexes, we also have natural maps Č(Y ; r) ↪→ Č(X; r) if Y ⊆ X and

more generally, any 1-Lipschitz map f : Z → X between metric spaces induces natural simplicial

maps Č(Z; r) → Č(X; r).

Čech complexes and Vietoris–Rips complexes both contain simplices meeting a size re-

quirement, and we can compare these two requirements. If {x1, . . . , xn} ∈ VR≤(X; r), then

{x1, . . . , xn} ∈ Č≤(X; r), since any xi is an r-center for the simplex. On the other hand,

if {x1, . . . , xn} ∈ Č≤(X; r), then there is a center c such that dX(xi, c) ≤ r for all i, so

dX(xi, xj) ≤ 2r for all i, j and thus {x1, . . . , xn} ∈ VR≤(X; 2r). The same arguments apply

with < in place of ≤, so with either convention, we have the following relationships:

VR(X; r) ⊆ Č(X; r) ⊆ VR(X; 2r).

Example 3.3.2. As in Example 3.3.1, let X be the vertices of a cyclic graph with 2n vertices

with n ≥ 2, and give X the shortest path metric. We find the Čech complexes Č≤(X; r) for

some simple scale parameters. In such finite metric spaces, the Čech complexes can be identified

by finding the r-ball centered at each point. For r ∈ [0, 1), Č≤(X; r) is a discrete space with

2n points. For r ∈ [1, 2), the maximal simplices are the triangles formed by three consecutive

vertices; if n ≥ 3 then Č≤(X; r) is homeomorphic to a cylinder S1 × I , but if n = 2, then the

four triangles form the boundary of a tetrahedron, making Č≤(X; r) homeomorphic to S2. This

behavior in fact generalizes: for all n ≥ 2 and r ∈ [n− 1, n), an r-ball centered at a point contains

all but the opposite point. Since these form the maximal simplices, Č≤(X; r) is homeomorphic

to the boundary of a (2n − 1)-simplex, so Č≤(X; r) ∼= S2n−2. As in the Vietoris–Rips case, this

same technique may be applied to other symmetric X in which each point has a corresponding

“opposite” point. The homotopy types of Čech complexes of cyclic graphs are known at all scale

parameters [66].

The Čech complexes Č(X; r) are instances of a more general type of simplicial complex. Given

any topological space X and a collection U = {Uj}j∈J of subsets, the nerve complex or more
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simply the nerve of U is the simplicial complex NU that has the finite subset σ ⊆ J as a simplex if

and only if ∩j∈σUj is nonempty. In general, we will allow the Uj to be arbitrary subsets of X , but

in some settings it can be helpful to require that U be an open cover. To obtain Čech complexes

from this construction, fix r ≥ 0, let (X, dX) be a metric space, let J = X , and for each x ∈ X ,

let Ux = {y ∈ X | dX(x, y) ≤ r}. Then ∩x∈σUx ̸= ∅ if and only if there exists a c ∈ X such

that dX(x, c) ≤ r for all x ∈ σ, so we have NU ∼= Č≤(X; r). Similarly, we can obtain Č<(X; r)

for any r > 0 by replacing all instances of ≤ with <. This is a helpful point of view because any

results applying to nerve complexes in general apply to Čech complexes. In particular, we will

briefly mention in Section 3.8 how a well-known result for nerve complexes, the nerve theorem,

implies that Č(X; r) is homotopy equivalent to X in certain cases.

The Čech complexes considered so far are called “intrinsic” because any center for a simplex

is required to be in X . However, if X sits inside some larger metric space, we could instead allow

the center to be in the larger space. For instance, X could be a finite set of points in Rn and we

could allow any ball of radius r in Rn. Generalizing a little further, let L and W (“landmarks”

and “witnesses”) be subsets of an ambient metric space X . Define the ambient Čech simplicial

complexes by

Č≤(L,W ; r) =
{
{x1, . . . , xn} ⊆ L

∣∣ for some w ∈ W, dX(xi, w) ≤ r for all i
}

Č<(L,W ; r) =
{
{x1, . . . , xn} ⊆ L

∣∣ for some w ∈ W, dX(xi, w) < r for all i
}
.

We get the analogous filtrations Č≤(L,W ) and Č<(L,W ) from the inclusion maps, and as for the

previous complexes, we write Č(L,W ; r) and Č(L,W ) in cases where either convention can be

used, when applied consistently. Like intrinsic Čech complexes, the ambient Čech complexes are

examples of nerve complexes: for instance, Č<(L,W ; r) is the nerve complex of the collection of

open sets of the form {w ∈ W | dX(x,w) < r} for all x ∈ L. Intrinsic Čech complexes are in fact

special cases of ambient Čech complexes: for any metric spaceX , we have Č(X; r) = Č(X,X; r).
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Exercises

Exercise 3.3.1. Given a filtrationX of simplicial complexes overR ⊆ R such that everyXs≤t is an

injective simplicial map, show that there is a set S and a filtration of simplicial complexes Y such

that every Yt has a vertex set contained in S, every map Ys≤t is an inclusion, and Y is isomorphic

to X . Compare with Exercise 3.2.1, which gives a similar result for sublevel set filtrations.

Exercise 3.3.2. Show that Vietoris–Rips and Čech filtrations of simplicial complexes can be de-

scribed as sublevel set filtrations for appropriate spaces and functions.

Exercise 3.3.3. The definitions of Vietoris–Rips and Čech complexes can in fact be applied to any

extended pseudometric space; this exercise shows we lose very little by restricting our attention

to metric spaces. Recall from Section 1.2.1 that for any extended pseudometric space X , we have

a quotient map qX : X → Q(X) that identifies points at distance 0, making Q(X) an extended

metric space.

1. Show that there are homotopy equivalences VR(X; r) ≃ VR(Q(X); r) that are natural in r.

2. Show that VR(Q(X); r) is the disjoint union of Vietoris–Rips complexes of metric spaces.

3. What do these results imply for the persistent homology of VR(X)?

4. Verify that the same results hold for Čech complexes.

Exercise 3.3.4 (The Vietoris–Rips complex of a tree is contractible [63, 67, 68]). Let T be a tree

with vertex setX , and define a metric onX by letting dX(x1, x2) be number of edges in the unique

path from x1 to x2 in T . Show that VR≤(X; r) is contractible for any r ≥ 1.

3.4 Stability of Persistent Homology for Simplicial Complexes
We are now almost ready to prove a fundamental result for Vietoris–Rips and Čech complexes,

the stability of their persistent homology. Roughly speaking, we will show that if two metric spaces

are close, in an appropriate sense, then the persistence diagrams for their Vietoris–Rips or Čech

persistent homology are close in the bottleneck distance. This will require some notion of distance
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between two metric spaces; the distance that is useful in the setting of Vietoris–Rips and intrinsic

Čech complexes is the Gromov–Hausdorff distance, which we describe now.

3.4.1 The Gromov–Hausdorff distance

The overarching idea of what follows is to consider functions between a pair of metric spaces

that do not alter distances too much. While we will mainly be interested in metric spaces, the

definitions are simple to state in the more general setting of extended pseudometric spaces (see

Section 1.2.1). If (X, dX) and (Y, dY ) are extended pseudometric spaces and f : X → Y is any

function (not necessarily continuous), define the distortion of f by

dis(f) = sup
x1,x2∈X

∣∣dX(x1, x2)− dY (f(x1), f(x2))
∣∣,

and given another (not necessarily continuous) function g : Y → X , define the codistortion of f

and g by

codis(f, g) = sup
x∈X,y∈Y

∣∣dX(x, g(y))− dY (f(x), y)
∣∣.

The definition of distortion can be generalized to relations R ⊆ X × Y by setting

dis(R) = sup
(x,y),(x′,y′)∈R

∣∣dX(x, x′)− dY (y, y
′)
∣∣.

In this section, we will be interested in the case where the relation is a correspondence, that is, a

subsetC ⊆ X×Y that projects surjectively onto bothX and Y (see Section 1.2.2 for background).

To develop a notion of distance between spaces, we can begin with the simple setting in which

both are subspaces of some ambient extended pseudometric space (X, dX). The Hausdorff distance

between two subsets of X is written dXH , or dH when the space X is understood, and is defined30

30In order to give concise definitions that are valid for the empty set, we will establish the following conventions,
which can briefly be described as taking suprema and infima in the interval [0,+∞]. When we write the supremum
of a set generally consisting of distances or absolute values, in the cases where that set is empty, the supremum
will be defined to be 0. For instance, the distortion of a function f : ∅ → Y is 0. The infimum of the empty set
will always be +∞ (this is one reason extended pseudometrics are a convenient setting here). Alternately, one can
restrict the definitions of distances to nonempty sets, although this is unnecessary.
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by

dXH(A,B) = max

{
sup
a∈A

dX(a,B), sup
b∈B

dX(b, A)

}
,

where dX(x,A) = infa∈A dX(x, a) is the distance from a point x ∈ X to a subset A ⊆ X . The

Hausdorff distance forms an extended pseudometric on the set of subsets of X .

To extend this idea to define a distance between two unrelated extended pseudometric spaces

(X, dX) and (Y, dY ), we can imagine embedding X and Y into a common extended pseudometric

space Z, and considering their Hausdorff distance as subsets of Z. In general, this could produce

many different distances, so we will ask for an “optimal” way to perform this embedding by taking

the infimum of this Hausdorff distance over all possible Z and all isometric embeddings of X and

Y into Z. This defines the Gromov–Hausdorff distance [69] between X and Y . The unwieldy

idea of taking an infimum over such a large collection of possible embeddings is made simpler

when we realize that the only relevant information obtained from the embedding is found in the

images of X and Y . We thus get an equivalent definition if we take an infimum over all possible

extended pseudometrics on the disjoint union X ⊔ Y that restrict to dX on X and dY on Y . This

gives our first definition of the Gromov–Hausdorff distance in the proposition below. The other

two definitions, observed in [70], show that the Gromov–Hausdorff distance can be conveniently

rephrased in terms of functions or correspondences, removing the need to consider the larger space

X ⊔ Y . The third definition, based on functions, is the one we will use most often.

Proposition 3.4.1 (Definitions of the Gromov–Hausdorff distance). The following are three

equivalent definitions of the Gromov–Hausdorff distance between extended pseudometric spaces

(X, dX) and (Y, dY ):

1. dGH(X, Y ) = infd d
(X⊔Y,d)
H (X, Y ), where the infimum is taken over all extended pseudomet-

rics d onX⊔Y that restrict to dX and dY onX and Y and d(X⊔Y,d)
H is the Hausdorff distance

in (X ⊔ Y, d)

2. dGH(X, Y ) = 1
2
infC dis(C), where the infimum is taken over all correspondences C ⊆

X × Y
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3. dGH(X, Y ) = 1
2
inff,gmax

{
dis(f), dis(g), codis(f, g)

}
, where the infimum is taken over all

pairs of (not necessarily continuous) functions f : X → Y and g : Y → X .

The following proof assumes that X and Y are nonempty; the degenerate cases with one or

both sets empty can be handled with small adjustments or checked directly from the definitions.

Proof. The three definitions involve infima over correspondences C, pairs of functions f and g,

and extended pseudometrics d meeting the descriptions above. Any one of these can be used to

define instances of the others as follows.

1. Given f and g, we get a correspondence C = {(x, f(x)) | x ∈ X} ∪ {(g(y), y) | y ∈ Y }

that satisfies dis(C) = max{dis(f), dis(g), codis(f, g)}.

2. Given d, for any ε > 0, we can choose functions f : X → Y and g : Y → X such that

d(x, f(x)) ≤ d
(X⊔Y,d)
H (X, Y ) + ε for all x ∈ X and d(g(y), y) ≤ d

(X⊔Y,d)
H (X, Y ) + ε for all

y ∈ Y . Then 1
2
max

{
dis(f), dis(g), codis(f, g)

}
≤ d

(X⊔Y,d)
H (X, Y ) + ε.

3. Given C, define d on X ⊔ Y by letting d agree with dX and dY on X and Y and setting

d(x, y) = d(y, x) = inf(x′,y′)∈C(dX(x, x
′) + dY (y, y

′)) + 1
2
dis(C). Then d(X⊔Y,d)

H (X, Y ) ≤
1
2
dis(C).

We check below that the d defined in item 3 is in fact an extended pseudometric. Assuming

this for now, taking the infimum in each of the cases above and letting ε approach 0 in the second

gives the inequalities

1
2
inf
C

dis(C) ≤ 1
2
inf
f,g

max
{
dis(f), dis(g), codis(f, g)

}
≤ inf

d
d
(X⊔Y,d)
H (X, Y ) ≤ 1

2
inf
C

dis(C).

These infima are therefore equal, which proves the three definitions of the Gromov–Hausdorff

distance are equivalent.

To check that the d defined in item 3 is in fact an extended pseudometric, we first note that

it is nonnegative and symmetric by definition, so we just need to check the triangle inequality.
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The triangle inequality holds for any three points in X or any three points in Y , as d restricts

to the extended pseudometrics dX and dY in these cases. Thus, we consider points x1, x2 ∈ X

and y ∈ Y ; the case of two points in Y and one in X is analogous. For any (x′, y′) ∈ C, we

have dX(x1, x′) + dY (y, y
′) ≤ dX(x1, x2) + dX(x2, x

′) + dY (y, y
′). Taking the infimum over all

(x′, y′) ∈ C, first on the left side and then on the right, gives

inf(dX(x1, x
′) + dY (y, y

′)) ≤ dX(x1, x2) + inf(d(x2, x
′) + dY (y, y

′)).

Thus d(x1, y) ≤ d(x1, x2) + d(x2, y), so the triangle inequality is satisfied in this case. Bounding

d(x1, x2) instead, given any (x′, y′), (x′′, y′′) ∈ C, we have

dX(x1, x2) ≤ dX(x1, x
′) + dX(x

′, x′′) + dX(x
′′, x2)

≤ dX(x1, x
′) + dY (y

′, y′′) + dis(C) + dX(x
′′, x2)

≤ dX(x1, x
′) + dY (y, y

′) + dY (y, y
′′) + dis(C) + dX(x

′′, x2)

=
(
dX(x1, x

′) + dY (y, y
′) + 1

2
dis(C)

)
+
(
dX(x

′′, x2) + dY (y, y
′′) + 1

2
dis(C)

)
.

Taking the infimum gives d(x1, x2) ≤ d(x1, y) + d(y, x2), so the triangle inequality is satisfied in

this case as well.

Example 3.4.2. A simple but useful illustration of the Hausdorff and Gromov–Hausdorff distances

appears when approximating a metric space by a subset. Let (X, dX) be a metric space and let Y

be an ε-sample of X , that is, a subset such that for every x ∈ X , there is a y ∈ Y satisfying

dX(x, y) < ε. The sample Y can be thought of as a metric space approximation of X , accurate to

within distances of ε. The Hausdorff and Gromov–Hausdorff distances agree with this intuition:

we will show that dXH(X, Y ) ≤ ε and dGH(X, Y ) ≤ ε.

For the Hausdorff distance, we have dX(x, Y ) < ε for all x ∈ X and dX(X, y) = 0 for

all y ∈ Y , so dH(X, Y ) ≤ ε. For the Gromov–Hausdorff distance, we have a choice of three

definitions given by Proposition 3.4.1; in this case, the definition based on correspondences gives
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a particularly simple approach. Define C ⊆ X × Y by

C = {(x, y) | dX(x, y) < ε}.

We have (y, y) ∈ C for all y ∈ Y , and every x ∈ X occurs in some pair in C because Y is

an ε-sample; thus, C is a correspondence. The definition of C implies dis(C) ≤ 2ε, so we find

dGH(X, Y ) ≤ ε.

3.4.2 Proof of Stability

We now move on to prove the stability of persistent homology for Vietoris–Rips and Čech com-

plexes. The following two lemmas capture the key feature of Vietoris–Rips and Čech filtrations:

small Gromov–Hausdorff distances between metric spaces produce proportionally small interleav-

ings between their persistent homology modules. The methods used in these lemmas and in the

remainder of the section are largely based on those in [9]. In the following proofs, we let the

inclusion VR(X; r1) ↪→ VR(X; r2) be denoted by VR(X; r1 ≤ r2).

Lemma 3.4.3 (Vietoris–Rips complex interleaving, Lemma 4.3 of [9]). Suppose X and Y are

metric spaces and ε > 2dGH(X, Y ). Then for any n ≥ 0, the persistent homology mod-

ules Hn(VR(X)) and Hn(VR(Y )) are ε-interleaved, and thus dI(Hn(VR(X)), Hn(VR(Y ))) ≤

2dGH(X, Y ).

Proof. By definition of the Gromov–Hausdorff distance, there exist functions f : X → Y and

g : Y → X such that dis(f) < ε, dis(g) < ε, and codis(f, g) < ε. If σ ∈ VR(X; r), then because

dis(f) < ε, the diameter of f(σ) in Y is less than r + ε, so f(σ) ∈ VR(Y ; r + ε). Therefore f in-

duces natural simplicial maps fr : VR(X; r) → VR(Y ; r+ε) for all r ∈ R, and similarly g induces

maps gr : VR(Y ; r) → VR(X; r + ε). Applying the functor Hn gives morphisms of persistence

modulesH(VR(X; _)) → H(VR(Y ; _+ε)) andH(VR(Y ; _)) → H(VR(X; _+ε)). To show that

these form an ε-interleaving, we just need to show that Hn(gr+ε ◦ fr) = Hn(VR(X; r ≤ r + 2ε))

and Hn(fr+ε ◦ gr) = Hn(VR(Y ; r ≤ r + 2ε)) for all r; we will show the first of these, and the
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second is similar. We apply the method outlined at the beginning of this chapter: it is enough

to show gr+ε ◦ fr ≃ VR(X; r ≤ r + 2ε) since homotopic maps induce equal maps on ho-

mology, and we will use a straight-line homotopy. Recalling that VR(X; r ≤ r + 2ε) is the

inclusion map, it is enough to check that for any simplex {x1, . . . , xm} in VR(X; r), the union

{g(f(x1)), . . . , g(f(xm))} ∪ {x1, . . . , xm} is a simplex in VR(X; r + 2ε), since then the straight-

line homotopy is well-defined and continuous. Both {g(f(x1)), . . . , g(f(xm))} and {x1, . . . , xm}

are simplices in VR(X; r + 2ε) and thus meet the diameter requirement, so it is sufficient to show

dX(xi, g(f(xj))) < r + 2ε for all i and j. Applying the fact that codis(f, g) < ε, we have

dX(xi, g(f(xj))) < dY (f(xi), f(xj)) + ε ≤ r + 2ε,

where the final inequality uses the fact that {f(x1), . . . , f(xm)} is a simplex in VR(Y ; r+ ε).

Lemma 3.4.4 (Čech complex interleaving, Lemma 4.4 of [9]). SupposeX and Y are metric spaces

and ε > 2dGH(X, Y ). Then for any n ≥ 0, the persistent homology modules Hn(Č(X)) and

Hn(Č(Y )) are ε-interleaved, and thus dI(Hn(Č(X)), Hn(Č(Y ))) ≤ 2dGH(X, Y ).

Proof. The overall proof technique is the same as in the Vietoris–Rips case of Lemma 3.4.3, so

using the same f and g from that proof, we just need to check that f and g induce natural simpli-

cial maps on the Čech complexes and that the final straight-line homotopy applies in the Čech

complexes as well. To check that f induces simplicial maps Č(X; r) → Č(Y ; r + ε), sup-

pose that {x1, . . . , xm} is a simplex in Č(X; r) with r-center c. Then f(c) is an (r + ε)-center

for {f(x1), . . . , f(xm)} in Y , since for each xi we have dY (f(xi), f(c)) < dX(xi, c) + ε ≤

r + ε. Thus, {f(x1), . . . , f(xm)} is a simplex in Č(Y ; r + ε), so we obtain the necessary sim-

plicial maps. To validate the final straight-line homotopy, we must find an (r + 2ε)-center for

{g(f(x1)), . . . , g(f(xm))} ∪ {x1, . . . , xm}. The original center c is sufficient, since for any xi, our

bound on codistortion gives

dX(g(f(xi)), c) < dY (f(xi), f(c)) + ε < r + 2ε.
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These results have shown that Vietoris–Rips and Čech persistent homology are stable in terms

of the interleaving distance: in each case, a small change in the input metric space results in a small

change in the persistence modules. In light of the isometry theorem (Theorem 2.5.5), the same

bounds apply to the bottleneck distance between persistence diagrams, as long as the diagrams are

defined. The following lemma will show that we get well-defined persistence diagrams for totally

bounded metric spaces. Note the connection between the finiteness condition on metric spaces and

the finiteness condition on persistence modules.

Proposition 3.4.5 (Proposition 5.1 of [9]). If (X, dX) is a totally bounded metric space, then for

any n ≥ 0, the persistent homology modules Hn(VR(X)) and Hn(Č(X)) are q-tame and thus

have well-defined persistence diagrams.

Proof. We will prove the result for Hn(VR(X)); the method is the same for Hn(Č(X)) with

Lemma 3.4.4 in place of Lemma 3.4.3 below. We will interleave Hn(VR(X)) with the persistent

homology module of a finite sample. For any ε > 0, since X is totally bounded, there exists a

finite F ⊆ X such that each element of x is within ε
4

of some element of F , and we will give F

the metric inherited from X . Define f : X → F by letting f(x) be the element of F closest to x,

breaking ties arbitrarily. Letting g : F → X be the inclusion, we have dis(g) = 0, dis(f) ≤ ε
2
,

and codis(f, g) ≤ ε
4
, so dGH(X,F ) ≤ ε

4
. Thus, by Lemma 3.4.3, Hn(VR(X)) and Hn(VR(F ))

are ε-interleaved. Choosing an ε-interleaving, for each r ∈ R, the map Hn(VR(X; r ≤ r + 2ε))

factors as

Hn(VR(X; r)) Hn(VR(X; r + 2ε)).

Hn(VR(F ; r + ε))

Since F is finite, VR(F ; r + ε) is a finite simplicial complex. Thus, Hn(VR(F ; r + ε)) has finite

dimension, so the map Hn(VR(X; r ≤ r + 2ε)) has finite rank. Since this holds for arbitrary

ε > 0, this shows Hn(VR(X)) is q-tame.
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If X and Y are totally bounded metric spaces, Proposition 3.4.5 shows we have well-defined

persistence diagrams for their Vietoris–Rips and Čech persistent homology. The isometry theorem,

Theorem 2.5.5, then lets us replace the interleaving distance between persistence modules with the

bottleneck distance between persistence diagrams in both Lemma 3.4.3 and Lemma 3.4.4 (in fact,

here we only need the stability part of the isometry theorem, hence the name). We have thus proved

the following stability theorems, the main results of this section.

Theorem 3.4.6 (Stability of Vietoris–Rips Persistent Homology, Theorem 5.2 of [9]). If X and Y

are totally bounded metric spaces, then for any n ≥ 0,

dB
(
dgm(Hn(VR(X))), dgm(Hn(VR(Y )))

)
≤ 2dGH(X, Y ).

Theorem 3.4.7 (Stability of Čech Persistent Homology, Theorem 5.2 of [9]). If X and Y are

totally bounded metric spaces, then for any n ≥ 0,

dB
(
dgm(Hn(Č(X))), dgm(Hn(Č(Y )))

)
≤ 2dGH(X, Y ).

Exercises

Exercise 3.4.1. Show that the Gromov–Hausdorff distance defines a pseudometric on any set

of nonempty compact metric spaces and that if X and Y are compact metric spaces, then

dGH(X, Y ) = 0 if and only if X and Y are isometric.

Exercise 3.4.2 (Theorem 5.6 of [9]). Mimic the techniques used in this section to prove the fol-

lowing stability result for ambient Čech complexes: if L, L′, and W are subsets of a metric space

X such that L and L′ are totally bounded, then

dB
(
dgm(Hn(Č(L,W ))), dgm(Hn(Č(L

′,W )))
)
≤ 2dXH(L,L

′).
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3.5 Simplicial Metric Thickenings
The Vietoris–Rips and Čech simplicial complexes we have considered so far aim to create a

more elaborate topological space from a given metric space, allowing us, for instance, to view

nontrivial topological features that are only outlined by a finite point set. Moreover, this additional

topological structure is theoretically justified by the stability of persistent homology (Section 3.4)

as well as certain reconstruction results that we will see later (Section 3.8). However, in spite

of these results, there are still limitations to our understanding of these complexes, especially at

larger scale parameters, where the reconstruction results may not apply. There have been many ap-

proaches to understanding these simplicial complexes better. Here we will focus on one particular

approach: in this section, we give these simplicial complexes an alternate topology that more accu-

rately reflects the underlying metric spaces while also preserving some of their most the desirable

properties – in particular the stability of persistent homology and reconstruction results mentioned

above. The resulting objects are known as simplicial metric thickenings, which were introduced

in [55] and later generalized in [30].

We will start by observing a deficiency of Vietoris–Rips and Čech complexes. Given a met-

ric space X , we have an inclusion function X → VR(X; r) for any positive r that sends each

x ∈ X to the vertex {x} in the simplicial complex. Unfortunately, this inclusion is in general

not continuous: the set of vertices of a simplicial complex is always a discrete subspace, so this

inclusion is continuous if and only if X is a discrete metric space. The same is true of the Čech

complex Č(X; r) for any positive r and of any simplicial complex whose vertex set is the metric

space X . This is counterintuitive: we would like to think of Vietoris–Rips and Čech complexes as

building upon the original metric space, but in fact they do not necessarily even contain a copy of

the original space. Of course, if X is finite, then X has the discrete topology and so the inclusion

is continuous, but for metric spaces with infinitely many points, the topology is not necessarily

discrete. These infinite metric spaces are surprisingly natural to consider: they fit well within the

setting of the stability of persistent homology (which applies equally well to finite and infinite met-

ric spaces) and the reconstruction results for manifolds. In short, our current simplicial complexes
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on infinite metric spaces do not allow the same geometric intuition that applies in the finite cases.

This motivates the definition of simplicial metric thickenings: in the new topology we will define,

the inclusion will always be a homeomorphism onto its image, so that the vertex set will in fact

be homeomorphic to the original metric space. We will also see later that this topology allows for

other geometrically intuitive constructions that do not hold for our current simplicial complexes.

3.5.1 Probability Measures, the Wasserstein Distance, and Metric Thicken-

ings

To define the simplicial metric thickening topology, we formalize the idea that two simplices

with vertices in a metric space X should be considered “close” if their collections of vertices are

close together. It is convenient to interpret a point x ∈ X as a delta measure δx. Then a point in

a simplex, described as a linear combination
∑n

i=1 aixi of points in {x1, . . . , xn} ∈ X , becomes

a finitely supported measure
∑n

i=1 aiδxi . It is in fact a probability measure, as the ai sum to 1.

We will describe how to define a suitable metric on our simplicial complexes using a well-studied

notion of distance on between measures, the Wasserstein distance31, also called the Kantorovich-

Rubinstein metric. We will present this distance in the setting that is useful here, although it is

often introduced in much more generality.

For any metric space (X, dX), let Pfin(X) be the set of finitely supported probability mea-

sures on X . Each measure µ ∈ Pfin(X) can be written as
∑n

i=1 aiδxi with ai ≥ 0 for all i and∑n
i=1 ai = 1. This expression is unique up to reordering if all xi are distinct and all ai are positive,

but it will sometimes be convenient to allow repetition of the xi and to let some ai be 0. We will

write the support of a measure µ =
∑n

i=1 aiδxi as supp(µ) = {xi | ai > 0}. The measures can be

interpreted in the sense of optimal transport: we will think of ai as the amount of mass at location

xi, and we will describe transporting mass from one measure to another. While the Wasserstein

distance can be defined for a larger collection of measures, it has a particularly simple description

31We will always use the 1-Wasserstein distance. However, the p-Wasserstein distance generates the same topology
for any p ∈ [1,∞): see Appendix A.1 of [30].
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for finitely supported measures. We will describe the transportation of mass between measures

µ =
∑n

i=1 aiδxi and µ′ =
∑n′

j=1 a
′
jδx′j using a transport plan, an indexed set of nonnegative real

numbers κ = {κi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n′} such that
∑n′

j=1 κi,j = ai for all i and
∑n

i=1 κi,j = a′j

for all j. Each κi,j represents the amount of mass moved from xi to x′j . The cost of a transport plan

is defined by cost(κ) =
∑n

i=1

∑n′

j=1 κi,jdX(xi, xj). There is always at least one transport plan from

µ to µ′: an example is given by setting κi,j = aia
′
j , which we will refer to as the product transport

plan32. The Wasserstein distance between two measures µ and µ′ is the infimal cost required to

transport mass from µ to µ′:

dW (µ, µ′) = inf
κ
cost(κ),

where the infimum is taken over all transport plans from µ to µ′. Conveniently, this infimum is

always attained in our setting of finitely supported measures, since the set of transport plans from

µ to µ′ is a compact set of Rn·n′ . Any transport plan that attains this minimal cost will be called

an optimal transport plan. The Wasserstein distance defines a metric on Pfin(X); the triangle

inequality can be checked by constructing an appropriate “composition” of two given transport

plans.

Now that we have reinterpreted points in simplices as probability measures, we can define

the simplicial metric thickening topology on a simplicial complex. These definitions follow [55].

Given a simplicial complex S with vertex set a metric space X , define the simplicial metric thick-

ening Sm to be the corresponding subspace of Pfin(X):

Sm =
{
µ ∈ Pfin(X) | supp(µ) is a simplex in S

}
.

Using the Wasserstein distance inherited from Pfin(X), Sm is a metric space. While S is in bi-

jection with Sm by the map
∑n

i=1 aixi 7→
∑n

i=1 aiδxi, the topologies on these spaces are in gen-

eral different, meaning the bijection is in general not a homeomorphism. Right away, we can

32This corresponds to the product measure on X×X , which also serves as a transport plan in the more general setting
where the measures are not assumed to be finitely supported.
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observe that the inclusion X → Sm defined by x 7→ δx is continuous. In fact, dW (δx, δx′) =

cost({(x, x′)}) = dX(x, x
′), so the inclusion is an isometric embedding33. We can also phrase this

by saying the set {δx | x ∈ X} of delta measures in Pfin(X) is an isometric copy of X .

We will be mostly interested in simplicial metric thickenings Sm when S is a Vietoris–Rips or

Čech complex. The Vietoris–Rips metric thickenings of a metric space X with parameter r ∈ R

are obtained by setting S = VR≤(X; r) or S = VR<(X; r). These are denoted VRm
≤ (X; r) and

VRm
< (X; r) respectively, and they are defined explicitly by

VRm
≤ (X; r) =

{
n∑
i=1

aiδxi

∣∣∣∣ ai ≥ 0 for all i,
∑
i

ai = 1, diam({x1, . . . xn}) ≤ r

}

VRm
< (X; r) =

{
n∑
i=1

aiδxi

∣∣∣∣ ai ≥ 0 for all i,
∑
i

ai = 1, diam({x1, . . . xn}) < r

}
.

The Čech metric thickenings are defined similarly from the Čech complexes, denoted Čm
≤ (X; r),

Čm
< (X; r), Čm

≤ (L,W ; r), and Čm
< (L,W ; r). As with the simplicial complexes, we will omit the ≤

or< from the notation whenever either convention can be used, as long as it is applied consistently.

We have the inclusions

VRm(X; r) ⊆ Čm(X; r) ⊆ VRm(X; 2r),

since we already showed the analogous inclusions for the simplicial complexes.

We have inclusions VRm(X; r1) ↪→ VRm(X; r2) whenever r1 ≤ r2, and thus we get a filtration

of metric thickenings, analogous to our filtrations of simplicial complexes. We denote this filtration

of Vietoris–Rips metric thickenings by VRm(X; _), or more simply VRm(X); similarly we have

filtrations Čm(X) and Čm(L,W ). As with the simplicial complexes, if Y ⊆ X , then we have

natural inclusions VRm(Y ; r) → VRm(X; r) and Čm(Y ; r) → Čm(X; r) for all r. As with

filtrations of simplicial complexes or any filtrations of topological spaces, we can apply a homology

functorHn to these filtrations to obtain persistence modules. We will show soon (Proposition 3.6.3)

33Because of this isometric embedding, sometimes delta measures δx are simply written as their support points x, so
that an arbitrary measure

∑n
i=1 aiδxi

is instead written as
∑n

i=1 aixi. We will continue to write the delta measures
in order to maintain a clear distinction between simplicial complexes and simplicial metric thickenings.
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that as long as X is totally bounded, these persistence modules are q-tame and thus have well-

defined persistence diagrams.

3.5.2 Basic Properties

Next, we will prove some basic properties of simplicial metric thickenings. We have seen

that simplicial metric thickenings are essentially simplicial complexes with an alternate topology,

defined by reinterpreting points in simplices as probability measures. The next proposition gives

a direct comparison between the two topologies under consideration. If shows that the metric

thickening topology is in general coarser than the simplicial complex topology. However, it also

shows that in the case of finite metric spaces, the two topologies are equivalent.

Proposition 3.5.1 (Propositions 6.1 and 6.2 of [55]). Let S be a simplicial complex with vertex set

a metric space (X, dX). The bijection S → Sm given by
∑n

i=1 aixi 7→
∑n

i=1 aiδxi is continuous.

It is a homeomorphism if X is finite.

Proof. Call the bijection f . By definition of the topology on the simplicial complex S, to check

that f is continuous, it is sufficient to check that f is continuous on an arbitrary simplex of S with

vertices x1, . . . , xn ∈ X . Furthermore, we can identify this simplex with the standard simplex

∆n−1 ⊆ Rn by identifying
∑n

i=1 aixi with (a1, . . . , an). We thus need to check continuity of the

map f̃ : ∆n−1 → Sm given by (a1, . . . , an) 7→
∑n

i=1 aiδxi . We can bound the Wasserstein distance

between a pair of measures in the image as follows. This first inequality below comes from noting

that any transport plan between measures
∑n

i=1 aiδxi and
∑n

j=1 bjδxj must transport a mass of

maxi |ai − bi| a distance of at least mini ̸=j dX(xi, xj). The second inequality follows by leaving

the maximum possible mass of min(ai, bi) fixed at each xi, and transporting the remaining mass

of 1
2

∑n
i=1 |ai − bi| arbitrarily.

min
i ̸=j

dX(xi, xj)∥(a1, . . . , an)− (b1, . . . , bn)∥∞ ≤ dW

(
n∑
i=1

aiδxi ,
n∑
j=1

bjδxj

)
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dW

(
n∑
i=1

aiδxi ,
n∑
j=1

bjδxj

)
≤ 1

2
max
i,j

dX(xi, xj)
∥∥(a1, . . . , an)− (b1, . . . , bn)

∥∥
1

The second inequality shows that f̃ is Lipschitz with respect to the 1-norm, which generates the

Euclidean topology on ∆n−1. By definition of the simplicial complex topology, this is enough

to conclude that f is continuous. The first inequality shows that the right inverse of f̃ , given

by
∑n

i=1 aiδxi 7→ (a1, . . . , an), is Lipschitz with respect to the ∞-norm, which also generates

the Euclidean topology on ∆n−1. However, this is in general not enough to show that f−1 is

continuous; we have only showed that it is continuous on the image of each simplex of S.

It is at this point that we will make the additional assumption that X is finite. We will show

the image of each simplex of S is closed in Sm, and then because there are finitely many by

assumption, this shows f−1 is continuous by the gluing lemma for closed sets. Let σ be an arbitrary

simplex of S with vertices x1, . . . xn. To show f(σ) is closed, given a µ /∈ f(σ), there is some

y ∈ supp(µ) not equal to any of x1, . . . , xn, with positive mass a in µ. The cost of transporting

this mass to any measure in f(σ) is at least a ·mini dX(y, xi) > 0. Thus, the open ball with radius

a ·mini dX(y, xi) centered at y does not intersect f(σ), so f(σ) is closed.

It is worth emphasizing that according to Proposition 3.5.1, simplicial complex and metric

thickenings are topologically identical for finite metric spaces. This means metric thickenings only

differ from simplicial complexes in the case of infinite metric spaces. While datasets that arise in

practice will always be finite, infinite metric spaces still have an important place in the theory of

persistent homology. In light of the stability of persistent homology for Vietoris–Rips and Čech

complexes (Theorems 3.4.6 and 3.4.7), infinite (totally bounded) metric spaces may be thought

of as limiting objects of finite metric spaces: the Vietoris–Rips and Čech persistent homology

of finite samples of a metric space will approach that of the entire space as the samples become

denser. With this perspective, the limiting objects provided by simplicial metric thickenings give

an alternative to the usual simplicial complexes.

Proposition 3.5.1 gave a comparison of the simplicial complex and metric thickening topologies

for arbitrary simplicial metric thickenings. For Vietoris–Rips and Čech metric thickenings, we can
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go one step further and determine exactly for which S the map S → Sm is a homeomorphism.

The condition, given in the following proposition, is that the simplicial complex be locally finite34,

meaning each vertex is contained in only finitely many simplices. The method of the proof35 comes

from [55].

Proposition 3.5.2 (Proposition 6.3 of [55]). Let X be a metric space and let r > 0. The bijection

VR(X; r) → VRm(X; r) given by
∑n

i=1 aixi 7→
∑n

i=1 aiδxi is a homeomorphism if and only if

VR(X; r) is locally finite, and similarly, the map Č(X; r) → Čm(X; r) is a homeomorphism if

and only if Č(X; r) is locally finite.

Proof. By Proposition 3.5.1, we just need to show that the inverse map VRm(X; r) → VR(X; r)

is continuous if and only if VR(X; r) is locally finite, and similarly for Č(X; r). We prove the

more general fact that for any simplicial complex S with vertex set X such that S ⊇ VR≤(X; r)

for some r > 0, the map g : Sm → S given by
∑n

i=1 aiδxi 7→
∑n

i=1 aixi is continuous if and only if

S is locally finite. This covers the Vietoris–Rips and Čech cases alike, since VR(X; r) ⊆ Č(X; r)

for all r.

Suppose S is locally finite. Since Sm is a metric space, we check sequential continuity, so

suppose {µj} is a sequence of measures that converges to µ in Sm. Let

Y =
{
x ∈ X | ∃s ∈ supp(µ),∃z ∈ X with {x, z} and {z, s} simplices in S

}
.

For any ν ∈ Sm, we will check that if dW (µ, ν) < r, then supp(ν) ⊆ Y . If dW (µ, ν) < r, then

supp(ν) must contain at least one point z at distance less than r from some s ∈ supp(µ). Then for

any x ∈ supp(ν), we find that {x, z} is a simplex in S and {z, s} is a simplex in VR(X; r) and is

thus a simplex in S. Therefore x ∈ Y , so supp(ν) ⊆ Y as claimed. This shows that µj has support

contained in Y for all large enough j. Furthermore, since S is locally finite, Y is finite. Letting T

34The term “locally finite” appears in multiple contexts. It was a finiteness condition on persistence modules and is
sometimes also used as a condition on persistence diagrams (see the footnote for Lemma 2.4.3).

35Warning: there is an error in the proof of Proposition 6.3 of [55], which attempts to establish the result of our
Proposition 3.5.2 for a larger class of metric thickenings. See Exercise 3.5.3.
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be the subcomplex of S on the vertices Y , we have µ ∈ Tm, and by Proposition 3.5.1, g restricts

to a homeomorphism Tm ∼= T . Therefore {g(µj)} converges to g(µ) in T and thus converges to

g(µ) in S, so g is continuous.

For the converse, we show that if S is not locally finite, then the map S → Sm is not a

homeomorphism. This follows from the general fact that any simplicial complex that is not locally

finite is not metrizable36. To prove this, suppose a vertex x in a simplicial complex is in edges ej

for all j ∈ Z+, and suppose d is a metric on V =
⋃
j ej that makes each edge homeomorphic to

I . Then the set
⋃
j{y ∈ ej | d(x, y) < 1

j
} is open in the simplicial complex topology on V , as its

intersection with each ej is open in ej . However, it cannot contain an open ball around x of any

positive radius, so the metric topology on V induced by d is not the same as the simplicial complex

topology.

The next results are general enough that we can prove them working in Pfin(X), rather than in

a specific metric thickening. They establish some tools for working with the Wasserstein distance

and the topology it generates.

Lemma 3.5.3. Let X be a metric space. If µ1, . . . , µn, µ
′
1, . . . , µ

′
n ∈ Pfin(X) and c1, . . . , cn are

nonnegative real numbers with
∑n

k=1 ck = 1, then

dW

( n∑
k=1

ckµk,
n∑
k=1

ckµ
′
k

)
≤

n∑
k=1

ckdW (µk, µ
′
k).

Proof. Let {x1, . . . , xn} =
⋃
k supp(µk), so that each µk can be written as a linear combination

of measures δxi , and similarly, let {x′1, . . . , x′n′} =
⋃
k supp(µ

′
k). Given a transport plan κk =

{κk,i,j}i,j from µk to µ′
k for each k, it can be checked that {

∑n
k=1 ckκk,i,j}i,j defines a transport

plan from
∑n

k=1 ckµk to
∑n

k=1 ckµ
′
k. This transport plan has cost

∑n
k=1 ckcost(κk), which gives

the required bound on the Wasserstein distances.

36A simplicial complex is metrizable if and only if it is locally finite, and there are other conditions that are equivalent
as well; see for instance Theorem 2.8 in Chapter 3 of [62].
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The following lemma allows us to use straight line homotopies in metric thickenings. This will

be a convenient technique, as it is in subsets of Euclidean spaces. Versions of this lemma appear

in [29, 30, 55].

Lemma 3.5.4 (Straight line homotopies). LetX be a metric space and suppose f, g : Z → Pfin(X)

are continuous functions from any topological space Z. Then the homotopy H : Z × I → Pfin(X)

given by H(z, t) = (1− t)f(z) + tg(z) is continuous, and thus f and g are homotopic.

Proof. We show continuity of H at (z0, t0) ∈ Z × I . For all ε > 0, since f and g are continuous,

there is some open set U ⊆ Z containing z0 such that dW (f(z0), f(z)) <
ε
2

and dW (g(z0), g(z)) <

ε
2

for all z ∈ U . We will suppose that z ∈ U and t is in an open neighborhood of t0 such that

|t− t0|dW (f(z0), g(z0)) <
ε
2

and show dW (H(z0, t0), H(z, t)) < ε.

By Lemma 3.5.3, we have

dW
(
H(z0, t), H(z, t)

)
≤ (1− t)dW

(
f(z0), f(z)

)
+ tdW

(
(g(z0), g(z)

)
<
ε

2
.

Next, to bound dW (H(z0, t0), H(z0, t)), choose an optimal transport plan κ = {κi,j} from f(z0)

to g(z0), so that cost(κ) = dW (f(z0), g(z0)). Temporarily setting µ = (1 − max{t, t0}f(z0) +

min{t, t0}g(z0)), we find that H(z0, t0) and H(z0, t) are given by µ + |t − t0|f(z0) and µ + |t −

t0|g(z0) (in either order). We can thus define a transport plan between H(z0, t0) and H(z0, t)

by leaving the mass of µ fixed and using a scaled transport plan |t − t0|κ = {|t − t0|κi,j} to

transport the remaining mass. This has a cost of |t − t0|cost(κ) = |t − t0|dW (f(z0), g(z0)) <
ε
2
,

so dW
(
H(z0, t0), H(z0, t)

)
< ε

2
. Therefore,

dW
(
H(z0, t0), H(z, t)

)
≤ dW

(
H(z0, t0), H(z0, t)

)
+ dW

(
H(z0, t), H(z, t)

)
< ε.

The following two lemmas provide ways to construct continuous functions into a metric thick-

ening. Lemma 3.5.5 shows we get a continuous map into Pfin(X) by defining the masses and
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support points of the output to be continuous functions of the input: this generalizes the sim-

pler statement in which the support points remain fixed, versions of which appear in [29, 30].

Lemma 3.5.6 provides a means of constructing maps between metric thickenings analogous to

simplicial maps between simplicial complexes; however, the map on the underlying metric space

must satisfy the additional conditions of continuity and boundedness, which are irrelevant in the

simplicial complex topology. Versions of Lemma 3.5.6 appear in [29, 55], and the proof follows a

method used in Lemma 5.2 of [55].

Lemma 3.5.5. Let X be a metric space and let Z be a topological space. Let p1, . . . , pn : Z →

X be continuous functions and let f1, . . . , fn : Z → R≥0 be continuous functions such that∑n
i=1 fi(z) = 1 for all z ∈ Z (that is, the fi form a partition of unity). Then the function

g : Z → Pfin(X) given by g(z) =
∑n

i=1 fi(z)δpi(z) is continuous.

Proof. We show continuity at z0 ∈ Z. Let ε > 0 and let C > diam{p1(z0), . . . , pn(z0)}. By

continuity of all fi and pi, there exists an open neighborhood U of z0 such that for all z ∈ U , we

have |fi(z) − fi(z0)| < ε
4nC

and dX(pi(z), pi(z0)) < min{ ε
2
, C} for all i. Then for any z ∈ U ,

we can define a transport plan between g(z) and g(z0) by moving a mass of min{fi(z), fi(z0)}

from pi(z) to pi(z0) and moving the remaining mass arbitrarily. The mass transported arbitrarily

is then less than n ε
4nC

= ε
4C

and moves a distance less than 2C by our choice of C and since

dX(pi(z), pi(z0)) < C for all i. The rest of the mass (a mass of at most 1) is moved a distance less

than ε
2

since dX(pi(z), pi(z0)) < ε
2

for all i. Thus, by bounding the cost of this transport plan, we

find dW (g(z), g(z0)) <
ε
4C

2C + ε
2
= ε.

Lemma 3.5.6 (Induced maps). Let X and Y be metric spaces. If f : X → Pfin(Y ) is a continuous

and bounded function, then the induced map f̃ : Pfin(X) → Pfin(Y ) given by f̃(
∑n

i=1 aiδxi) =∑n
i=1 aif(xi) is continuous.

Proof. Since f is bounded, let C > 0 be such that dW (f(x), f(y)) < C for all x, y ∈ X . Let

ε > 0: we show continuity of f̃ at a fixed µ =
∑n

i=1 aiδxi ∈ Pfin(X). By continuity of f , there is

a δ > 0 such that for 1 ≤ i ≤ n and any x ∈ X , dX(xi, x) < δ implies dW (f(xi), f(x)) <
ε
2
. We

will further require 0 < δ < ε
2C

and show that dW (µ, µ′) < δ2 implies dW
(
f̃(µ), f̃(µ′)

)
< ε.
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Let µ′ =
∑n′

j=1 a
′
jδx′j ∈ Pfin(X) and suppose that κ = {κi,j}i,j is a transport plan between

µ and µ′ with cost(κ) < δ2. Let A = {(i, j) | dX(xi, x′j) ≥ δ} and B = {(i, j) | dX(xi, x′j) < δ}.

First, we have

∑
(i,j)∈A

κi,jδ ≤
∑

(i,j)∈A

κi,jdX(xi, x
′
j) ≤

∑
i,j

κi,jdX(xi, x
′
j) < δ2,

so
∑

(i,j)∈A κi,j < δ. Thus, applying Lemma 3.5.3, we have

dW
(
f̃(µ), f̃(µ′)

)
= dW

(∑
i

aif(xi),
∑
j

a′jf(x
′
j)

)

= dW

(∑
i,j

κi,jf(xi),
∑
i,j

κi,jf(x
′
j)

)

≤
∑
i,j

κi,jdW (f(xi), f(x
′
j))

=
∑

(i,j)∈A

κi,jdW (f(xi), f(x
′
j)) +

∑
(i,j)∈B

κi,jdW (f(xi), f(x
′
j))

<
∑

(i,j)∈A

κi,jC +
∑

(i,j)∈B

κi,j
ε

2

< δC +
ε

2

< ε.

This shows f̃ is continuous at µ.

A specific application of Lemma 3.5.6 is worth singling out. The maps in this corollary can

also be referred to as “induced maps.”

Corollary 3.5.7. If g : X → Y is a continuous bounded function between metric spaces, then the

induced map g̃ : Pfin(X) → Pfin(Y ) given by g̃(
∑n

i=1 aiδxi) =
∑n

i=1 aiδg(xi) is continuous.

Proof. The map given by composing the embedding Y → Pfin(Y ) with g is continuous and

bounded, so applying Lemma 3.5.6 gives the result.
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We began this section on simplicial metric thickenings by observing that Vietoris–Rips and

Čech simplicial complexes do not always contain a natural copy of the metric space they are built

on. We have seen that the metric thickenings, on the other hand, do contain a natural copy of

the underlying metric space, and will end this section by showing that the points of the metric

thickenings are gathered around this copy in a particularly nice way. Let S be a simplicial complex

with vertex set a metric space X . The name “metric thickening” to describe Sm comes from the

fact that Sm is a larger metric space containing (an isometric copy of) X . In the Vietoris-Rips

and intrinsic Čech metric thickenings with the ≤ convention, the copy of X appears at parameter

r = 0: both VRm
≤ (X; 0) and Čm(X; 0) consist of the set of delta measures in Pfin(X), which we

have seen is isometric to X . This copy of X remains for all r ≥ 0, as then we have inclusions

VRm
≤ (X; 0) ↪→ VRm(X; r) and Čm(X; 0) ↪→ Čm(X; r). Furthermore, the amount by which

X has been “thickened” can be measured, as follows. As defined in [71], an r-thickening of a

metric space (X, dX) is a metric space (Y, dY ) containing X such that dY restricts to dX on X and

dY (y,X) ≤ r for all y ∈ Y .

Proposition 3.5.8 (Lemma 3.6 of [55]). Let (X, dX) be a metric space and let r > 0. Then

VRm(X; r) and Čm(X; r) are r-thickenings of X , where X is identified with its image under the

isometric embedding x 7→ δx. If L,W ⊆ X and dX(l,W ) < r for each l ∈ L, then Čm(L,W ; r)

is a 2r-thickening of L.

Proof. The space X is isometrically embedded in VRm(X; r) and Čm(X; r) by the map x 7→ δx,

so identifying X with its image, the Wasserstein distance dW restricts to dX . For any measure

µ =
∑n

i=1 aiδxi ∈ VRm(X; r), we can transport all mass to x1 via the only transport plan possible,

κ = {(x1, xi)}i. Then dW (µ, δx1) =
∑n

i=1 aidX(xi, x1) ≤
∑n

i=1 air = r, since each xi is within r

of x1. Similarly, if µ =
∑n

i=1 aiδxi ∈ Čm(X; r), then all xi are within r of some center c ∈ X , so

dW (µ, δc) =
∑n

i=1 aidX(xi, c) ≤ r.

The ambient Čech metric thickening Čm(L,W ; r) is different in thatL andW may be unrelated

subsets of X . As long as dX(l,W ) < r for all l ∈ L, we have δl ∈ Čm(L,W ; r) for all l ∈ L,

and the collection of these delta measures forms an isometric copy of L. Furthermore, for any
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µ =
∑n

i=1 aiδli ∈ Čm(L,W ; r), all li are within r of some center w ∈ W , so the distance between

any two is at most 2r. Thus, dW (µ, δl1) =
∑n

i=1 aidX(li, l1) ≤ 2r.

Exercises

Exercise 3.5.1 (Lemma 3.7 of [55]). After Lemma 3.5.6, we showed a continuous function be-

tween metric spaces f : X → Y induces a continuous map f̃ : Pfin(X) → Pfin(Y ) given by

f̃(
∑

i aiδxi) =
∑

i aiδg(xi) as long as f is bounded. For another result on these induced maps, show

that if f is c-Lipschitz (and not necessarily bounded), then the induced map f̃ is also c-Lipschitz.

Exercise 3.5.2 (Lemma 5.2 of [55]). This exercise provides another type of induced map, this

time with a different codomain. Let X be a metric space and let f : X → Rn be continuous and

bounded. Show that the map Pfin(X) → Rn defined by
∑

i aiδxi 7→
∑

i aif(xi) is continuous and

bounded. Extend this result to normed vector spaces.

Exercise 3.5.3. Proposition 6.3 of [55] contains an error, stating the function Sm → S from

a simplicial metric thickening to the corresponding simplicial complex given by
∑n

i=1 aiδxi 7→∑n
i=1 aixi is continuous if Sm is an r-thickening. This exercise provides a counterexample (and

more restrictive cases in which this function is continuous are given in the proof of Proposi-

tion 3.5.2). Start with two opposite sides of a square: let X = [0, 1] × {0} ∪ [0, 1] × {1} ⊆ R2

and give X the restriction of the usual metric on R2. Let the simplicial complex S consist of

the vertex set X and all 1-simplices of the form {(x, 0), (x, 1)} with x ∈ [0, 1]. Check that the

simplicial metric thickening Sm is an r-thickening for some r and is locally finite, and show that

Sm ∼= [0, 1]× [0, 1]. Conclude that the function Sm → S is not continuous.

3.6 Stability of Persistent Homology for Metric Thickenings
Having established some basic facts about simplicial metric thickenings, we can now prove

two of our main results about Vietoris–Rips and Čech metric thickenings. We show that for totally

bounded spaces, these metric thickenings have the same persistence diagrams as their simplicial

complex counterparts, and this immediately implies the stability of their persistent homology. The

112



main difficulty in proving these results is that simplicial maps are not continuous in the metric

thickening topology. This prevents us from using the techniques from the proof of stability for the

simplicial complexes of Section 3.4, since simplicial maps were crucial in those proofs. We will

handle this difficulty by first approximating our filtrations of metric thickenings by metric thick-

enings of finite spaces, which we have seen are homeomorphic to their corresponding simplicial

complexes (Proposition 3.5.1). Settling for these approximations, we will be able to draw upon

our techniques and results for simplicial complexes.

To begin, let (X, dX) be a metric space and suppose for some ε > 0, there exists a finite ε
2
-

sample Z = {z1, . . . , zn} ⊆ X , meaning every point in X is at distance less than ε
2

from some

zi. The collection of open balls of radius ε
2

centered at the zi form an open cover of X , so we can

choose a partition of unity {f1, . . . , fn} subordinate to this open cover37. Explicitly, this means

the continuous functions fi : X → [0, 1] satisfy
∑n

i=1 fi(x) = 1 for all x ∈ X and fi(x) = 0 if

dX(zi, x) ≥ ε
2

for each i. By Lemma 3.5.5, we obtain a continuous map f : X → Pfin(Z) given by

f(x) =
∑n

i=1 fi(x)δzi . This map gives us a way to approximate X in Pfin(Z), where the partition

of unity determines how each x ∈ X is dispersed as mass at nearby points of Z. Furthermore, by

Lemma 3.5.6, we get a continuous induced map f̃ : Pfin(X) → Pfin(Z) given by

f̃

(
m∑
j=1

ajδxj

)
=

m∑
j=1

ajf(xj) =
n∑
i=1

m∑
j=1

ajfi(xj)δzi .

By design, this map redistributes mass in X to nearby points in Z, so we should expect that it

distorts distance by a small amount. Because of this behavior, we can use f to prove the following

lemmas, which appear in some form in [29, 30].

Lemma 3.6.1 (Lemma 7 of [29]). If (X, dX) is a metric space and Z ⊆ X is a finite ε
2
-sample,

then for any n ≥ 0, the persistent homology modules Hn(VR
m(X)) and Hn(VR

m(Z)) are ε-

interleaved.

37This follows, for instance, from the fact that all metric spaces are paracompact and Hausdorff, but it is also not too
difficult to construct a partition of unity meeting our requirements directly: see Exercise 3.6.1.
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Proof. Let f̃ be defined as above. We check that f̃ restricts to a map VRm(X; r) → VRm(Z; r+ε)

for any r ∈ R. This follows since for any µ ∈ VRm(X; r) and any zi1 , zi2 ∈ supp
(
f̃(µ)

)
, we

must have x1, x2 ∈ supp(µ) such that fi1(x1) ̸= 0 and fi2(x2) ̸= 0, and thus dX(zi1 , zi2) ≤

dX(zi1 , x1) + dX(x1, x2) + dX(x2, zi2) < ε
2
+ r + ε

2
. Define an interleaving by letting the

maps φr : Hn(VR
m(X; r)) → Hn(VR

m(Z; r + ε)) be induced by these restrictions of f̃ and

letting ψr : Hn(VR
m(Z; r)) → Hn(VR

m(X; r + ε)) be induced by the inclusions VRm(Z; r) ↪→

VRm(X; r + ε). To verify that these form an interleaving, we must check the commutativity

conditions described in Section 2.1.2. Since we are working with induced maps on homology, it is

sufficient to check that the following diagrams commute up to homotopy, where all arrows directed

down and right are restrictions of f̃ and all other arrows are inclusions.

VRm(X; r1) VRm(X; r2)

VRm(Z; r1 + ε) VRm(Z; r2 + ε)

VRm(X; r1 + ε) VRm(X; r2 + ε)

VRm(Z; r1) VRm(Z; r2)

VRm(X; r) VRm(X; r + 2ε)

VRm(Z; r + ε)

VRm(X; r + ε)

VRm(Z; r) VRm(Z; r + 2ε)

The first diagram commutes because both arrows directed down and right are restrictions of f̃ , and

the second diagram commutes because all arrows are inclusions. To verify that the third diagram

commutes up to homotopy, we must check that f̃ |VRm(X;r) : VR
m(X; r) → VRm(X; r + 2ε) is

homotopic to the inclusion. SinceX is bounded, Pfin(X) is as well, so Lemma 3.5.4 shows we may
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use a straight line homotopy in VRm(X; r+2ε) as long as it is well-defined. Thus, it is sufficient to

check that if µ ∈ VRm(X; r), then diam
(
supp(µ)∪supp

(
f̃(µ)

))
< r+2ε, since then all measures

defined by the straight line homotopy do in fact lie in VRm(X; r+2ε). In fact, we have the stronger

bound diam
(
supp(µ)∪supp

(
f̃(µ)

))
< r+ε because supp

(
f̃(µ)

)
is contained in the union of open

ε
2
-balls centered at the points of supp(µ) and supp(µ) has diameter at most r. Thus, we conclude

that the third diagram commutes up to homotopy. Similarly, checking that the fourth diagram

commutes up to homotopy amounts to checking that f̃ |VRm(Z;r) : VR
m(Z; r) → VRm(Z; r + 2ε)

is homotopic to the inclusion. A straight line homotopy applies, by the same argument, so we

conclude that the fourth diagram commutes up to homotopy.

Lemma 3.6.2 (Lemma 8 of [29]). If (X, dX) is a metric space andZ ⊆ X is a finite ε
2
-sample, then

for any n ≥ 0, the persistent homology modules Hn(Č
m(X)) and Hn(Č

m(Z)) are ε-interleaved.

Proof. The proof follows the Vietoris–Rips case closely. Let f̃ be defined as above. We check that

f̃ restricts to a map Čm(X; r) → Čm(Z; r + ε) for all r ∈ R. For any µ ∈ Čm(X; r), there must

be a center c such that dX(x, c) ≤ r for all x ∈ supp(µ), and since Z is an ε
2
-sample of X , there is

a z ∈ Z such that dX(c, z) < ε
2
. Then for any zi ∈ supp

(
f̃(µ)

)
, there is an x ∈ supp(µ) such that

dX(zi, x) <
ε
2
, so

dX(zi, z) ≤ dX(zi, x) + dZ(x, c) + dZ(c, z) <
ε

2
+ r +

ε

2
.

Therefore z is an (r + ε)-center for f̃(µ), so f̃(µ) is in fact in Čm(Z; r + ε). We define an

interleaving as in the Vietoris–Rips case by letting φr : Hn(Č
m(X; r)) → Hn(Č

m(Z; r + ε)) be

the maps induced by these restrictions of f̃ and letting ψr : Hn(Č
m(Z; r)) → Hn(Č

m(X; r+ε)) be

induced by the inclusions Čm(Z; r) ↪→ Čm(X; r + ε). To check that these define an interleaving,

we verify that the following diagrams commute up to homotopy.

Čm(X; r1) Čm(X; r2)

Čm(Z; r1 + ε) Čm(Z; r2 + ε)
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Čm(X; r1 + ε) Čm(X; r2 + ε)

Čm(Z; r1) Čm(Z; r2)

Čm(X; r) Čm(X; r + 2ε)

Čm(Z; r + ε)

Čm(X; r + ε)

Čm(Z; r) Čm(Z; r + 2ε)

The first diagram commutes because both of the arrows directed down and right are restrictions of

f̃ , and the second diagram commutes because all arrows are inclusions. For the third diagram, we

check that a straight line homotopy between f̃ : Čm(X; r) → Čm(X; r + 2ε) and the inclusion is

well defined. Let µ ∈ Čm(X; r) and let c be an r-center for µ. As above, for any zi ∈ supp
(
f̃(µ)

)
,

there is an x ∈ supp(µ) such that dX(zi, x) < ε
2
, and thus dX(zi, c) < r + ε. Therefore all

points of supp(µ) ∪ supp
(
f̃(µ)

)
are within r of c. This shows that the straight line homotopy

in Čm(X; r + 2ε) is well defined, so the third diagram commutes up to homotopy. Similarly, for

the fourth diagram, the same approach shows that a straight line homotopy is well defined, so the

diagram commutes up to homotopy.

The lemmas above allow us to approximate a Vietoris–Rips or Čech metric thickening by

the metric thickening of a finite sample. In the case of a totally bounded metric space X , these

approximations can be made arbitrarily close. Combing with comparisons to the corresponding

finite simplicial complexes gives the following results, the first of which is analogous to Proposi-

tion 3.4.5.

Proposition 3.6.3 (Propositions 4 and 5 of [29]). If (X, dX) is a totally bounded metric space, then

for any n ≥ 0, the persistent homology modules Hn(VR
m(X)) and Hn(Č

m(X)) are q-tame and

thus have well-defined persistence diagrams.

116



Proof. Since X is totally bounded, for any ε > 0, there exists a finite ε
2
-sample Z. By Lem-

mas 3.6.1 and 3.6.2, Hn(VR
m(X)) and Hn(VR

m(Z)) are ε-interleaved and Hn(Č
m(X)) and

Hn(Č
m(Z)) are ε-interleaved. The mapHn(VR

m(X; r)) → Hn(VR
m(X; r+2ε)) factors through

Hn(VR
m(Z; r + ε) using the interleaving maps:

Hn(VR
m(X; r)) Hn(VR

m(X; r + 2ε)).

Hn(VR
m(Z; r + ε))

By Proposition 3.5.1, VRm(Z; r+ε) is homeomorphic to a finite simplicial complex, which implies

Hn(VR
m(Z; r+ε)) has finite dimension. Thus, the mapHn(VR

m(X; r)) → Hn(VR
m(X; r+2ε))

has finite rank, and since this holds for all ε > 0, we conclude that Hn(VR
m(X)) is q-tame. The

same technique shows that Hn(Č
m(X)) is q-tame.

We now come to the main results of this section, the following four theorems.

Theorem 3.6.4 (Equivalence of Vietoris–Rips persistent homology, Theorem 4 of [29], Corol-

lary 5.10 of [30]). If X is a totally bounded metric space, then for any n ≥ 0, we have

dgm(Hn(VR
m(X))) = dgm(Hn(VR(X))).

Proof. Both persistence modules are q-tame by Propositions 3.4.5 and 3.6.3, so the persistence

diagrams are well defined. Since X is totally bounded, for any ε > 0, there is a finite ε
2
-sample Z,

and we have dGH(X,Z) ≤ ε
2

by Example 3.4.2. By Lemma 3.4.3, Hn(VR(X)) is ε′-interleaved

with Hn(VR(Z)) for any ε′ > ε, and by Lemma 3.6.1, Hn(VR
m(X)) is ε-interleaved with

Hn(VR
m(X)). Furthermore, by Proposition 3.5.1, Hn(VR(Z)) and Hn(VR

m(Z)) are isomor-

phic, or equivalently, we may say they are 0-interleaved. Composing these three interleavings

shows Hn(VR(X)) and Hn(VR
m(X)) are (ε+ ε′)-interleaved for any ε′ > ε. Since this holds for

any ε > 0, we have dI
(
Hn(VR(X)), Hn(VR

m(X))
)
= 0. By Theorem 2.5.5, we have

dB
(
dgm(Hn(VR(X))), dgm(Hn(VR

m(X)))
)
= 0,
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and by Corollary 2.4.5, this shows the persistence diagrams are equal.

Theorem 3.6.5 (Equivalence of Čech persistent homology, Theorem 6 of [29], Corollary 5.10

of [30]). If X is a totally bounded metric space, then for any n ≥ 0, dgm(Hn(Č
m(X))) =

dgm(Hn(Č(X))).

Proof. The proof is the same as in the Vietoris–Rips case, replacing previous results with their

Čech analogs.

These theorems show that either the simplicial complexes or metric thickenings may be used to

define Vietoris–Rips or Čech persistent homology. Instead of using the persistence diagrams, we

could also express these results by saying that the barcodes of the simplicial complexes and metric

thickenings agree up to changing between open and closed endpoints of the bars. Combining these

results with Theorems 3.4.6 and 3.4.7, we immediately obtain the following stability results for the

metric thickenings.

Theorem 3.6.6 (Stability of persistent homology for VRm, Theorem 5 of [29], Corollary 5.9

of [30]). If X and Y are totally bounded metric spaces, then for any n ≥ 0,

dB
(
dgm(Hn(VR

m(X))), dgm(Hn(VR
m(Y )))

)
≤ 2dGH(X, Y ).

Theorem 3.6.7 (Stability of persistent homology for Čm, Theorem 7 of [29], Corollary 5.9 of [30]).

If X and Y are totally bounded metric spaces, then for any n ≥ 0,

dB
(
dgm(Hn(Č

m(X))), dgm(Hn(Č
m(Y )))

)
≤ 2dGH(X, Y ).

While we have used the stability of the simplicial complexes to prove the stability of the metric

thickenings, it is also worth noting that the stability of the metric thickenings could be proved with-

out reference to the simplicial complexes. To do this, we would construct appropriate interleavings

between the metric thickenings of arbitrary totally bounded spaces, approximating them both by

finite samples. This emphasizes the point made by the main results of this section, that metric
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thickenings can serve as an alternative to simplicial complexes in the foundations of persistent

homology.

Exercises

Exercise 3.6.1. Construct an explicit partition of unity meeting the requirements of this section.

That is, given a metric space X and a finite ε
2
-sample {z1, . . . , zn} ⊆ X , construct continuous

functions fi : X → [0, 1] such that
∑n

i=1 fi(x) = 1 for all x ∈ X and fi(x) = 0 if dX(zi, x) ≥ ε
2

for each i.

Exercise 3.6.2 (Theorem 8 of [29]). Suppose L and W are subsets of a metric space X . Mimic the

techniques used in this section to show that if L is totally bounded, then the persistence diagrams

for H(Čm(L,W )) and H(Č(L,W )) are identical.

Exercise 3.6.3 (Theorem 9 of [29]). Combine Exercises 3.4.2 and 3.6.2 to prove the following

stability result for ambient Čech metric thickenings: if L, L′, and W are subsets of a metric space

X such that L and L′ are totally bounded, then

dB
(
dgm(Hn(Č

m(L,W ))), dgm(Hn(Č
m(L′,W )))

)
≤ 2dXH(L,L

′).

3.7 Generalization to p-metric thickenings
We will take a moment to briefly describe some generalizations of simplicial metric thicken-

ings, first defined in [30]; these will not be used outside this section. While so far we have worked

with Pfin(X), which consists of finitely supported probability measures on X , much of the theory

carries over to more general probability measures. For this section, we will follow [30] and only

consider bounded metric spaces X . Letting P(X) be the space of Radon probability measures

on X , equipped with the Wasserstein distance, we can define filtrations of subspaces of P(X)

analogous to our previously defined Vietoris–Rips and Čech metric thickenings.

Another generalization results from adjusting the functions used to define the filtrations. We

previously defined the Vietoris–Rips filtrations using the diameter of a measure and defined the
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Čech filtrations using a “radius” of a measure, meaning the minimal radius of a ball that can

contain the support of a measure. Given any metric space X and any p ∈ [1,∞], we can define

diamp : P(X) → R≥0 and radp : P(X) → R≥0 analogously to Lp norms:

diamp(α) =



(∫∫
X×X

(
dX(x, x

′)
)p
α(dx)α(dx′)

) 1
p

if p <∞

diam(supp(α)) if p = ∞

radp(α) =



inf
x∈X

(∫
X

(
dX(x, x

′)
)p
α(dx′)

) 1
p

if p <∞

inf
x∈X

sup
s∈supp(α)

dX(x, s) if p = ∞.

These can be used to filter our spaces Pfin(X) and P(X), giving the following p-Vietoris–Rips and

p-Čech metric thickenings. Following [30], we will only use the < convention in these definitions,

but the corresponding definitions with the ≤ convention could be made as well.

VRp(X; r) = {µ ∈ P(X) | diamp(µ) < r}

VRfin
p (X; r) = {µ ∈ Pfin(X) | diamp(µ) < r}

Čp(X; r) = {µ ∈ P(X) | radp(µ) < r}

Čfin
p (X; r) = {µ ∈ Pfin(X) | radp(µ) < r}

Each contains the isometric copy of X given by the embedding X → Pfin(X), so the name

“metric thickening” is justified (see Proposition 3.5.8 and the preceding discussion). In each case,

we get a filtration by letting r vary, denoted VRp(X), for instance. Various filtrations defined

this way are related to each other: it can be shown that for any p, q ∈ [1,∞], if q ≤ p, then

VRp(X; r) ⊆ VRq(X; r), and similarly for the other filtrations above. Furthermore, if p = ∞,
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then diamp and radp become the usual diameter and radius, so VRfin
∞ (X; r) = VRm

< (X; r) and

Čfin
∞ (X; r) = Čm

< (X; r) for all r. Thus, the filtrations VRfin
p (X) and Čfin

p (X) can be viewed as

approximating our previously defined filtrations VRm
< (X) and Č<(X) as p approaches ∞. Using

VRp as an example, we may also summarize these relationships by saying that the collection of all

VRp(X; r) for all p and r forms a bifiltration that is covariant in r and contravariant in p, meaning

VRp1(X; r1) ⊆ VRp2(X; r2) whenever r1 ≤ r2 and p2 ≤ p1.

These generalized metric thickenings are not as directly related to simplicial complexes as our

original simplicial metric thickenings. However, they do share an important property: they have

analogous stability results for their persistent homology. To state these results, we quickly cover

some preliminary facts, proved in [30]. First, ifX is a totally bounded metric space, then the persis-

tent homology modules Hn(VRp(X)), Hn(VR
fin
p (X)), Hn(Čp(X)), and Hn(Č

fin
p (X)) are q-tame

and thus have well defined persistence diagrams (note that this is similar to the cases of simpli-

cial complexes or simplicial metric thickenings). Furthermore, it can be shown that Hn(VRp(X))

and Hn(VR
fin
p (X)) have the same persistence diagram, which we will write as dgmVR

n,p(X); sim-

ilarly, Hn(Čp(X)) and Hn(Č
fin
p (X)) have the same persistence diagram, which we will write as

dgmČ
n,p(X). This fact shows that from the point of view of persistent homology, there is no differ-

ence between defining our metric thickenings in P(X) or Pfin(X).

The following results are proved in [30] and are completely analogous to the results for simpli-

cial complexes (Theorems 3.4.6 and 3.4.7) and for simplicial metric thickenings (Theorems 3.6.6

and 3.6.7). The proofs are similar to those for simplicial metric thickenings, making use of finite

samples and partitions of unity to construct maps between the metric thickenings.

Theorem 3.7.1. If X and Y are totally bounded metric spaces, then for any p ∈ [1,∞] and any

integer n ≥ 0, we have

dB
(
dgmVR

n,p(X), dgmVR
n,p(Y )

)
≤ 2dGH(X, Y ).
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Theorem 3.7.2. If X and Y are totally bounded metric spaces, then for any p ∈ [1,∞] and any

integer n ≥ 0, we have

dB

(
dgmČ

n,p(X), dgmČ
n,p(Y )

)
≤ 2dGH(X, Y ).

Exercises

Exercise 3.7.1. Show that for a bounded metric space X and any p ∈ [1,∞], we have

VRp(X; r) ⊆ Čp(X; r) ⊆ VRp(X; 2r),

VRfin
p (X; r) ⊆ Čfin

p (X; r) ⊆ VRfin
p (X; 2r).

These match the analogous statements for simplicial complexes and simplicial metric thickenings.

3.8 Reconstruction Results
The stability of persistent homology, in its various forms, shows that small distortions to an

input produce small changes to the persistence diagram or barcode. This gives a theoretical justifi-

cation for the use of persistent homology as a reductive view of a space. In particular, our stability

theorems for Vietoris–Rips and Čech simplicial complexes and metric thickenings give a theoreti-

cal justification for the use of these constructions to enrich our initial metric space. In this section,

we give a different type of justification for these constructions: we will show that in certain set-

tings, Vietoris–Rips and Čech complexes and metric thickenings have the same homotopy types as

the metric spaces they are constructed from. We will not prove any of the results in this section,

but citations are given for each.

The theorems tend to focus on small scale parameters, that is, values of r between zero and

some value depending on the space. These theorems center around the setting of closed Rie-

mannian manifolds, which can be thought of as reasonable spaces that we would like to analyze

using simplicial complexes or metric thickenings. From a practical viewpoint, manifolds can serve
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as idealized spaces from which we hypothesize a set of points is sampled. Then our simplicial

complexes and metric thickenings are meant to help us better understand the underlying mani-

fold. Theorem 3.8.2 below is best suited to this point of view. We begin with a classic result on

Vietoris–Rips complexes.

Theorem 3.8.1 (Hausmann’s Theorem [72,73]). If M is a closed Riemannian manifold, then there

exists an ε > 0 such that VR(M ; r) ≃M for all r ∈ (0, ε).

This theorem in fact applies in a slightly more general setting than closed Riemannian mani-

folds, and conditions determining ε can be given that depend on the manifold. The theorem was

originally proved for VR<(M ; r) in [72], and an alternate proof that covers VR≤(M ; r) as well is

given in [73]. Note that the homotopy equivalence impliesHn(VR(M ; r)) ∼= Hn(M) for any n, so

the persistent homology of VR(M ; r) in fact captures the true homology of M for small values of

r. Furthermore, while it is not necessarily practical to consider VR(M ; r), Theorem 3.4.6 implies

that replacing M with a close approximation results in a close approximation of the persistence

diagram (a closed manifold is compact and is therefore totally bounded). Thus, for a sufficiently

dense finite sample X ⊆ M , the persistence diagram of VR(X; r) accurately recovers the homol-

ogy of M for sufficiently small r. This is already suggestive of the following result, which shows

VR(X; r) can in fact recover the homotopy type of M .

Theorem 3.8.2 (Latschev’s Theorem [74]). Let M be a closed Riemannian manifold. Then there

exists an ε > 0 such that for every r ∈ (0, ε], there exists a δ > 0 such that VR<(X; r) ≃ M for

any metric space X such that dGH(X,M) < δ.

We next turn to Čech complexes, which, as we observed in Section 3.3.2, are examples of nerve

complexes. An important result for nerve complexes, referred to as both the nerve theorem and

the nerve lemma, serves as the main reconstruction result for Čech complexes. There are in fact

multiple variations of the nerve theorem: the one we give here applies to the nerve of an open cover.

Note that the theorem applies when X is a metric space, since all metric spaces are paracompact.
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Theorem 3.8.3 (The Nerve Theorem, Corollary 4G.3 of [61]). Let U = {Uj}j∈J be an open cover

of a paracompact space X . If every nonempty intersection of finitely many Uj is contractible, then

X is homotopy equivalent to the nerve NU .

For r > 0, the Čech complex Č<(X; r) is the nerve of the collection of all open r-balls in

X , so the nerve theorem shows Č<(X; r) ≃ X whenever every nonempty intersection of finitely

many open r-balls is contractible. The same idea applies to ambient Čech complexes. For instance,

given an L ⊆ Rn, which may be taken to be a finite set of data points, the ambient Čech complex

Č<(L,Rn; r) is the nerve complex of the collection of open balls centered at the points of L. Any

nonempty intersection of open balls is convex and thus contractible, so Theorem 3.8.3 shows that

Č<(L,Rn; r) is homotopy equivalent to the union of this collection of open balls. For this reason,

the filtration Č<(L,Rn) can be understood as the union of open balls that grow with r.

Reconstruction results for Vietoris–Rips and Čech metric thickenings are modeled after those

for the simplicial complexes. These results are somewhat more natural for the metric thickenings,

and in fact they were some of the first main results proved about them in [55]. The alternate

topology allows us to use the natural embeddings M → VRm(M ; r) and M → Čm(M ; r), and

these can be shown to be homotopy equivalences under appropriate assumptions. While we will

not give a full proof of the two reconstruction results below, we will give a proof sketch to exhibit

how the metric thickening topology provides a natural setting for these results.

Theorem 3.8.4 (Metric Hausmann’s Theorem, Theorem 4.2 of [55]). If M is a closed Riemannian

manifold, then there exists an ε > 0 such that the natural embedding M → VRm(M ; r) is a

homotopy equivalence for all r ∈ (0, ε).

Theorem 3.8.5 (Metric Nerve Lemma, Theorem 4.4 of [55]). If M is a closed Riemannian man-

ifold, then there exists an ε > 0 such that the natural embedding M → Čm(M ; r) is a homotopy

equivalence for all r ∈ (0, ε).

If we use the ≤ convention, the results of Theorems 3.8.4 and 3.8.5 in fact apply for r ∈ [0, ε),

since in this case, the embeddings M → VRm
≤ (M ; 0) and M → Čm

≤ (M ; 0) are homeomorphisms.
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As with Theorem 3.8.1, these results were originally proved in a slightly more general setting than

closed Riemannian manifolds (see [55]), and conditions determining ε can be given that depend

on the manifold.

Proof sketch for Theorems 3.8.4 and 3.8.5. The proof of these theorems in [55] follows the same

outline in the Vietoris–Rips and Čech cases, and we will give our sketch for the Vietoris–Rips

case. The homotopy inverse to the embedding M → VRm(M ; r) is constructed using a notion

of a mean of a measure called the Riemannian center of mass or Karcher mean [75]. The map

sending measures to their means in M is well defined and continuous as long as the supports of the

measures are sufficiently small, and this condition yields the ε in the theorem. The mean of a delta

measure is the point on which it is supported, so the composition M → VRm(M ; r) → M is the

identity. The reverse composition VRm(M ; r) → M → VRm(M ; r) is shown to be homotopic to

the identity using a straight line homotopy (Lemma 3.5.4). Showing this straight line homotopy is

well defined in VRm(M ; r) simply amounts to checking that the mean of a measure is sufficiently

close to the points of its support.

Exercises

Exercise 3.8.1. This exercise extends the results of Example 3.3.1. Give the unit circle S1 the

geodesic metric, which assigns to two points the arc length of the shorter arc between them. Apply

Theorem 3.8.2 to the set Xn of n evenly spaced points on S1 to conclude that for sufficiently

small r, we have VR<(Xn; r) ≃ S1 for all sufficiently large n. To strengthen this statement, for all

n ≥ 4, construct an explicit homotopy equivalence showing VR<(Xn; r) ≃ S1 for all r ∈ (2π
n
, 2π

3
].

Exercise 3.8.2. For any n ≥ 1, give the unit sphere Sn the geodesic metric, which assigns to two

points the arc length of the shortest smooth path between them: explicitly, if v, w ∈ Sn, we set

dSn(v, w) = cos−1(v · w). Show that for any r ∈ (0, π
2
), we have Č<(S

n; r) ≃ Sn.
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Chapter 4

Vietoris–Rips Metric Thickenings of the Circle

We now depart from the theoretical foundations of persistence considered in the previous chap-

ters and turn to specific topological problems to which we can apply the tools we have developed.

In this chapter and the next, we study particular filtrations in detail. These examples serve both as

case studies, which can be used to guide work on similar problems, and as interesting results in

their own right.

In this chapter38, we find the homotopy types of the Vietoris–Rips metric thickenings of the

circle, from which the barcodes and persistence diagrams follow. By Theorem 3.6.4, this will

also imply the persistence diagrams of the Vietoris–Rips simplicial complexes of the circle. The

homotopy types, which we will give in Theorem 4.7.3, are as follows:

VRm
≤ (S

1; r) ≃


S2k+1 if r ∈

[
2kπ
2k+1

, (2k+2)π
2k+3

)
{∗} if r ≥ π.

Here the distance between two points is the length of the shorter arc between them. If instead

S1 is given the Euclidean metric inherited from R2, we obtain the same sequence of odd spheres,

but the values of r at which the homotopy types change are distorted. These odd-dimensional

spheres yield persistence diagrams with single points in odd homological dimensions 2k+1 at the

corresponding points
(

2kπ
2k+1

, (2k+2)π
2k+3

)
. Alternately, Theorem 4.8.1 will give the barcodes, which

are visualized in Figure 4.1.

38This chapter contains content previously published in [39], modified only slightly to fit into the dissertation.
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Figure 4.1: Visualization of the persistent homology bars of VRm≤ (S1; _ ), omitting H0. There is one bar in
each odd dimension, corresponding to the homotopy types of odd-dimensional spheres.

These barcodes and persistence diagrams provide an important theoretical understanding of

Vietoris–Rips persistent homology, since the stability of Vietoris–Rips persistent homology (The-

orems 3.4.6 and 3.6.6) imply that approximate circles will have persistence diagrams close to

those of the circle. Because of this, we can improve our understanding of the persistent homology

of more general spaces: [76] shows that certain loops in a space may be detected by persistent

homology, as they contribute persistent homology bars similar to those of the circle.

Historically, the work here builds on previous similar results for Vietoris–Rips simplicial com-

plexes. Work in [63] gave the homotopy types of finite numbers of evenly spaced points on the

circle; along with the stability of persistent homology, these finite cases suggested reasonable

conjectures for the homotopy types of Vietoris–Rips simplicial complexes of the circle. These

conjectures were confirmed in [64], which finds the homotopy types of the simplicial complexes

at all scale parameters. The method used there is significantly different from the one we will use,

reflecting the difference in topologies between the standard simplicial complexes and the metric

thickenings. Other work in this area has improved the understanding of the homotopy types of

Vietoris–Rips complexes of general n-spheres at low scale parameters: two distinct approaches

in [77] and [78] apply in a range of scale parameters where the homotopy type of the n-sphere

is recovered. Furthermore, [77] describes how their results in fact improve upon those implied
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by Hausmann’s theorem (Theorem 3.8.1). Similarly, [79] finds the homotopy types of certain

Vietoris–Rips complexes of ellipses.

These previous results, along with Theorem 3.6.4, provided enough reason to make conjec-

tures for the homotopy types of the Vietoris–Rips metric thickenings of the circle (see for example

Conjecture 6 of [80]). Furthermore, recent work in [81] and [82] has shown that under reason-

able conditions, Vietoris–Rips simplicial complexes and metric thickenings are weakly homotopy

equivalent, further strengthening the relationship between these two constructions. Prior to [39],

the homotopy types of the Vietoris–Rips metric thickenings of the circle had been found for only

low scale parameters [55, 80, 83]. More generally, Theorem 5.4 of [55] identifies the first new ho-

motopy type, Sn ∗ SO(n+1)
An+2

, that appears in the filtration of Vietoris–Rips metric thickenings (with

the ≤ convention) of any n-sphere. The proof applies at the single lowest scale parameter at which

the metric thickening is no longer homotopy equivalent to the n-sphere.

4.1 Outline
Our technique will be to first show the metric thickenings are homotopy equivalent to CW

complexes, which provide a clear understanding of why these homotopy types appear. These CW

complexes provide a much simpler view of the metric thickenings and will in fact be constructed

as quotients of the metric thickenings. The quotients will identify each measure with a measure

supported on an odd number of regularly spaced points on the circle; a large part of our work will

be dedicated to constructing the quotient maps and showing they are homotopy equivalences.

The CW complexes reveal the homotopy types of odd-dimensional spheres as follows. For k ≥

0 and r ∈
[

2kπ
2k+1

, (2k+2)π
2k+3

)
as shown above, there is one n-cell for each dimension 0 ≤ n ≤ 2k + 1.

The 1-cell is glued by its two endpoints to the 0-cell to create a circle, which should be viewed

as the underlying copy of S1. For k ≥ 1, the metric thickening contains measures supported on

three evenly spaced points around the circle, which can be viewed as points of a triangle, so we

obtain a subspace of triangular measures on a set of triangles parameterized by a circle. The 2-cell

is represented by a single distinguished equilateral triangle and is glued by its boundary to the
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circle to produce a 2-disk. The remaining triangles are parameterized by an interval, so adding in

the remaining triangular measures amounts to gluing in a 3-cell. The boundary of this 3-cell is

glued to the contractible 2-disk, producing a space homotopy equivalent to S3. Spheres of higher

dimensions appear similarly. For the final two steps, a single distinguished 2k-cell, represented

by measures supported on a chosen set of 2k + 1 evenly spaced points, is glued into the previous

(2k − 1)-sphere to produce a 2k-disk, and then a (2k + 1)-cell is glued in by its boundary, giving

a space homotopy equivalent to S2k+1.

D0 S1 D2 S3

Figure 4.2: The CW complex giving the homotopy type of S3 has one cell in dimensions 0, 1, 2, and 3.
The 2-cell is a triangle and is glued by its boundary to the circle. The 3-cell is a triangular prism with cross
sectional triangles corresponding to all equilateral triangles on the circle. Both of its triangular faces are
glued to the 2-cell, with the top face rotated by 2π

3 . The rectangular faces are collapsed to the circle.

This approach of reducing to a CW complex is reminiscent of Morse theory and will hopefully

contribute to the development of a more general Morse-like theory for simplicial metric thick-

enings. Morse-theoretic ideas have previously been applied to related problems. One such idea

is described in [84], and this work was later found to be closely related to Vietoris–Rips com-

plexes; see [77]. The main result of [84] in fact implies the homotopy type of S3 in the case of

Vietoris–Rips complexes of the circle. Discrete Morse theory has also been applied to the study of
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the Vietoris–Rips complexes of spheres: [78] uses a version of discrete Morse theory to show the

complexes recover the homotopy types of n-spheres at low scale parameters.

The remainder of this chapter is organized as follows. In Section 4.2, we set some conventions

and give a useful technique for constructing homotopies in simplicial metric thickenings. Sec-

tion 4.3 describes properties of the Vietoris–Rips metric thickening of the circle that will be used

throughout, many of which suggest the methods of the later sections. In Section 4.4, we give back-

ground information and basic results related to quotients and the homotopy extension property, and

we show that certain pairs of subspaces of the metric thickenings of the circle have the homotopy

extension property. Section 4.5 describes homotopies that collapse certain subspaces of the metric

thickenings, and in Section 4.6, we piece these homotopies together, defining a quotient map that

is a homotopy equivalence. In Section 4.7, we show this quotient has the CW complex structure

described above and use the CW complex to find the homotopy types of the metric thickenings.

As a final result, in Section 4.8, we find the persistent homology of the metric thickenings. Two of

the more technical results are delayed and proven in Sections 4.9 and 4.10.

4.2 Background, Notation, and Conventions

4.2.1 Coordinates on the Circle

We begin with some conventions for our work with the circle. The straightforward techniques

here will be used in detail later. We give the circle S1 the geodesic metric, written dS1 , which

assigns to two points the arc length of the shorter arc between them. We will typically use an angle

enclosed in square brackets to indicate a point on the circle: that is, [θ] = (cos(θ), sin(θ)). The

square brackets can be thought of as denoting equivalence classes of points identified by the map

R → S1 given by θ 7→ (cos(θ), sin(θ)). Thus, [θ1] = [θ2] if and only if θ1−θ2 is an integer multiple

of 2π. We can then describe the distance between two points easily: without loss of generality, two

points can be written as [θ1] and [θ2] with θ1 ≤ θ2 ≤ θ1 + π, and the distance between them is

given by dS1([θ1], [θ2]) = θ2 − θ1.
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It will be convenient to identify the circle minus a point with an open interval of length 2π on

the real line in a way that preserves distances locally. For any angle θ0 ∈ R and any chosen point

y0 ∈ R, we can make this identification by a coordinate system x : S1 − {[θ0]} → R defined by

x([θ]) = y0 + θ − θ0,

where the representative θ for [θ] is taken in the interval (θ0, θ0 + 2π). The image of x is thus

(y0, y0 + 2π). We will describe such an x as a coordinate system that excludes [θ0]. The 2π-

periodic function τ : R → S1 given by

τ(z) = (cos(z + θ0 − y0), sin(z + θ0 − y0))

is a left inverse for x, that is, τ ◦ x([θ]) = [θ] for [θ] ̸= [θ0]. Composing in the other direction,

we have x ◦ τ(z) = z for z ∈ (y0, y0 + 2π). We note that τ preserves distances that are at most

π. In general, we have dS1(τ(z1), τ(z2)) ≤ dR(z1, z2), that is, τ is 1-Lipschitz. We will only

use coordinate systems defined as x is above, and we will also call (x, τ) a coordinate system to

indicate that τ is the 2π-periodic left inverse for x.

We can convert between the coordinate system x and another, x′ : S1−{[θ′0]} → R, defined by

x′([θ]) = y′0 + θ − θ′0,

where the representative θ for [θ] is taken in the interval (θ′0, θ
′
0+2π). We will assume without loss

of generality that θ0 ≤ θ′0 < θ0 + 2π. These coordinate systems are related as follows:

x([θ])− x′([θ]) =


(y0 − y′0) + (θ′0 − θ0)− 2π if θ0 < θ < θ′0

(y0 − y′0) + (θ′0 − θ0) if θ′0 < θ < θ0 + 2π,
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where here we choose the representative θ for [θ] from the intervals (θ0, θ′0) or (θ′0, θ0 + 2π). If τ

and τ ′ are the periodic left inverses, then we must have

τ(z) = τ ′(z − (y0 − y′0)− (θ′0 − θ0)).

4.2.2 Support Homotopies

Next, we introduce some techniques for working with simplicial metric thickenings that we

have not covered yet. Recall from Section 3.5 that if X is a metric space, a simplicial metric

thickening with vertex set X is a subset of Pfin(X), equipped with the Wasserstein distance. We

are of course interested in the Vietoris–Rips metric thickenings of the circle VRm
≤ (S

1; r), and we

will restrict our attention to the ≤ convention. In this chapter, we will use dW to indicate the

Wasserstein distance on any space of probability measures, and from Section 4.3 on, it will always

be subspaces of Pfin(S1).

A convenient way of working with topology of Pfin(X) comes from the relationship between

the Wasserstein distance and weak convergence. A sequence of measures {µn}n≥0 in Pfin(X)

is said to converge weakly to µ ∈ Pfin(X) if limn→∞
∫
X
f dµn =

∫
X
f dµ for all bounded and

continuous f : X → R. The relationship with the Wasserstein distance is often summarized by

saying “the Wasserstein distance metrizes weak convergence.” We record this fact in language that

applies to our work: for a more general statement, see [85]. Note that this lemma applies to S1

since it is a Polish space: it is separable and is complete with respect to either the usual Euclidean

metric or the geodesic metric.

Lemma 4.2.1. Let X be a Polish bounded metric space and suppose {µn}n≥0 is a sequence

of measures in Pfin(X). Then {µn}n≥0 converges weakly to µ ∈ Pfin(X) if and only if

limn→∞ dW (µn, µ) = 0.

Proof. This is a special case of Theorem 7.12 of [85] (the case of bounded metric spaces is men-

tioned in Remark 7.13(iii) following the theorem).
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We now describe a convenient way of constructing homotopies in subspaces of Pfin(X) that we

will soon use in VRm
≤ (S

1; r). The following lemma shows that if X is bounded, then continuously

deforming the supports of measures in a subset U ⊆ Pfin(X) results in a homotopy U × I → X

as long as all measures remain in U as their supports are deformed. We will allow the motion of

a mass at a point x in supp(µ) to depend on both x and µ, so we begin with a homotopy on the

subspace Q(X,U) = {(x, µ) ∈ X × U | x ∈ supp(µ)} ⊆ X × U . We define a support homotopy

in U to be a homotopyH : Q(X,U)×I → X such that for any t ∈ I and any µ =
∑n

i=1 aiδxi ∈ U

with ai > 0 for each i, we have
∑n

i=1 aiδH(xi,µ,t) ∈ U (here we require µ to be written with each ai

positive so that xi ∈ supp(µ), making (xi, µ, t) in the domain of H). The following lemma shows

that a support homotopy in U induces a homotopy H̃ : U × I → U if X is bounded. The proof

uses ideas similar to the proof of Lemma 3.5.6.

Lemma 4.2.2. Let (X, dX) be a bounded metric space and letU ⊆ Pfin(X). IfH : Q(X,U)×I →

X is a support homotopy in U , then H̃ : U × I → U given by H̃(µ, t) =
∑n

i=1 aiδH(xi,µ,t) for

µ =
∑n

i=1 aiδxi with ai > 0 for each i, is well-defined and continuous.

Proof. Up to reordering, there is a unique way to write a measure µ ∈ U ⊆ Pfin(X) as µ =∑n
i=1 aiδxi with ai > 0 for each i and with x1, . . . , xn distinct. Note that if x1, . . . , xn are not

distinct, this does not affect the value of H̃(µ, t), so H̃(µ, t) is uniquely determined for each

(µ, t) ∈ U × I . Furthermore, by definition of a support homotopy, H̃ does in fact send elements of

U × I into U , so it is a well-defined function; we must show it is continuous. Since X is bounded,

let C > 0 be such that dX(x, y) < C for any x, y ∈ X . Fix t ∈ I and µ =
∑n

i=1 aiδxi ∈ U

with each ai > 0. To show continuity of H̃ at (µ, t), let ε > 0. Using continuity of H at

the finitely many points (x1, µ, t), . . . , (xn, µ, t), there exist η1, η2, η3 > 0 such that for each i,

if (y, µ′, t′) ∈ Q(X,U) × I satisfies dX(xi, y) < η1, dW (µ, µ′) < η2, and |t − t′| < η3, then

dX(H(xi, µ, t), H(y, µ′, t′)) < ε
2
. We will reduce η2 if necessary so that 0 < η2 <

εη1
2C

.

Suppose (µ′, t′) ∈ U × I satisfies dW (µ, µ′) < η2 and |t − t′| < η3, where µ′ =
∑n′

j=1 a
′
jδx′j .

Then there exists a transport plan {κi,j} from µ to µ′ such that
∑

i,j κi,jdX(xi, x
′
j) < η2. Let
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A = {(i, j) | dX(xi, x′j) ≥ η1} and B = {(i, j) | dX(xi, x′j) < η1}. Then we have

∑
(i,j)∈A

κi,j ≤
∑

(i,j)∈A

κi,j
dX(xi, x

′
j)

η1
<
η2
η1
<

ε

2C
.

We can use the same set of values {κi,j} to define a transport plan between the measures H̃(µ, t) =∑n
i=1 aiδH(xi,µ,t) and H̃(µ′, t′) =

∑n′

j=1 a
′
jδH(x′j ,µ

′,t′), and by our choice of η1,η2, and η3, we have

dW (H̃(µ, t), H̃(µ′, t′))

≤
∑
i,j

κi,jdX(H(xi, µ, t), H(x′j, µ
′, t′))

=
∑

(i,j)∈A

κi,jdX(H(xi, µ, t), H(x′j, µ
′, t′)) +

∑
(i,j)∈B

κi,jdX(H(xi, µ, t), H(x′j, µ
′, t′))

<
∑

(i,j)∈A

κi,jC +
∑

(i,j)∈B

κi,j
ε

2

<
ε

2C
C +

ε

2

=ε.

Therefore H̃ is continuous at (µ, t).

Finally, we note that given a homotopy in a simplicial metric thickening Sm constructed using

this lemma, the corresponding homotopy in the simplicial complex S is in general not continuous.

Thus, the technique of support homotopies is specific to the metric thickening topology.

4.3 Odd numbers of arcs on the circle
A surprising amount of the structure of Vietoris–Rips metric thickenings of the circle will

depend on the following simple observation. Consider n distinct pairs of antipodal points on the

circle, with one of each pair colored blue and the other red. Given such a set of red and blue points

on the circle, consider the maximal length open arcs on the circle containing at least one blue point

and no red points. We can show by induction that there will always be an odd number of these
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maximal blue arcs. There is one arc for n = 1 or n = 2, and adding a new pair changes the number

of arcs only if the blue point is placed between two consecutive red points. This introduces a new

blue arc, but it also splits a previous blue arc, since the antipodal red point was placed between

two consecutive blue points. Therefore, each new antipodal pair introduced increases the number

of maximal blue arcs by either 0 or 2.

We find similar behavior in finite subsets of S1 with constrained diameter. Let r ∈ [0, π), and

consider a nonempty set Θ = {[θ0], . . . , [θn]} ⊂ S1 with diam(Θ) ≤ r. Since Θ cannot contain

a pair of antipodal points, we may color the points in Θ blue and the points opposite them red,

obtaining the situation described above. Furthermore, for any [θi] ∈ Θ, the open interval of length

2(π − r) opposite [θi] does not contain any other point in Θ; we call a point in any such interval

excluded by Θ. Let a (Θ, r)-arc be a closed arc of maximal length such that there is at least one

point of Θ contained in the arc and no point excluded by Θ is contained in the arc. We allow the

case where a (Θ, r)-arc consists of an individual point. This simply shrinks the blue arcs described

in the case of antipodal pairs, so the number of (Θ, r)-arcs is still odd. Let arcsr(Θ) be the number

of (Θ, r)-arcs.

If µ ∈ VRm
≤ (S

1; r), then by definition diam(supp(µ)) ≤ r, so the definitions above may be

applied with Θ = supp(µ). In this case we will call a (supp(µ), r)-arc a (µ, r)-arc, and will write

arcsr(µ) for arcsr(supp(µ)). For any [θ] in supp(µ), we call any point in the open interval of length

2(π − r) opposite [θ] a point excluded by µ (note that this definition depends on the parameter r –

we will use this term when r is understood). The set of all points excluded by µ may be called the

excluded region of µ; this is the set of points that are at distance greater than r from some point in

supp(µ). Thus, a (µ, r)-arc is a closed arc of maximal length such that there is at least one point

in supp(µ) contained in the arc and no point excluded by µ is contained in the arc. Each point

in supp(µ) is contained in exactly one (µ, r)-arc, and as above, the number of (µ, r)-arcs is odd.

Note that (µ, r)-arcs are defined entirely in terms of supp(µ), so if µ and µ′ have the same support,

then the (µ, r)-arcs agree with the (µ′, r)-arcs.
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Figure 4.3: Visualization of Θ-arcs and points excluded by Θ. The blue points are points of Θ and the red
points are the points opposite them. The blue arcs show the Θ-arcs and the red arcs are excluded by Θ.

For any k ≥ 0, let V2k+1(r) be the set of all measures µ ∈ VRm
≤ (S

1; r) that have exactly

2k+ 1 (µ, r)-arcs, and let W2k+1(r) =
⋃k
l=0 V2l+1(r) be the set of measures µ with at most 2k+ 1

(µ, r)-arcs. For convenience, we will let V−1(r) and W−1(r) be empty. By definition, the sets

V1(r), V3(r), . . . are disjoint and
⋃
k≥0 V2k+1(r) = VRm

≤ (S
1; r). We will mostly work with a fixed

parameter r and will often suppress the r from the notation. In particular, we will often write the

sets of measures above as VRm
≤ (S

1), V2k+1, and W2k+1, and we will use the terms Θ-arc and µ-arc

when r is fixed or understood from context39.

For r ∈ [0, π), the region excluded by a point in the support of a measure has length 2(π−r) >

0, so there is a maximum number of arcs a measure in VRm
≤ (S

1; r) can have. Thus, V2k+1(r) is

empty for all sufficiently large k. From here on, we let K = K(r) be the largest value of k such

that V2k+1(r) is nonempty; then VRm
≤ (S

1; r) = V1(r) ∪ · · · ∪ V2K+1(r) = W2K+1(r). To find K,

note that in order for a measure µ to have 2k+1 arcs, the set of points excluded by µ must be split

into 2k + 1 connected components. Since the open arc of length 2(π − r) opposite any point of

supp(µ) is excluded, this can only happen if 2(π − r)(2k + 1) ≤ 2π, or equivalently r ≥ 2kπ
2k+1

.

39In this chapter, VRm
≤ (S1) will always mean VRm

≤ (S1; r) at a fixed parameter r as described here; it should not be
confused with the shorthand notation for the entire filtration used in Chapter 3. We will use the notation VRm

≤ (S1; _)
to refer to the filtration, which will only appear in Section 4.8.
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Conversely, if r ≥ 2kπ
2k+1

, then any measure with support equal to a set of 2k + 1 evenly spaced

points has diameter 2kπ
2k+1

and is thus in V2k+1(r). This shows V2k+1(r) is nonempty if and only if

r ≥ 2kπ
2k+1

.

We summarize the properties described above in the following proposition.

Proposition 4.3.1. Let r ∈ [0, π). For any µ ∈ VRm
≤ (S

1; r), there are an odd number of (µ, r)-

arcs. V2k+1(r) is nonempty if and only if r ≥ 2kπ
2k+1

, so K = K(r) is the unique integer such that

2Kπ
2K+1

≤ r < (2K+2)π
2K+3

. Thus, V1(r), V3(r), . . . , V2K+1(r) partition VRm
≤ (S

1; r), and VRm
≤ (S

1; r) =

W2K+1(r).

Having defined the subspaces V2k+1 and W2k+1, we now introduce additional subspaces that

will begin to suggest the CW complex described in the introduction. As with our previous defini-

tions, we will often omit the parameter r. For 0 ≤ k ≤ K, let P2k+1 = P2k+1(r) ⊆ VRm
≤ (S

1; r)

be the set of measures whose support is 2k + 1 evenly spaced points; that is, their support is of

the form {[θ0], [θ0 + 2π
2k+1

], . . . , [θ0 + 2k 2π
2k+1

]}. We refer to these as regular polygonal measures.

Each P2k+1 is nonempty if and only if V2k+1 is nonempty, and by Proposition 4.3.1, this holds if

and only if r ≥ 2kπ
2k+1

. The closure P2k+1 of P2k+1 in VRm
≤ (S

1) consists of measures whose support

is contained in a set of 2k + 1 evenly spaced points (where not all of these points are required to

be in the support). The set of measures with support contained in a fixed individual (2k + 1)-gon

is homeomorphic to a 2k-simplex (and thus homeomorphic to the disk D2k), where a homeomor-

phism can be defined by taking linear combinations of delta measures to the corresponding linear

combinations of vertices of a 2k-simplex. This homeomorphism sends a measure with all 2k + 1

points in its support to the interior of the simplex. Furthermore, P2k+1
∼= D2k × S1, where the

S1 parameterizes the set of regular (2k + 1)-gons on the circle (this S1 may be better thought of

as the quotient of S1 by the action of Z
(2k+1)Z ). These homeomorphisms can be checked using

Proposition 5.2 of [55], for instance. We define ∂P2k+1 = P2k+1 − P2k+1 = P2k+1 ∩ ∂V2k+1 since

for k ≥ 1, we have the homeomorphism ∂P2k+1
∼= S2k−1 × S1; however, ∂P2k+1 is in general

not the boundary of P2k+1 in VRm
≤ (S

1). Note that P1(r) consists of all delta measures, is equal

to its own closure, and is homeomorphic to S1 by the canonical embedding of S1 into VRm
≤ (S

1).
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We also let R2k = R2k(r) ⊆ VRm
≤ (S

1; r) be the set of measures with support equal to the specific

regular (2k + 1)-gon {[0], [ 1·2π
2k+1

], . . . , [2k·2π
2k+1

]} (the choice of the polygon containing [0] is just for

convenience; any fixed individual polygon could also be used). Then R2k ⊆ V2k+1 and R2k is

homeomorphic to the interior of a 2k-simplex. The closure R2k of R2k in VRm
≤ (S

1) is the set of

measures with support contained in {[0], [ 1·2π
2k+1

], . . . , [2k·2π
2k+1

]}, and we will write ∂R2k = R2k−R2k.

Thus, for k ≥ 1, the pair (R2k, ∂R2k) is homeomorphic to (D2k, S2k−1). Note that ∂R2k is not

necessarily the boundary of R2k in VRm
≤ (S

1). For k = 0, we let D0 be a space with one point, so

R0
∼= D0.

Our strategy for finding the homotopy type of VRm
≤ (S

1) will be to define (in Section 4.6) a

quotient map q : VRm
≤ (S

1) → VRm
≤ (S

1)/ ∼ that is a homotopy equivalence. Under the equiva-

lence relation ∼, each measure of VRm
≤ (S

1) will be equivalent to exactly one regular polygonal

measure. In particular, each measure in V2k+1 will be equivalent to exactly one measure in P2k+1,

determined by repositioning the masses in the 2k + 1 arcs to lie at 2k + 1 evenly spaced points.

Thus, VRm
≤ (S

1)/ ∼ will be described by specifying how the closures P2k+1 are glued together by

their boundaries. We will further split each P2k+1 into R2k and P2k+1−R2k, which are homeomor-

phic to an open 2k-disk and an open (2k + 1)-disk respectively. These will form open cells of a

CW complex that is homeomorphic to VRm
≤ (S

1)/ ∼ and thus homotopy equivalent to VRm
≤ (S

1).

We will thus have one cell in each dimension 0 ≤ n ≤ 2K + 1, glued together as described in

Section 4.1 to give a space homotopy equivalent to S2K+1.

For reference, we list the main definitions made in this section, treating the scale parameter r

as fixed.

• For any µ ∈ VRm
≤ (S

1), a µ-arc is a closed arc of maximal length containing a point of

supp(µ) and containing no point excluded by µ.

• V2k+1 consists of all measures in VRm
≤ (S

1) with exactly 2k + 1 arcs.

• W2k+1 consists of all measures in VRm
≤ (S

1) with at most 2k + 1 arcs.
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• P2k+1 consists of all measures in VRm
≤ (S

1) whose support is 2k+1 evenly spaced points on

the circle.

• R2k+1 consists of all measures in VRm
≤ (S

1) with support equal to {[0], [ 1·2π
2k+1

], . . . , [2k·2π
2k+1

]}.

4.3.1 Properties of V2k+1 and W2k+1

In this section, we give some technical lemmas characterizing the subspaces V2k+1 and W2k+1.

The first lemma below will allow us to determine when a measure µ is in VRm
≤ (S

1)−W2k−1 (that

is, when µ has at least 2k + 1 arcs). We will write it in the general setting of finite subsets of S1.

Lemma 4.3.2. Let r ∈ [0, π) and let Θ be a nonempty finite set of points in S1 with diam(Θ) ≤

r. There are at least 2k + 1 distinct (Θ, r)-arcs if there exist distinct points [θ0], . . . , [θ2k] ∈ Θ

such that if the [θi] are colored blue and their antipodal points are colored red, the red and blue

points alternate around the circle. Conversely, if there are exactly 2k + 1 (Θ, r)-arcs, then if

[θ0], . . . , [θ2k] are points in Θ, each contained in a distinct (Θ, r)-arc, then coloring the [θi] blue

and their antipodal points red results in red and blue points that alternate around the circle.

Proof. Both statements are trivially true if k = 0, so we suppose k ≥ 1. Suppose first that there

exist distinct points [θ0], . . . , [θ2k] ∈ Θ such that if the [θi] are colored blue and their antipodal

points are colored red, the red and blue points alternate. Each blue point belongs to a unique Θ-

arc, and each red point is excluded by Θ. Since the red and blue points alternate, for any pair of

blue points, there is a red point on each of the two arcs between the blue points. Therefore the blue

points must be contained in distinct Θ-arcs, so there are at least 2k + 1 distinct Θ-arcs.

To prove the second statement, suppose there are exactly 2k + 1 (Θ, r)-arcs (note that if k ≥ 1

and there are 2k + 1 (Θ, r)-arcs, we must have r ≥ 2kπ
2k+1

≥ 2π
3

). Let [θ0], . . . , [θ2k] ∈ Θ with

one [θi] in each Θ-arc. Color the [θi] blue and the points opposite them red. We show there

must be a red point on any arc between any distinct blue points [θi] and [θj]; without loss of

generality, we assume θi < θj < θi + 2π and show there is a θ ∈ (θi, θj) such that [θ] is a red

point. If θi + π < θj , then [θi + π] is a red point and θi < θi + π < θj , so now consider the

case where θi < θj < θi + π. Since [θi] and [θj] belong to different Θ-arcs, there is a point
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excluded by Θ that can be represented by an angle in (θi, θj), so θj ≥ θi + 2(π − r) and there

is a θ′ ∈
[
θi + π + (π − r), θj + π − (π − r)

]
such that [θ′] ∈ Θ. Since [θ′] belongs to some

Θ-arc, there must be a blue point [θl] in this Θ-arc, and without loss of generality, we can choose

the representative θl such that θl ∈
[
θi + π + (π − r), θj + π − (π − r)

]
. Then [θl − π] is a red

point and θi < θl − π < θj . Therefore there must be a red point on any arc between distinct blue

points, so the red and blue points alternate around the circle.

The somewhat combinatorial nature of the definition of V2k+1 and W2k+1 leads to interesting

topological properties. In general, the V2k+1 are neither open nor closed, as shown in the following

example. However, we will see soon that each W2k+1 is closed, and we will provide a description

of the closure of V2k+1 in VRm
≤ (S

1).

Example 4.3.3. For any k ≥ 1, suppose r ∈ [0, π) is large enough so that V2k+1(r) is nonempty.

Then V2k+1 contains measures supported on 2k + 1 evenly spaced points, and we can define a

sequence with a predictable limit by varying the mass placed at these points: define the sequence

{µn}n≥1 by

µn = 1
n
δ[0] +

2k∑
j=1

(
1
2k

− 1
2kn

)
δ[ 2jπ

2k+1
].

For each n ≥ 2, µn is in V2k+1, since it has nonzero mass at each of the 2k + 1 regularly spaced

points. On the other hand, the sequence converges to µ =
∑2k

j=1
1
2k
δ[ 2jπ

2k+1
], which is in V2k−1

because [ 2kπ
2k+1

] and [2(k+1)π
2k+1

] are in the same µ-arc (since 0 is not in supp(µ)). Thus, {µn}n≥2 is a

sequence in V2k+1 that converges to a measure in V2k−1. This shows V2k−1 is not open in VRm
≤ (S

1)

and V2k+1 is not closed in VRm
≤ (S

1). Since this example applies whenever 1 ≤ k ≤ K, we see

V2k+1 is neither open nor closed if 1 ≤ k ≤ K − 1. If K > 0, then V1 is not open and V2K+1 is not

closed. We will see soon that V1 is always closed and V2K+1 is always open.

The following lemma shows that all measures sufficiently close to a fixed measure µ have

certain properties determined by µ.
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Lemma 4.3.4. Let k ≥ 0 and r ∈ [0, π), and suppose µ ∈ V2k+1(r). For all ε > 0, there exists an

η > 0 such that the following statements hold for all ν ∈ VRm
≤ (S

1; r) satisfying dW (µ, ν) < η.

1. For any [θ] ∈ supp(µ), there is a [θ′] ∈ supp(ν) such that dS1([θ], [θ′]) < ε.

2. ν ∈ VRm
≤ (S

1; r)−W2k−1(r), that is, ν has at least 2k + 1 arcs.

3. IfA0, A1, . . . , A2l are all the ν-arcs, then for each i, define the closed arcA′
i by expandingAi

by π−r
2

on both sides. Then ν(A′
i) = ν(Ai) for each i, the arcs A′

0, A
′
1, . . . , A

′
2l are disjoint,

supp(µ) ⊆
⋃
iA

′
i, and |µ(A′

i)− ν(A′
i)| < ε for all i.

The length of π−r
2

in (3) is just used for convenience, and it could be replaced with an arbitrarily

small positive number. This length will also be used later when we need to expand arcs by a small

amount.

Proof. For (1), let m = min{µ([θ]) : [θ] ∈ supp(µ)}, noting that m > 0 because µ is finitely

supported. Then moving any point mass of µ a distance of ε costs at least mε. Choosing η ∈

(0,mε), we find that for any ν ∈ VRm
≤ (S

1) satisfying dW (µ, ν) < η, there is a transport plan

between µ and ν with a cost of less than mε, so each point in supp(µ) must be at a distance less

than ε from some point in supp(ν).

To show (2), choose one point in each µ-arc that is in supp(µ) to color blue, and color the

points opposite them red. We apply (1) to choose η such that each point in supp(µ) is at a distance

less that π−r
2

from some point in supp(ν). Then for each blue point, choose a point in supp(ν) at

distance less than π−r
2

to color green, and color the points opposite the green points orange (here a

point may be colored both blue and green or may be colored both red and orange). Since the blue

points are in distinct µ-arcs, the distance between any two of them is at least 2(π − r), and thus

the green points are distinct; so we have 2k + 1 points of each color. Since the red and blue points

alternate by Lemma 4.3.2 and each red point is at a distance of at least π− r from each blue point,

the green and orange points must alternate as well. So again by Lemma 4.3.2, ν has at least 2k+1

arcs.
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Finally, we prove (3). By (1), we may choose η so that each point in supp(µ) is within

a distance of π−r
2

from some point in supp(ν), and this will imply supp(µ) ⊆
⋃
iA

′
i. Since

A0, A1, . . . , A2l are distinct ν-arcs, each is at a distance of at least 2(π − r) from all others, so

each A′
i is at a distance of at least π − r from all others. This shows that the A′

i are disjoint.

For each i, the only points of supp(ν) in A′
i are those that are in Ai, so ν(A′

i) = ν(Ai). In any

transport plan between µ and ν, for each i, at least a mass of |µ(A′
i)− ν(A′

i)| must be transported

from A′
i to outside of A′

i. Since all other A′
j are at a distance of at least π − r from A′

i, we must

have |µ(A′
i) − ν(A′

i)|(π − r) ≤ dW (µ, ν). Therefore, if we require η < (π − r)ε, we find that if

dW (µ, ν) < η, then |µ(A′
i)− ν(A′

i)| < ε.

For any k ≥ 0 and any µ ∈ VRm
≤ (S

1)−W2k+1, Lemma 4.3.4(2) above implies there is an open

neighborhood of µ in which all measures have at least as many arcs as µ. This neighborhood is

therefore contained in VRm
≤ (S

1)−W2k+1. This gives us the following lemma.

Lemma 4.3.5. For any r ∈ [0, π) and any k ≥ 0, W2k+1(r) is closed in VRm
≤ (S

1; r).

Note that in the case k = 0, we have W1 = V1, so this lemma shows V1 is closed in VRm
≤ (S

1).

This lemma also implies V2k+1 = W2k+1−W2k−1 is open inW2k+1 for each k. We now give an ex-

plicit description of the closure of each V2k+1: we will write the closure of V2k+1(r) in VRm
≤ (S

1; r)

as V2k+1(r). Note that Lemma 4.3.5 already implies V2k+1 ⊆ W2k+1. Furthermore, simple exam-

ples show that V2k+1 can be a strict subset of W2k+1: for instance, if r = 2π
3

, then it can be checked

that a measure with support {[0], [2π
9
], [4π

9
], [6π

9
]} is in V1(r) ⊆ W3(r) but not in V3(r). The follow-

ing lemma shows that situations like that in Example 4.3.3, in which a sequence in V2k+1 converges

to a point in V2k+1 by altering the masses on a fixed support, in fact account for all measures in

V2k+1. While this result is not unexpected, the proof is long and we give it in Section 4.9.

Lemma 4.3.6. For all k ≥ 0 and all r ∈ [0, π), µ ∈ V2k+1(r) if and only if supp(µ) is contained

in a finite set T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k + 1.

Lemma 4.3.6 will allow us to describe measures of VRm
≤ (S

1) in a concise and useful form.

First, by Lemma 4.3.5, the closure of V2k+1 in W2k+1 is V2k+1, and the interior of V2k+1 in W2k+1

142



is V2k+1. Therefore, the boundary of V2k+1 in W2k+1 is V2k+1 − V2k+1. From here on, we write

∂V2k+1 = V2k+1 − V2k+1 for the boundary of V2k+1 in W2k+1. Note that this is not necessarily

the boundary of V2k+1 in VRm
≤ (S

1), as there may be points in V2k+1 that are not in the interior of

V2k+1 in VRm
≤ (S

1) (see Example 4.3.3). By Lemma 4.3.6, we may write any measure µ ∈ V2k+1

as µ =
∑2k

i=0 aiµi where
⋃
i supp(µi) has 2k + 1 arcs, each µi is a probability measure supported

on a distinct (
⋃
i supp(µi))-arc, ai ≥ 0 for each i, and

∑
i ai = 1. Furthermore, µ ∈ ∂V2k+1 if

and only if ai = 0 for some i. If µ ∈ V2k+1, then each ai is the amount of mass in an individual

µ-arc, so in this case we will refer to the ai as the arc masses of µ. When we write µ ∈ V2k+1 as

µ =
∑2k

i=0 aiµi meeting the description above, we will say µ is written in (2k+1)-arc mass form,

or simply arc mass form when k is understood. The value of k is relevant, as measures may be in

V2k+1 for multiple values of k (in general, the closures V2k+1 are not disjoint, even though the V2k+1

are disjoint: again, see Example 4.3.3). If µ ∈ V2k+1, both the set of µi and their corresponding

ai are completely determined by µ, so the arc mass form of µ is unique up to reordering the sum.

In general, it is not unique if µ ∈ ∂V2k+1, since if ai = 0, there are many choices for µi. We now

expand on the ideas of Lemma 4.3.4: the following lemma essentially shows that close measures

have close arc masses.

Lemma 4.3.7. Let r ∈ [0, π), and let each sum below express measures in arc mass form.

1. Let k ≥ 1, and let µ ∈ ∂V2k+1(r). For any ε > 0, there exists an η > 0 such that if

ν =
∑2k

i=0 biνi ∈ V2k+1(r) satisfies dW (µ, ν) < η, then bi < ε for some i.

2. Let k ≥ 0, and let µ =
∑2k

i=0 aiµi ∈ V2k+1(r). For any ε > 0, there exists an η > 0 such

that if ν =
∑2k

i=0 biνi ∈ V2k+1(r) satisfies dW (µ, ν) < η and A0, . . . , A2k are closed arcs

obtained by expanding the ν-arcs by π−r
2

on both sides, then possibly after reordering, we

have supp(µi) ⊆ Ai, ai = µ(Ai), bi = ν(Ai), and |ai − bi| < ε for each i.

Proof. To prove (1), suppose ν =
∑2k

i=0 biνi ∈ V2k+1(r) is written in arc mass form and satisfies

dW (µ, ν) < η. For each i, supp(µ) must have a point within η
bi

of some point in supp(νi), oth-

erwise the mass of biνi could not be transported for a cost of less than η. We now suppose for a
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contradiction that η
mini{bi} <

π−r
2

. For each i, we may choose a point in supp(νi) to color green

and a point in supp(µ) within a distance of η
mini{bi} from this green point to color blue (here we

allow a point to be colored both green and blue). The green points are in separate ν-arcs, so they

are at distance at least 2(π − r) from each other. Since η
mini{bi} <

π−r
2

, the blue points must be

distinct, so we have 2k + 1 points of each color. Color the points opposite the blue points red and

the points opposite the green points orange. By Lemma 4.3.2, the green and orange points alternate

around the circle, and each green point is at a distance of at least π − r from each orange point

since diam(supp(ν)) ≤ r. Since η
mini{bi} <

π−r
2

, this implies the red and blue points alternate as

well. But by Lemma 4.3.2, this implies µ has at least 2k + 1 arcs, contradicting the assumption

that µ ∈ ∂V2k+1. Therefore we can conclude that η
mini{bi} ≥ π−r

2
, so mini{bi} ≤ 2η

π−r . So given

any ε > 0, setting η = π−r
2
ε gives the desired result.

To prove (2), let ε > 0. Applying parts (1) and (3) of Lemma 4.3.4, we can choose an η > 0

such that for any ν =
∑2k

i=0 biνi ∈ V2k+1(r) written in arc mass form and satisfying dW (µ, ν) < η,

the following hold: each point in supp(µ) is within π−r
2

of some point in supp(ν), and letting

A0, . . . , A2k be the disjoint closed arcs obtained by expanding the ν-arcs by π−r
2

on both sides,

supp(µ) ⊆
⋃
iAi and |µ(Ai) − ν(Ai)| < ε for each i. If k = 0, we are done, since A0 contains

all points of supp(µ) and supp(ν), so we can suppose k ≥ 1. Reordering if necessary, we have

bi = ν(Ai) by the definition of arc mass form. We will show that for any i, the points of supp(µ)

contained in Ai all belong to the same µ-arc; since supp(µ) ⊆
⋃
iAi, this will imply that each Ai

contains some points of supp(µ) and thus contains exactly the points of supp(µ) belonging to a

particular µ-arc. After reordering if necessary, this will show ai = µ(Ai) for each i. Suppose for

a contradiction that [θ1], [θ2] ∈ supp(µ) are in distinct µ-arcs and that [θ1], [θ2] ∈ Ai. Color one

point of supp(µ) in each µ-arc blue, choosing [θ1] and [θ2] for their µ-arcs, and color the points

opposite the blue points red. By Lemma 4.3.2, the red and blue points alternate, so there is a red

point [θ′] contained between [θ1] and [θ2] in Ai, and since [θ′] is at distance at least π− r from both

[θ1] and [θ2], [θ′] must in fact be contained in the ν-arc contained in Ai. Since there must be a point

of supp(ν) within π−r
2

of the blue point [θ′ + π], the point [θ′] is excluded by ν, contradicting the
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fact that it is in a ν-arc. Therefore if [θ1], [θ2] ∈ supp(µ)∩Ai, they must belong to the same µ-arc,

as required.

4.4 Homotopies, Quotients, and the HEP

4.4.1 General Facts

This section covers some facts related to quotient maps and the homotopy extension prop-

erty. Our aim is to cover the theory that will be necessary to construct the map q : VRm
≤ (S

1) →

VRm
≤ (S

1)/ ∼, alluded to in Section 4.3 and which we will construct in Section 4.6, which will be

both a quotient map and a homotopy equivalence. We recall the relevant definitions. IfX is a topo-

logical space and A ⊆ X , the pair (X,A) is said to have the homotopy extension property (HEP)

if given any homotopy H : A× I → Z and any map f : X → Z such that f(a) = H(a, 0) for any

a ∈ A, there exists a homotopy G : X × I → Z such that G|A×I = H and G(_ , 0) = f . A fiber of

a function is a preimage of a singleton. A surjective continuous function q : X → Y is a quotient

map if and only if it satisfies the following universal property: for any space Z and any continuous

f : X → Z that is constant on the fibers of q (that is, q(x1) = q(x2) implies f(x1) = f(x2)), there

is a unique continuous function g : Y → Z such that g ◦ q = f , as in the following diagram.

X

Y Z

q
f

g

Furthermore, if this property holds, then Y is homeomorphic to the quotient space X/ ∼ where

x1 ∼ x2 if and only if q(x1) = q(x2) and a subset ofX/ ∼ is open if and only if its preimage under

q is open in X .

Proposition 4.4.3 below shows that quotient maps meeting certain conditions are homotopy

equivalences, and this is one of the main tools we will use. Lemma 4.4.2 will be used in the proof

of Proposition 4.4.3, as well as in a later section. Lemma 4.4.1 will only be used for proofs in this

section.
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Lemma 4.4.1. Suppose q : X → Y is a quotient map and Z is a locally compact Hausdorff space.

Then the product map q × 1Z : X × Z → Y × Z is a quotient map.

Proof. Lemma 4.72 of [86].

Lemma 4.4.2. Suppose X is a topological space, ∼ is an equivalence relation on X , and ∼′ is an

equivalence relation on X × I defined by (x1, t1) ∼′ (x2, t2) if and only if x1 ∼ x2 and t1 = t2.

Then we have a homeomorphism (X/ ∼)× I ∼= (X × I)/ ∼′ defined by ([x], t) 7→ [(x, t)].

Proof. Let q : X → X/ ∼ and q′ : X × I → (X × I)/ ∼′ be the quotient maps. By Lemma 4.4.1,

since I is locally compact and Hausdorff, the map q × 1I : X × I → (X/ ∼) × I is also a

quotient map. It can be checked that the function f : (X/ ∼) × I → (X × I)/ ∼′ given by

([x], t) 7→ [(x, t)] is well-defined and is a bijection, so we just must verify it is continuous and

has a continuous inverse. This follows from the universal property of quotients since the fibers of

q × 1I and q′ agree and we have both f ◦ (q × 1I) = q′ and f−1 ◦ q′ = q × 1I .

X × I

(X/ ∼)× I (X × I)/ ∼′

q×1I
q′

f

We will use the following fact about pairs of spaces with the HEP, which establishes that certain

quotient maps are homotopy equivalences. This is a modest generalization of Proposition 0.17

from [61], and we will mimic its proof.

Proposition 4.4.3. Suppose (X,A) has the HEP and suppose H : A × I → A is a homotopy

such that H(_ , 0) = 1A and each H(_ , t) sends each fiber of H(_ , 1) into a fiber of H(_ , 1).

Define an equivalence relation on X by x1 ∼ x2 if and only if either x1 = x2 or x1, x2 ∈ A and

H(x1, 1) = H(x2, 1). Then the quotient map q : X → X/ ∼ is a homotopy equivalence.
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Proof. Apply the HEP to find a homotopy G : X × I → X such that G(_ , 0) = 1X and G(a, t) =

H(a, t) for all (a, t) ∈ A × I . Let ∼′ be an equivalence relation on X × I defined by (x1, t1) ∼′

(x2, t2) if and only if x1 ∼ x2 and t1 = t2. Because each H(_ , t) sends fibers of H(_ , 1) into

fibers of H(_ , 1), each G(_ , t) sends fibers of q into fibers of q. Thus, q ◦ G is constant on the

fibers of the quotient map X × I → (X × I)/ ∼′, so we get an induced map on the quotient. By

applying the homeomorphism of Lemma 4.4.2, we obtain a homotopy G̃ such that the following

diagram commutes for each t.

X X

X/ ∼ X/ ∼

G(_ ,t)

q q

G̃(_ ,t)

Since G(_ , 0) = 1X , we have G̃(_ , 0) = 1X/∼. Furthermore, since G(a, t) = H(a, t) for all

(a, t) ∈ A×I , we can see thatG(_ , 1) is constant on the fibers of q, so we get a map g : X/ ∼ → X

such that the following diagram commutes.

X X

X/ ∼ X/ ∼

G(_ ,1)

q q

G̃(_ ,1)

g

Therefore g ◦ q ≃ 1X via G and q ◦ g ≃ 1X/∼ via G̃, so q is a homotopy equivalence.

The next proposition will allow for further use of the HEP in combination with quotient maps.

Proposition 4.4.4. Let (X,A) be a pair of spaces with the HEP and let ∼ be an equivalence

relation on X with quotient map q : X → X/ ∼ . If for each x ∈ X − A the equivalence class of

x is the singleton {x}, then the pair (X/ ∼ , q(A)) has the HEP.
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Proof. A pair (X,A) has the HEP if and only if there exists a retraction r : X×I → X×{0}∪A×I

(see Proposition A.18 of [61]). We will find a map r̃ making the following diagram commute.

X × I X × {0} ∪ A× I

(X/ ∼)× I (X/ ∼)× {0} ∪ (A/ ∼)× I

r

q×1I (q×1I)|X×{0}∪A×I

r̃

By Lemma 4.4.1, the map q × 1I is a quotient map, so by the universal property of quotients,

it is sufficient to show that (q × 1I)|X×{0}∪A×I ◦ r is constant on the fibers of q × 1I . This follows

from the fact that r is constant on A× I and each x ∈ X−A is the only element of its equivalence

class. Finally, r̃ is a retraction because r is, so the pair (X/ ∼ , q(A)) has the HEP.

4.4.2 The Homotopy Extension Property for
(
VRm

≤(S
1; r),W2k+1(r)

)
In order to apply the ideas above in later sections, we will first demonstrate that certain pairs

of spaces within VRm
≤ (S

1) have the HEP. We will use the fact that a pair (X,A) has the HEP if

and only if X × {0} ∪ A × I is a retract of X × I (Proposition A.18 of [61]). For any n ≥ 1,

let ∆n ⊂ Rn be a regular n-simplex centered at the origin. We can first obtain retractions that

demonstrate (∆n, ∂∆n) has the HEP similar to the retractions used in Proposition 0.16 of [61]. Let

λn : ∆
n × I → ∆n × {0} ∪ ∂∆n × I be the map defined by projecting radially from the point

(⃗0, 2) ∈ ∆n × R, where ∆n × R is considered as a subspace of Rn+1. Then λn is continuous, and

if the vertices of ∆n are v0, . . . , vn, then λn has the form

λn

(
n∑
i=0

aivi, t

)
=

(
n∑
i=0

λn,i(a0, . . . , an, t)vi, σn(a0, . . . , an, t)

)
,

where σn : ∆n × I → I is continuous and the barycentric coordinates λn,i : ∆n × I → I are

continuous. Any point in the codomain ∆n × {0} ∪ ∂∆n × I has at least one of the barycentric

coordinates or the coordinate for I equal to zero, so for any (
∑n

i=0 aivi, t) ∈ ∆n × I , either
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σn(a0, . . . , an, t) = 0 or λn,i(a0, . . . , an, t) = 0 for some i. Furthermore, λn respects the symmetry

of ∆n in the sense that for any permutation ζ , we have λn,i(aζ(0), . . . , aζ(n)) = λn,ζ(i)(a0, . . . , an)

and σn(aζ(0), . . . , aζ(n)) = σn(a0, . . . , an) (in short, λ respects relabeling of vertices). Since λn

fixes points in ∆n×{0}∪∂∆n×I , it is a retraction; specifically, λn (
∑n

i=0 aivi, t) = (
∑n

i=0 aivi, t)

if either t = 0 or ai = 0 for some i.

We extend the ideas above to subsets of VRm
≤ (S

1). Recall that we have defined ∂V2k+1 =

V2k+1−V2k+1 and that ∂V2k+1 is the boundary of V2k+1 in W2k+1, although it is not necessarily the

boundary in VRm
≤ (S

1). For each k ≥ 1, we define a retraction ρ2k+1 : V2k+1 × I → V2k+1 × {0} ∪

∂V2k+1 × I based on λ2k. With measures written in (2k + 1)-arc mass form, define

ρ2k+1

(
2k∑
i=0

aiµi, t

)
=

(
2k∑
i=0

λ2k,i(a0, . . . , a2k, t)µi, σ2k(a0, . . . , a2k, t)

)
.

Since for any a0, . . . , a2k, t, either σ2k(a0, . . . , a2k, t) = 0 or λ2k,i(a0, . . . , a2k, t) = 0 for some i,

ρ2k+1 does in fact send points into V2k+1 × {0} ∪ ∂V2k+1 × I . Each measure µ ∈ V2k+1 may be

expressed in arc mass form µ =
∑2k

i=0 aiµi in multiple ways, either by permuting indices or by a

choice of µi when ai = 0; we must check that the definition of ρ2k+1 does not depend on the choice

of how µ is written. First, if ai = 0 for some i, then as described above, λ2k
(∑2k

i=0 aivi, t
)

=(∑2k
i=0 aivi, t

)
, which implies ρ2k+1(µ, t) = (µ, t). Thus, if ai = 0 for some i, then ρ(µ, t) is

uniquely defined. If ai ̸= 0 for each i, then µ has 2k + 1 arcs, and thus two different ways of

expressing µ in arc mass form must be the same up to a permutation of indices. By the symmetry

of λ2k, permuting the set of indices does not affect the value of ρ(µ, t). Therefore ρ2k+1 is a

well-defined function.

Lemma 4.4.5. For each k ≥ 1, the function ρ2k+1 : V2k+1 × I → V2k+1 × {0} ∪ ∂V2k+1 × I is a

retraction, and thus the pair (V2k+1(r), ∂V2k+1(r)) has the homotopy extension property.

Proof. Since λ2k is a retraction, ρ2k+1 fixes all points of V2k+1 × {0} ∪ ∂V2k+1 × I , as required.

We need to show it is continuous. We will suppose {(νn, tn)}n≥0 is a sequence in V2k+1 × I that
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converges to (µ, t) ∈ V2k+1× I and check that ρ2k+1(νn, tn) converges to ρ2k+1(µ, t), splitting into

cases for when µ ∈ V2k+1 and when µ ∈ ∂V2k+1.

For the first case, suppose µ ∈ V2k+1 and write µ in (2k+1)-arc mass form as µ =
∑2k

j=0 ajµj .

Then aj ̸= 0 for all j, since µ ∈ V2k+1. Applying Lemma 4.3.7(2), we see that for all large enough

n, we can write each νn in arc mass form as νn =
∑2k

j=0 an,jνn,j such that limn→∞ an,j = aj for

each j. As in the lemma, the νn,j can be chosen so that expanding the νn-arc containing supp(νn,j)

by π−r
2

on either side produces an arc that contains supp(µj). Furthermore, we show νn,j converges

weakly to µj for each j. Let Aj be the µ-arc containing supp(µj). Define A′
j by expanding Aj

by π−r
4

on either side, and define A′′
j by expanding Aj by π−r

2
on either side. For all large enough

n, supp(νn,j) is contained in A′
j , since by Lemma 4.3.4(1), expanding all open arcs excluded by

νn by π−r
4

covers all points excluded by µ. Any bounded continuous function f : S1 → R can be

replaced with a bounded continuous function f̃ equal to f on A′
j and with supp(f̃) ⊆ A′′

j . Then∫
S1 f dνn,j =

∫
S1 f̃ dνn for all large enough n, so

lim
n→∞

∫
S1

f dνn,j = lim
n→∞

∫
S1

f̃ dνn =

∫
S1

f̃ dµ =

∫
S1

f dµj,

where the second equality follows from Lemma 4.2.1. Therefore νn,j converges weakly to µj for

each j.

Since an,j approaches aj for each j, continuity of each λ2k,i and σ2k show that as n → ∞,

λ2k,i(an,0, . . . , an,2k, tn) approaches λ2k,i(a0, . . . , a2k, t) for each i and σ2k(an,0, . . . , an,2k, tn) ap-

proaches σ2k(a0, . . . , a2k, t). Then since νn,j converges weakly to µj for each j, Lemma 4.2.1

shows the components
∑2k

i=0 λ2k,i(an,0, . . . , an,2k, tn)νn,i converge in the Wasserstein distance to∑2k
i=0 λ2k,i(a0, . . . , a2k, t)µi, which is the first component of ρ2k+1(µ, t). We have thus shown both

components of ρ2k+1(νn, tn) converge, so ρ2k+1(νn, tn) converges to ρ2k+1(µ, t), as required.

We now consider the second case, where µ ∈ ∂V2k+1, and we have previously noted this means

ρ2k+1(µ, t) = (µ, t). First, we determine how λ2k behaves near ∂∆2k× I . Since λ2k is continuous,

we have a continuous function λ̃2k : ∆2k × I → R2k+1 given by λ̃2k(x, t) = λ2k(x, t) − (x, t).
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For any open neighborhood of 0⃗ in R2k+1, the preimage under λ̃2k is an open set that contains the

compact set ∂∆2k × I and thus contains an open ball around this compact set40. Therefore, for

any ε > 0, there is an η > 0 such that if (a0, . . . , a2k, t) ∈ ∆2k × I with aj < η for some j, then

|λ2k,i(a0, . . . , a2k, t)− ai| < ε for all i and |σ2k(a0, . . . , a2k, t)− t| < ε.

We apply this fact to describe the image of the sequence {(νn, tn)} under ρ2k+1. Again, write

each νn in arc mass form as νn =
∑2k

j=0 an,jνn,j . Temporarily write the first component of ρ2k+1

as a map ω2k+1 : V2k+1 × I → V2k+1, so that

ω2k+1 (νn, tn) =
2k∑
i=0

λ2k,i(an,0, . . . , an,2k, tn)νn,i.

By Lemma 4.3.7(1) and the fact that νn converges to µ ∈ ∂V2k+1, given any η > 0, for all

sufficiently large n, we have an,j < η for some j. Applying the fact above, this shows that

given any ε > 0, for all sufficiently large n, we have |λ2k,i(an,0, . . . , an,2k, tn) − an,i| < ε for

all i and |σ2k(an,0, . . . , an,2k, tn) − tn| < ε. Simple bounds on the Wasserstein distance show

that this implies ω2k+1(νn, tn) is arbitrarily close to νn for all sufficiently large n. Combined

with the fact that (νn, tn) converges to (µ, t) = ρ2k+1(µ, t), this shows ρ2k+1(νn, tn) converges to

ρ2k+1(µ, t).

We use Lemma 4.4.5 to prove the fact we will use in later sections, that
(
VRm

≤ (S
1),W2k+1

)
has the homotopy extension property for each k. Recall we have defined K = K(r) to be the

smallest integer such that VRm
≤ (S

1) = W2K+1. For each k ≥ 1, we extend the retraction ρ2k+1 to

a retraction

ρ̃2k+1 : W2K+1 × {0} ∪W2k+1 × I → W2K+1 × {0} ∪W2k−1 × I

40This is a general fact about compact subsets of metric spaces: see, for instance, Exercise 2 in Section 27 of [41].
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defined by

ρ̃2k+1(µ, t) =


ρ2k+1(µ, t) if (µ, t) ∈ V2k+1 × I

(µ, t) if (µ, t) ∈ W2K+1 × {0} ∪W2k−1 × I.

We have defined ρ̃2k+1 on two closed subsets of W2K+1 × {0} ∪W2k+1 × I , since W2k−1 × I is

closed for each k by Lemma 4.3.5. The intersection is given by

V2k+1 × I ∩
(
W2K+1 × {0} ∪W2k−1 × I

)
= V2k+1 × {0} ∪ ∂V2k+1 × I

and ρ2k+1 is constant on this intersection by Lemma 4.4.5, which shows ρ̃2k+1 is well-defined.

Again by Lemma 4.4.5, the definitions on the two closed sets are continuous, so ρ̃2k+1 is continu-

ous. By definition, all points of W2K+1×{0}∪W2k−1× I are fixed, so ρ̃2k+1 is in fact a retraction

for each k. By applying these retractions in decreasing order starting with ρ̃2K+1, we obtain a

retraction

ρ̃2k+3 ◦ . . . ◦ ρ̃2K+1 : W2K+1 × I → W2K+1 × {0} ∪W2k+1 × I

for any 0 ≤ k < K. Thus, Lemma 4.4.5 implies the following.

Proposition 4.4.6. For any k ≥ 0, there exists a retraction

VRm
≤ (S

1; r)× I −→ VRm
≤ (S

1; r)× {0} ∪W2k+1(r)× I,

and thus the pair
(
VRm

≤ (S
1; r),W2k+1(r)

)
has the homotopy extension property.

4.5 Collapse to Regular Polygons
We are now ready to define homotopies on subspaces of VRm

≤ (S
1). For each k ≥ 0 and any

r ∈ [0, π) such that V2k+1(r) is nonempty, we define a homotopy that collapses V2k+1 to the set

of regular polygonal measures P2k+1. We first define a support homotopy (see Section 4.2.2). Let

µ ∈ V2k+1. We will choose a coordinate system (x, τ) with x : S1 − {[θ0]} → R. If k = 0,
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we can choose [θ0] to be any point excluded by µ and let A0 be the single µ-arc. Otherwise, let

A0, A1, . . . , A2k be the µ-arcs, in counterclockwise order around the circle and with [θ0] chosen

strictly between the two closest support points of A2k and A0. Let vx,µ2k+1 : S
1 → R be a function

such that [θ] ∈ Avx,µ2k+1([θ])
for any [θ] belonging to any Ai. Then vx,µ2k+1 is constant on the arcs, and

we can choose it to be continuous. Define mx
2k+1 : V2k+1 → R by

mx
2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ =

2k∑
i=0

∫
Ai

(
x− 2iπ

2k + 1

)
dµ,

where we recall x : S1 − {[θ0]} → R is a continuous function, defined everywhere except the set

{[θ0]}, which has measure 0. Furthermore, let

Q(S1, V2k+1) = {([θ], µ) ∈ S1 × V2k+1 | [θ] ∈ supp(µ)}

and using any such coordinate system (x, τ), define the function41 F2k+1 : Q(S1, V2k+1)× I → S1

by

F2k+1([θ], µ, t) = τ

(
(1− t)x([θ]) + t

(
2π

2k + 1
vx,µ2k+1([θ]) +mx

2k+1(µ)

))
.

The intuition for these definitions is as follows. We use the choice of x to work with coordinates

in R (we will soon show that the definition of F2k+1 is independent of the choice of coordinate

system). The homotopy is constructed as a composition

Q(S1, V2k+1)× I R S1.τ

The integral
∫
Ai
x dµ acts as a weighted average (ignoring the total mass ofAi) of the images under

x of the support points in Ai. Since the µ-arcs A0, . . . , A2k are in counterclockwise order around

the circle, the integral mx
2k+1(µ) =

∑2k
i=0

∫
Ai

(
x− 2iπ

2k+1

)
dµ takes an average of where points in

41We define F2k+1 for any value of r such that V2k+1(r) is nonempty. However, the definition does not depend on r,
so we can safely omit it from the notation. We follow this convention for the homotopies F̃2k+1, G2k+1, and G̃2k+1,
defined later, as well. In fact, we could even treat r as fixed until the end of Section 4.7.
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supp(µ) “expect"A0 to be centered. Then for each [θ] ∈ supp(µ), 2π
2k+1

vx,µ2k+1([θ])+m
x
2k+1(µ) is an

angle of a point on a regular polygon associated to µ, as vx,µ2k+1([θ]) ∈ {0, . . . , 2k}. The homotopy

is then defined as a straight line homotopy in R, and we compose with the map τ to return to S1.

This has the effect of moving all masses in a single µ-arc to the same point and ending with masses

located at 2k + 1 evenly spaced points; we can picture F2k+1 as deforming the support of each

measure in V2k+1 into an average regular polygon (see Figure 4.4 below).

Lemma 4.5.1. For each k ≥ 0, the function F2k+1 : Q(S1, V2k+1(r))× I → S1 is well-defined and

is a support homotopy.

Proof. We begin by showing F2k+1 is well-defined, that is, that the choice of coordinate system

does not affect the definition. We compare the definition for two coordinate systems x : S1 −

{[θ0]} → R and x′ : S1 − {[θ′0]} → R, where {[θ0]} and {[θ′0]} are points excluded by µ. As

above, if k = 0, let A0 be the single µ-arc, and otherwise, let A0, A1, . . . , A2k be the µ-arcs, in

counterclockwise order around the circle, and with [θ0] between A2k and A0. If k ≥ 1, then [θ′0]

is excluded by µ, and it lies between two µ-arcs; let l be such that [θ′0] lies between Al−1 and Al,

or let l = 2k + 1 if [θ′0] lies between A2k and A0. If k = 0, let l = 1. By converting between

coordinates x and x′ as in Section 4.2.1, we find that there is an s ∈ R such that on arcs,

x′([θ]) =


x([θ])− s+ 2π if [θ] ∈ A0 ∪ · · · ∪ Al−1

x([θ])− s if [θ] ∈ Al ∪ · · · ∪ A2k.

Furthermore, there exist periodic functions τ, τ ′ : R → S1 such that τ ◦ x = 1S1 and τ ′ ◦ x′ = 1S1 ,

and these must satisfy τ(z) = τ ′(z − s).

We just need to convert each term in the definition of F2k+1 between the two coordinate sys-

tems. First, for [θ] ∈ A0 ∪ · · · ∪ A2k, we have

vx
′,µ

2k+1([θ]) =


vx,µ2k+1([θ]) + (2k + 1)− l if [θ] ∈ A0 ∪ · · · ∪ Al−1

vx,µ2k+1([θ])− l if [θ] ∈ Al ∪ · · · ∪ A2k.
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Next, keeping in mind that supp(µ) ⊂ A0 ∪ · · · ∪ A2k, we compute

mx′

2k+1(µ) =

∫
S1

(
x′ − 2π

2k + 1
vx

′,µ
2k+1

)
dµ

=

∫
A0∪···∪Al−1

(
x− s+ 2π − 2π

2k + 1

(
vx,µ2k+1 + (2k + 1)− l

))
dµ

+

∫
Al∪···∪A2k

(
x− s− 2π

2k + 1

(
vx,µ2k+1 − l

))
dµ

=
2π

2k + 1
l − s+

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ

=
2π

2k + 1
l − s+mx

2k+1(µ).

From these, we can convert the following term in the definition of F2k+1:

2π

2k + 1
vx

′,µ
2k+1([θ]) +mx′

2k+1(µ) =


2π

2k+1
vx,µ2k+1 +mx

2k+1(µ)− s+ 2π if [θ] ∈ A0 ∪ · · · ∪ Al−1

2π
2k+1

vx,µ2k+1 +mx
2k+1(µ)− s if [θ] ∈ Al ∪ · · · ∪ A2k.

Along with the conversion for x′([θ]), this gives

τ ′
(
(1− t)x′([θ]) + t

(
2π

2k + 1
vx

′,µ
2k+1([θ]) +mx′

2k+1(µ)

))
= τ

(
(1− t)x([θ]) + t

(
2π

2k + 1
vx,µ2k+1([θ]) +mx

2k+1(µ)

))
,

where we have used the fact that τ(z) = τ ′(z − s) for all z ∈ R and τ ′ is 2π-periodic. This shows

the definition of F2k+1 does not depend on the choice of coordinate system.

We next show F2k+1 is continuous at an arbitrary point ([θ′], µ′, t′). First, choose a [θ0] such

that [θ0 + π] ∈ supp(µ′) (thus, [θ0] is excluded by µ′), and work with a coordinate system

x : S1 − {[θ0]} → R and τ such that τ ◦ x = 1S1−{[θ0]}. By Lemma 4.3.4(1), for any measure

µ sufficiently close to µ′, there is a point in supp(µ) at distance less than π − r from [θ0 + π]

and thus excludes [θ0] as well. Therefore we may use the same coordinate system (x, τ) in some

neighborhood of µ′. Since x and τ are continuous and the argument for τ in the definition of
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F2k+1 is defined by a straight line homotopy in R, it is sufficient to check that the function given

by ([θ], µ) 7→ 2π
2k+1

vx,µ2k+1([θ]) + mx
2k+1(µ), defined on a neighborhood of ([θ′], µ′), is continuous.

By Lemma 4.3.7(2), for any µ sufficiently close to µ′, if A0, . . . , A2k are defined by extending the

µ-arcs by π−r
2

on both sides, all points of supp(µ′) contained in a single µ′-arc are contained in the

same Ai, with distinct µ′-arcs corresponding to distinct Ai. This implies that if [θ′′] ∈ supp(µ) and

dS1(θ′, θ′′) < π−r, then vx,µ
′

2k+1([θ
′]) = vx,µ2k+1([θ

′′]), and thus we now only need to show the function

µ 7→ mx
2k+1(µ), defined on some neighborhood of µ′, is continuous. With µ and A0, . . . , A2k as

above, we have

mx
2k+1(µ

′)−mx
2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ

′

2k+1

)
dµ′ −

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ

=

∫
S1

x dµ′ −
2k∑
i=0

2iπ

2k + 1
µ′(Ai)−

∫
S1

x dµ+
2k∑
i=0

2iπ

2k + 1
µ(Ai)

=

∫
S1

x dµ′ −
∫
S1

x dµ+
2k∑
i=0

2iπ

2k + 1

(
µ(Ai)− µ′(Ai)

)
.

For the integrals,
∫
S1 x dµ approaches

∫
S1 x dµ

′ as µ approaches µ′: this follows from Lemma 4.2.1

after replacing x by an appropriate bounded continuous function without changing the values of

the integrals. For the sum, by Lemma 4.3.7(2), each |µ(Ai)−µ′(Ai)| can be made arbitrarily small

by choosing a sufficiently small neighborhood of µ′. Therefore the function µ 7→ mx
2k+1(µ) is

continuous, so we conclude that F2k+1 is continuous.

Finally, to see that F2k+1 satisfies the definition of a support homotopy (Section 4.2.2), we

must check that for any µ =
∑n

i=1 aiδ[θi] ∈ V2k+1 with ai > 0 for all i, and for any t ∈ I , we have∑n
i=1 aiδF2k+1([θi],µ,t) ∈ V2k+1. This amounts to checking that

∑n
i=1 aiδF2k+1([θi],µ,t) has diameter at

most r and has exactly 2k + 1 arcs. First, supposing V2k+1 is nonempty, we must have r ≥ 2kπ
2k+1

by Proposition 4.3.1. For the diameter bound, consider any two points in supp(µ), without loss of

generality writing them as [θ1] and [θ2]. Choose a coordinate system (x, τ) with a corresponding

ordered set of µ-arcs A0, . . . , A2k so that, without loss of generality, [θ1] ∈ A0 and [θ2] ∈ Aj with
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0 ≤ j ≤ k. Then |x([θ1]) − x([θ2])| ≤ r. For any t ∈ I , we apply the fact that τ is 1-Lipschitz

(Section 4.2.1), giving the following bound:

dS1

(
F2k+1([θ1], µ, t), F2k+1([θ2], µ, t)

)
= dS1

(
τ
(
(1− t)x([θ1]) + tmx

2k+1(µ)
)
, τ

(
(1− t)x([θ2]) + t

(
2jπ

2k + 1
+mx

2k+1(µ)

)))
≤
∣∣∣∣(1− t)x([θ1]) + tmx

2k+1(µ)−
(
(1− t)x([θ2]) + t

(
2jπ

2k + 1
+mx

2k+1(µ)

))∣∣∣∣
≤ (1− t)

∣∣∣∣x([θ1])− x([θ2])

∣∣∣∣+ t

∣∣∣∣mx
2k+1(µ)−

(
2jπ

2k + 1
+mx

2k+1(µ)

)∣∣∣∣
≤ (1− t)r + t

2jπ

2k + 1

≤ (1− t)r + t
2kπ

2k + 1

≤ (1− t)r + t r

= r.

Therefore,
∑n

i=1 aiδF2k+1([θi],µ,t) has diameter at most r.

To see that each
∑n

i=1 aiδF2k+1([θi],µ,t) has 2k+ 1 arcs, we first associate to any nonempty finite

subset Θ ⊂ S1 of diameter at most r a continuous map fΘ : S1 → S1. Color the points of Θ

blue and the points opposite them red. Let fΘ send each blue point to [0] and each red point

to [π]. On any arc between consecutive colored points that are the same color, let fΘ remain

constant at the value of the endpoints. On an arc between consecutive colored points with opposite

colored endpoints, let the angle of fΘ([θ]) increase at a constant rate as θ increases, such that it

increases by π across the length of the arc. Since each blue point is at a distance of at least π − r

from each red point, fΘ is π
π−r -Lipschitz. We can see that arcsr(Θ) is equal to the degree of fΘ.

Letting Θt = {F2k+1([θi], µ, t) | 1 ≤ i ≤ n}, we get a function fΘt : S
1 → S1 for each t. The

continuity of F2k+1 can be used to check that we get a continuous map S1 × I → S1 defined by
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([θ], t) 7→ fΘt([θ]). Thus, any fΘt is homotopic to fΘ0 , so for each t,

arcsr(Θt) = deg(fΘt) = deg(fΘ0) = arcsr(Θ0) = arcsr(supp(µ)) = 2k + 1.

This shows each
∑n

i=1 aiδF2k+1([θi],µ,t) has 2k + 1 arcs and completes the proof that F2k+1 is a

support homotopy.

Applying Lemma 4.2.2 to the support homotopy F2k+1, we get a homotopy F̃2k+1 : V2k+1×I →

V2k+1, defined for µ =
∑n

i=1 aiδ[θi] with ai > 0 for each i by F̃2k+1(µ, t) =
∑n

i=1 aiδF2k+1([θi],µ,t).

For each µ ∈ V2k+1, F̃2k+1(µ, 1) is a measure supported on 2k + 1 evenly spaced points on the

circle, and all masses in µ in a single µ-arc are moved to a single one of these evenly spaced points.

Explicitly, following the notation above, for each µ ∈ V2k+1, we have

F̃2k+1(µ, 0) = µ

and

F̃2k+1(µ, 1) =
2k∑
i=0

µ(Ai)δτ( 2iπ
2k+1

+mx
2k+1(µ))

. (4.1)

Thus, F̃2k+1(_ , 1) sends V2k+1 into P2k+1.

Figure 4.4: F̃2k+1 can be visualized for an individual measure by sliding the support points along the circle.
This example shows F̃2k+1(µ, 0) = µ, F̃2k+1(µ,

1
2), and F̃2k+1(µ, 1) for a specific measure µ. The blue

points are the support points, which move until they reach the smaller black points.
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For each k, it can be checked that the homotopy F̃2k+1 is a deformation retraction, which is

enough to show that V2k+1 ≃ P2k+1. However, this is not enough for our purposes, as we would

like to collapse all the V2k+1 while preserving the homotopy type of the entire space VRm
≤ (S

1).

We will describe in Section 4.6 how this can be accomplished using Proposition 4.4.3, by defin-

ing equivalence relations that relate measures in V2k+1 if they are sent to the same measure by

F̃2k+1(_ , 1). To prepare for this use of Proposition 4.4.3, we prove the following lemma, which

implies that each F̃2k+1(_ , t) sends each fiber of F̃2k+1(_ , 1) into the same fiber.

Lemma 4.5.2. For any r ∈ [0, π) such that V2k+1(r) is nonempty, any k ≥ 0, any t ∈ I , and any

µ ∈ V2k+1(r), we have

F̃2k+1(F̃2k+1(µ, t), 1) = F̃2k+1(µ, 1).

Proof. Let µ =
∑n

i=1 aiδ[θi] with ai > 0 for each i. We will show the claimed equation holds at

a fixed t0 ∈ I . We first show we can find a coordinate system that can be used for each compu-

tation of F̃2k+1. Temporarily, we define a reduced µ-arc to be the smallest closed arc containing

all the points of supp(µ) contained in a given µ arc; that is, its endpoints are the outermost sup-

port points of the µ-arc. For any µ ∈ V2k+1, we know that F̃2k+1 collapses the masses of each

reduced µ-arc to a single point. If some reduced µ-arc contains the point it is collapsed to, let [θ0]

be the point opposite it (note that this is the only possible case when k = 0). Otherwise, suppose

each reduced µ-arc is collapsed to a point outside it and hence, within each reduced µ-arc, all

support points are moved in the same direction by F2k+1. Since mx
2k+1 is defined by a weighted

average, we can show not all support points are moved clockwise and not all are moved counter-

clockwise. This can be seen using any valid coordinate system (x, τ): by the definition of F2k+1,

a point [θi] ∈ supp(µ) is moved in x values from x([θi]) to 2π
2k+1

vx,µ2k+1([θi]) + mx
2k+1(µ). Since∑n

i=1 ai
(
x([θi])−

(
2π

2k+1
vx,µ2k+1([θi]) +mx

2k+1(µ)
))

= 0 by the definition of m2k+1, not all support

points move in the same direction. Thus, beginning with an arc that is moved clockwise and read-

ing counterclockwise around the circle until we reach the first arc that is moved counterclockwise,

we can find two reduced µ-arcs A and A′ such that A′ is the µ-arc immediately counterclockwise
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from A, A is moved clockwise, and A′ is moved counterclockwise. Because these are contained in

distinct µ arcs, there must be a point excluded by µ between the two, immediately counterclock-

wise of A and clockwise of A′; let [θ0] be any such point. In either case, we can check that no mass

is moved through [θ0] by F̃2k+1(µ, _ ), so the coordinate system (x, τ) with x : S1 − {[θ0]} → R

is a valid choice of coordinate system for both µ and F̃2k+1(µ, t) for the computation of F̃2k+1. In

the notation of Section 4.2.1, we can choose y0 to be 0, so that the image of x is (0, 2π) . By the

choice of [θ0], the expression (1− t)x([θ])+ t
(

2π
2k+1

vx,µ2k+1([θ]) +mx
2k+1(µ)

)
used in the definition

of F̃2k+1 produces values in (0, 2π) for all t and all [θ] ∈ supp(µ). This means we will be able to

use the fact that x ◦ τ restricted to the interval (0, 2π) is the identity.

Equation (4.1) above shows

F̃2k+1(µ, 1) =
2k∑
i=0

µ(Ai)δτ( 2iπ
2k+1

+mx
2k+1(µ))

and

F̃2k+1(F̃2k+1(µ, t0), 1) =
2k∑
i=0

F̃2k+1(µ, t0)(A
′
i)δτ( 2iπ

2k+1
+mx

2k+1(F̃2k+1(µ,t0))),

where A0, . . . , A2k are the arcs of µ and A′
0, . . . , A

′
2k are the arcs of F̃2k+1((µ, t0), 1), both ordered

counterclockwise starting at [θ0]. Since the arcs of µ and F̃2k+1(µ, t0) remain in the same order and

have the same amounts of mass, F̃2k+1(µ, t0)(A
′
i) = µ(Ai) for each i. Thus, it is sufficient to show

that mx
2k+1(µ) = mx

2k+1(F̃2k+1(µ, t0)). By definition,

mx
2k+1(µ) =

∫
S1

(
x− 2π

2k + 1
vx,µ2k+1

)
dµ,

and

mx
2k+1(F̃2k+1(µ, t0)) =

∫
S1

(
x− 2π

2k + 1
v
x,F̃2k+1(µ,t0)
2k+1

)
dF̃2k+1(µ, t0).
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Again, the arcs of µ and F̃2k+1(µ, t0) remain in the same order and have the same amounts of mass,

so the terms vx,µ2k+1 and vx,F̃2k+1(µ,t0)
2k+1 integrate to the same value. We thus need to show that

∫
S1

x dµ =

∫
S1

x dF̃2k+1(µ, t0).

By definition, if µ =
∑n

i=1 aiδ[θi] with ai > 0 for each i, then F̃2k+1(µ, t0) =
∑n

i=1 aiδF2k+1([θi],µ,t0).

We compute, applying the fact that x ◦ τ restricted to the interval (0, 2π) is the identity:

∫
S1

x dF̃2k+1(µ, t0) =
n∑
i=1

aix(F2k+1([θi], µ, t0))

=
n∑
i=1

aix ◦ τ
(
(1− t0)x([θi]) + t0

(
2π

2k + 1
vx,µ2k+1([θi]) +mx

2k+1(µ)

))
=

n∑
i=1

ai

(
(1− t0)x([θi]) + t0

(
2π

2k + 1
vx,µ2k+1([θi]) +mx

2k+1(µ)

))
= (1− t0)

∫
S1

x dµ+ t0

(∫
S1

2π

2k + 1
vx,µ2k+1 dµ + mx

2k+1(µ)

)
=

∫
S1

x dµ,

where the last step uses the definition of mx
2k+1(µ).

4.6 A Sequence of Quotients
Having defined homotopies F̃2k+1 : V2k+1 × I → V2k+1 that collapse the V2k+1 to measures

supported on regularly spaced points, we now show how to collapse all V2k+1 at once in a way that

preserves the homotopy type. There is not necessarily a natural way to extend a given F̃2k+1 con-

tinuously to all of VRm
≤ (S

1). However, it turns out that proceeding one k at a time, we can identify

points with equal images under F̃2k+1 while preserving the homotopy type, which produces a much

simpler space. We introduce a sequence of quotient maps as follows.
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VRm
≤ (S

1)

VRm
≤ (S

1)
VRm

≤ (S1)

∼1

VRm
≤ (S1)

∼3
. . .

VRm
≤ (S1)

∼2K+1

1VRm
≤ (S1)

q1 q3 q2K+1

q̃1 q̃3 q̃5 q̃2K+1

For each k ≥ 0, let the equivalence relation ∼2k+1 on VRm
≤ (S

1) be defined by µ1 ∼2k+1 µ2 if

and only if µ1 = µ2 or for some l ≤ k, µ1 and µ2 are in V2l+1 and F̃2l+1(µ1, 1) = F̃2l+1(µ2, 1).

Let q1, . . . , q2K+1 be the associated quotient maps. For convenience, we will also let ∼−1 be

equality and let q−1 be the identity map on VRm
≤ (S

1). Because each equivalence relation re-

spects the previous ones, we also get quotient maps q̃1, . . . , q̃2K+1. We also note that for all k

and l, W2l+1 is a closed, q2k+1-saturated42 subspace of VRm
≤ (S

1), which implies the restriction

q2k+1|W2l+1
: W2l+1 → q2k+1(W2l+1) is a quotient map (Theorem 22.1 of [41]). Our aim is to show

that each quotient q̃2k+1 is a homotopy equivalence.

We extend the composition q2k−1 ◦ F̃2k+1 : V2k+1 × I → q2k−1(V2k+1) to the following map

so that we will be able to apply Proposition 4.4.3. For each k ≥ 0, define G2k+1 : W2k+1 × I →

q2k−1(W2k+1) by

G2k+1(µ, t) =


q2k−1 ◦ F̃2k+1(µ, t) if µ ∈ V2k+1

q2k−1(µ) if µ ∈ W2k−1.

Thus, we have µ1 ∼2k+1 µ2 if and only if G2k+1(µ1, 1) = G2k+1(µ2, 1).

Checking that each G2k+1 is continuous will be tedious, so we place the proof of continuity in

Section 4.10. The intuition for the continuity of G2k+1 is as follows. We can reduce to checking

continuity at each point in ∂V2k+1×I . Since F̃2k+1(_ , 1) performs an averaging operation on mea-

sures of V2k+1 and q2k−1 identifies measures with the same averages under the various F̃2l+1(_ , 1)

with l < k, we need to check that these averages are compatible with each other (where for F̃2k+1,

42Given a function f : X → Y , a subset U ⊆ X is called f -saturated, or simply saturated, if U = f−1(f(U)).
A continuous, surjective function between topological spaces is a quotient map if and only if the image of each
saturated open (closed) set is open (closed) [41].
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we actually need to consider a limit as we approach ∂V2k+1). This compatibility is analogous to the

fact that to take a weighted average in R, we can perform the sum in any order, and in particular,

averaging certain subsets of points first does not change the final average. Since the averaging

operation performed by each F̃2l+1 depends on taking weighted averages of coordinates in R, it is

reasonable to expect that the various averages are in fact compatible.

We proceed with our goal of showing each q̃2k+1 is a homotopy equivalence. Letting

r ∈ [0, π) and 0 ≤ k ≤ K(r), we will check that we can apply Proposition 4.4.3 to the

pair
(

VRm
≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
and the homotopy G̃2k+1 constructed below. Proposition 4.4.6

states that each pair (VRm
≤ (S

1),W2k+1) has the HEP. By Proposition 4.4.4, since each µ ∈

VRm
≤ (S

1) −W2k+1 is only equivalent to itself under the equivalence relation ∼2k−1, we find that

each pair
(

VRm
≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
has the HEP. Each G2k+1(_ , t) : W2k+1 → q2k−1(W2k+1) is

constant on the equivalence classes of ∼2k−1, so applying Lemma 4.4.2 and the universal prop-

erty of quotients, we get a homotopy G̃2k+1 : q2k−1(W2k+1) × I → q2k−1(W2k+1) defined by

G̃2k+1(q2k−1(µ), t) = G2k+1(µ, t). Specifically,

G̃2k+1(q2k−1(µ), t) =


q2k−1 ◦ F̃2k+1(µ, t) if µ ∈ V2k+1

q2k−1(µ) if µ ∈ W2k−1.

Thus, G̃2k+1(q2k−1(V2k+1) × I) ⊆ q2k−1(V2k+1) and G̃2k+1(q2k−1(W2k−1) × I) ⊆ q2k−1(W2k−1),

where we can note that q2k−1(V2k+1) and q2k−1(W2k−1) are disjoint. Furthermore, the equiv-

alence classes of V2k+1 with respect to q2k−1 are singletons, so for µ1, µ2 ∈ V2k+1, we have

G̃2k+1(q2k−1(µ1), 1) = G̃2k+1(q2k−1(µ2), 1) if and only if F̃2k+1(µ1, 1) = F̃2k+1(µ2, 1). Therefore,

the quotient map q̃2k+1 :
VRm

≤ (S1)

∼2k−1
→ VRm

≤ (S1)

∼2k+1
described above identifies q2k−1(µ1) and q2k−1(µ2) if

and only if G̃2k+1(q2k−1(µ1), 1) = G̃2k+1(q2k−1(µ2), 1). Finally, by Lemma 4.5.2, for any t ∈ I ,

we have G̃2k+1(G̃2k+1(q2k−1(µ), t), 1) = G̃2k+1(q2k−1(µ), 1), so each G̃2k+1(_ , t) sends each fiber

of G̃2k+1(_ , 1) back into the same fiber. Therefore, all conditions of Proposition 4.4.3 apply to the

pair of spaces
(

VRm
≤ (S1)

∼2k−1
, q2k−1(W2k+1)

)
and the homotopy G̃2k+1, so we conclude that q̃2k+1 is
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a homotopy equivalence. By forming the composition q̃2K+1 ◦ · · · ◦ q̃3 ◦ q̃1 of homotopy equiva-

lences, we have thus proved the following theorem. We now simplify notation, writing the final

equivalence relation ∼2K+1 above as ∼ and writing q : VRm
≤ (S

1) → VRm
≤ (S

1)/ ∼ for the quotient

map.

Theorem 4.6.1. Define an equivalence relation ∼ on VRm
≤ (S

1; r) by setting µ1 ∼ µ2 if and only if

for some k ≥ 0, µ1 and µ2 are in V2k+1(r) and F̃2k+1(µ1, 1) = F̃2k+1(µ2, 1). Then VRm
≤ (S

1; r) ≃

VRm
≤ (S

1; r)/ ∼.

The quotient VRm
≤ (S

1; r)/ ∼ is a much simpler space than VRm
≤ (S

1; r). Each measure is

deformed to a regular polygonal measure by some F̃2k+1 and is equivalent to this measure under

the equivalence relation. This means every class in VRm
≤ (S

1; r)/ ∼ can be represented by a regular

polygonal measure.

4.7 The CW Complex and Homotopy Types
We now show that each quotient VRm

≤ (S
1; r)/ ∼ described in Theorem 4.6.1 has the topol-

ogy of a CW complex, which will allow us to determine the homotopy types. We will use the

description of CW complexes from [61] given in Proposition A.2 (page 521), which first requires

that VRm
≤ (S

1; r)/ ∼ be Hausdorff; this is not generally true of a quotient of a metric space, so the

proof will depend on the construction of this particular quotient.

Lemma 4.7.1. For each 0 ≤ k ≤ K(r), VRm
≤ (S

1; r)/ ∼2k+1 is Hausdorff.

Proof. We will use induction on k. Recall we defined ∼−1 as equality, so that VRm
≤ (S

1)/ ∼−1
∼=

VRm
≤ (S

1) is Hausdorff. We use this as the base case. For the inductive step, let k ≥ 0 and

suppose that VRm
≤ (S

1)/ ∼2k−1 is Hausdorff. Supposing that q2k+1(µ1) ̸= q2k+1(µ2), we must find

disjoint open neighborhoods of these points in VRm
≤ (S

1)/ ∼2k+1. This is equivalent to finding

q2k+1-saturated, disjoint, open neighborhoods of µ1 and µ2 in VRm
≤ (S

1).

We split into three cases. If µ1 and µ2 are in VRm
≤ (S

1)−W2k+1, then let U1 = BVRm
≤ (S1)(µ1, ε)

and U2 = BVRm
≤ (S1)(µ2, ε), with ε > 0 small enough so that U1 and U2 are disjoint. Then since
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W2k+1 is closed in VRm
≤ (S

1), U1 −W2k+1 and U2 −W2k+1 are open, disjoint neighborhoods of µ1

and µ2. They are q2k+1-saturated since each element in VRm
≤ (S

1) −W2k+1 is the only element in

its equivalence class.

Next, suppose µ1 ∈ W2k+1 and µ2 ∈ VRm
≤ (S

1) −W2k+1. Let U ′
1 =

⋃
µ∈W2k+1

BVRm
≤ (S1)(µ, ε)

and let U ′
2 = BVRm

≤ (S1)(µ2, ε), where ε > 0 is chosen by Lemma 4.3.4(2) so that all measures

of BVRm
≤ (S1)(µ2, 2ε) have at least as many arcs as µ2. Suppose for a contradiction that there is

a ν ∈ U ′
1 ∩ U ′

2. Then for some µ ∈ W2k+1, we have ν ∈ BVRm
≤ (S1)(µ, ε), so dW (µ, µ2) ≤

dW (µ, ν) + dW (ν, µ2) < 2ε. But this contradicts the choice of ε, since µ has at most 2k + 1 arcs

and µ2 has more than 2k + 1 arcs. Therefore U ′
1 and U ′

2 are disjoint open neighborhoods of µ1

and µ2. Furthermore, W2k+1 ⊆ U ′
1 and U ′

2 ∩ W2k+1 = ∅ because all measures in U ′
2 have at

least as many arcs as µ2. Therefore U ′
1 and U ′

2 are q2k+1-saturated, again because each element in

VRm
≤ (S

1)−W2k+1 is the only element in its equivalence class.

Finally, we consider the case where µ1 and µ2 are both in W2k+1. Recall we have shown that

G2k+1 : W2k+1×I → q2k−1(W2k+1) is continuous and thatG2k+1(ν1, 1) = G2k+1(ν2, 1) if and only

if q2k+1(ν1) = q2k+1(ν2), for ν1, ν2 ∈ W2k+1. Since we have supposed q2k+1(µ1) ̸= q2k+1(µ2), we

must have G2k+1(µ1, 1) ̸= G2k+1(µ2, 1). By the inductive hypothesis, we can find disjoint open

neighborhoods of G2k+1(µ1, 1) and G2k+1(µ2, 1) in q2k−1(W2k+1) ⊆ VRm
≤ (S

1)/ ∼2k−1; let U ′′
1

and U ′′
2 be their preimages under G2k+1(_ , 1). Then U ′′

1 and U ′′
2 are q2k+1-saturated, disjoint, open

subsets of W2k+1 that contain µ1 and µ2 respectively. We must extend these to open subsets of

VRm
≤ (S

1), so we will thicken around every point, as follows. For each ν1 ∈ U ′′
1 and each ν2 ∈ U ′′

2 ,

define

ε1(ν1) = sup{ε | BW2k+1
(ν1, ε) ⊆ U ′′

1 }

ε2(ν2) = sup{ε | BW2k+1
(ν2, ε) ⊆ U ′′

2 }.
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These are always positive since U ′′
1 and U ′′

2 are open inW2k+1, so we can obtain the following open

sets of VRm
≤ (S

1):

U ′′′
1 =

⋃
ν1∈U ′′

1

BVRm
≤ (S1)

(
ν1,

1
2
ε1(ν1)

)
U ′′′
2 =

⋃
ν2∈U ′′

2

BVRm
≤ (S1)

(
ν2,

1
2
ε2(ν2)

)
.

If ν ∈ U ′′′
1 ∩W2k+1, then ν ∈ U ′′

1 by choice of ε1(ν1), so we have U ′′′
1 ∩W2k+1 = U ′′

1 . Therefore

U ′′′
1 is q2k+1-saturated, since U ′′

1 is q2k+1-saturated and each point not in W2k+1 is the only element

in its equivalence class. Similarly, we see U ′′′
2 is q2k+1-saturated. To show U ′′′

1 and U ′′′
2 are disjoint,

suppose ν ∈ U ′′′
1 ∩ U ′′′

2 , so that ν ∈ BVRm
≤ (S1)(ν1,

1
2
ε1(ν1)) ∩ BVRm

≤ (S1)(ν2,
1
2
ε2(ν2)) for some

ν1 ∈ U ′′
1 and ν2 ∈ U ′′

2 . Without loss of generality, suppose ε1(ν1) ≥ ε2(ν2), so that dW (ν1, ν2) <

1
2
(ε1(ν1) + ε2(ν2)) ≤ ε1(ν1). Then by definition of ε1(ν1), we have ν2 ∈ U ′′

1 ∩ U ′′
2 , contradicting

the fact that U ′′
1 and U ′′

2 are disjoint. Therefore U ′′′
1 and U ′′′

2 are q2k+1-saturated, disjoint, open

neighborhoods of µ1 and µ2 in VRm(S1; r), as required.

For the following lemma, recall that we have definedR2k ⊆ VRm
≤ (S

1) to be the set of measures

with support equal to the regular (2k + 1)-gon {[0], [ 1·2π
2k+1

], . . . , [2k·2π
2k+1

]}.

Lemma 4.7.2. For each k ≥ 1, and any r ∈ [0, π) such that R2k ⊆ VRm
≤ (S

1; r), restricting q

gives a surjective map q|∂R2k
: ∂R2k → q(W2k−1(r)). If we further restrict the domain to ∂R2k ∩

V2k−1(r), then q|∂R2k∩V2k−1(r) is a bijection onto q(V2k−1(r)).

Proof. To simplify notation, we will write (z0, z1, . . . , z2k) for the measure
∑2k

i=0 ziδ[ i·2π
2k+1

] and will

refer to the masses being in positions 0 through 2k. When we describe points between consecutive

positions, we will mean points on the shorter arc, of length 2π
2k+1

, immediately between them (as

opposed to the longer arc of length 2k·2π
2k+1

on the other side of the circle). Any equivalence class in

q(W2k−1) can be represented by a regular polygonal measure with at most 2k − 1 vertices, so we

begin with an arbitrary set of masses a0, . . . , a2k−2 with ai ≥ 0 for each i and
∑2k−2

i=0 ai = 1. We

will write indices of the masses ai modulo 2k − 1 and the positions modulo 2k + 1. To determine
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the arcs of a measure in ∂R2k, we can use the fact that a position i has nonzero mass in a measure

µ if and only if the open arc between positions i+ k and i+ k + 1 contains a point excluded by µ.

We begin with the measure (a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2) and gradually pass masses

between the support points. Define γ0 : [0, a0] → ∂R2k by

γ0(t) = (a0 − t, t, a1, . . . , ak−1, 0, ak, . . . , a2k−2).

Since there is zero mass at position k + 1 throughout, this is in fact a map into ∂R2k, and further-

more, there is no excluded point between positions 0 and 1. This shows positions 0 and 1 belong

to the same arc of γ0(t) for each t. Thus, if k′ is such that γ0(0) ∈ V2k′+1, then γ0(t) ∈ V2k′+1 for

all t ∈ [0, a0], and if we consider (2k′+1)-arc mass forms, the arc masses of γ0(t) are the same for

all values of t. The measure γ0(a0) has zero mass at positions 0 and k+1, so positions k and k+1

belong to the same γ0(a0)-arc. We will next move mass between these positions, then repeat this

process. In general, we obtain paths γl : [0, al(k−1)] → ∂R2k, defining γl(t) by letting the masses at

positions lk through lk + 2k be, in order,

al(k−1) − t, t, al(k−1)+1, . . . , al(k−1)+k−1, 0, al(k−1)+k, . . . , al(k−1)+2k−2.

Note that the domain of γl is the singleton {0} if al(k−1) = 0. Again, a mass of zero at position

lk+k+1 implies that positions lk and lk+1 are in the same arc, so the arc masses remain constant

in each path.

It can be checked that γl(al(k−1)) = γl+1(0) for each l, so we may concatenate these paths;

write the resulting path as γl · γl+1. Then the path γ0 · γ1 · · · γ2k−2 preserves arc masses throughout

and has starting point

(a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2)

and ending point

(a2k−2, a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−3).
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a0 − t

t

a1

0

a2

0

a0

a1 − t

t

a2

t

a0

0

a1

a2 − t

γ0(t) = (a0 − t, t, a1, 0, a2) γ1(t) = (0, a0, a1 − t, t, a2) γ2(t) = (t, a0, 0, a1, a2 − t)

Figure 4.5: Paths in the proof of Lemma 4.7.2 with k = 2. We have γ0(a0) = γ1(0) and γ1(a1) = γ2(0),
so the paths may be concatenated. Compare γ0(0) to γ2(a2): the masses are shifted by one position.

That is, the overall effect has been to move each mass over one position. Repeating 2k + 1 times,

we define γ = γ0 · γ1 · · · γ(2k−1)(2k+1)−1, which rotates each mass once around the circle; thus, γ

is a loop. By scaling, we can assume the domain of γ is [0, 1]. More generally, for any l and l′, we

have γl = γl′ if l ≡ l′ mod (2k − 1)(2k + 1).

To see that q|∂R2k
is surjective onto q(W2k−1), take any equivalence class in q(W2k−1) and

choose a representative µ ∈ W2k−1 with support a regular (2k′ + 1)-gon, with k′ < k. We can

choose a0, . . . a2k−2 and set ν = (a0, 0, a1, . . . , ak−1, 0, ak, . . . , a2k−2) such that in (2k′ + 1)-arc

mass form, the ordered arc masses of ν match those of µ. For instance, if we choose ν to have

nonzero masses at exactly positions 0, k, . . . , 2k′k, then these positions are distinct because k is

relatively prime to 2k+1, and it can be checked that they lie in separate ν-arcs; we can then choose

the masses at these positions to match the arc masses of µ. Define each γl and γ as above with this

choice of a0, . . . a2k−2. Then γ(0) = ν, and for any t ∈ [0, 1], since γ(t) and γ(0) have the same

ordered arc masses, F̃2k′+1(γ(t), 1) is a measure with support a regular (2k′ + 1)-gon and ordered

arc masses matching those of µ. Working in any coordinate system x valid near some γ(t), we

can see that mx
2k′+1(γ(t)) is strictly increasing in t, since γ moves mass counterclockwise. This

implies that locally, the masses of F̃2k′+1(γ(t), 1) move strictly counterclockwise as t increases.

Furthermore, γ is a loop and each mass of F̃2k′+1(γ(t), 1) traverses the entire circle exactly once

as t ranges from 0 to 1, so there is some t0 such that F̃2k′+1(γ(t0), 1) = µ. This shows that

q(γ(t0)) = q(µ), and since γ(t0) ∈ ∂R2k, we can conclude that q|∂R2k
is surjective.
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To show that q|∂R2k∩V2k−1
is a bijection onto q(V2k−1), consider any equivalence class in

q(V2k−1) and let µ′ be a representative measure with support a regular (2k − 1)-gon. We show the

equivalence class of µ′ intersects ∂R2k∩V2k−1 in a single point. Let a′0, . . . , a
′
2k−2 be the masses at

the support points of µ′, ordered counterclockwise around the circle, and note that a′i > 0 for all i,

since µ′ ∈ V2k−1. Define γ′l like γl above for each l, with a′i in place of ai in each case. Following

the same reasoning as above, we can concatenate these paths, so define γ′ = γ′0·γ′1···γ′(2k−1)(2k+1)−1

(similarly to γ above). If ν ′ ∈ ∂R2k ∩ V2k−1 satisfies q(ν ′) = q(µ′), then ν ′ must have 2k− 1 arcs,

so one of the positions will have zero mass. Then the opposite two positions are in the same ν ′-arc,

and the remaining positions must each be in separate ν ′-arcs and have nonzero mass. It follows

that the masses of ν ′ are, in order counterclockwise and beginning with the two positions opposite

a position with mass zero,

a′j − t, t, a′j+1, . . . , a
′
j+k−1, 0, a

′
j+k, . . . , a

′
j+2k−2

for some j and some t ∈ [0, a′j]. In fact, if t = a′j , we could instead write the list above starting

with a′j+k−1 (or starting with the only nonzero mass if k = 1), so the masses of ν ′ can actually

be written as above with t ∈ [0, a′j). Thus, we have ν ′ = γ′l(t) for some l and t ∈ [0, a′l(k−1)): in

particular, we can choose 0 ≤ l < (2k− 1)(2k+1) by the Chinese remainder theorem. Therefore,

every ν ′ ∈ ∂R2k ∩ V2k−1 satisfying q(ν ′) = q(µ′) is of the form ν ′ = γ′(t) for some t ∈ [0, 1), so

it is sufficient to show that if q(γ′(t1)) = q(γ′(t2)), then γ′(t1) = γ′(t2).

The simplest case occurs when the masses of µ′ have no rotational symmetry: that is, there

is no nontrivial cyclic permutation of its masses that leaves it unchanged. In this case, since the

masses of F̃2k−1(γ
′(t), 1) move strictly counterclockwise as t increases and traverse the circle

exactly once, there is a unique t ∈ [0, 1) such that q(γ′(t)) = q(µ′). Now consider the case where

the masses of µ′ have some nontrivial symmetry: let j be the least positive integer dividing 2k − 1

such that a′i+j = a′i for all i. Then once again, since each mass of F̃2k−1(γ
′(t), 1) traverses the

circle exactly once as t ranges from 0 to 1, there must be exactly 2k−1
j

values of t ∈ [0, 1) such

that q(γ′(t)) = q(µ′). We show that each of these values of t yields the same value of γ′(t). It
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can be checked that for any l, γ′l+2k+1(t) is defined by the formula for γ′l(t) with each a′i replaced

by a′i−1. Applying the assumed symmetry, γ′l+(2k+1)j = γ′l for each l, so γ′l = γ′l′ if l ≡ l′

mod (2k+1)j. Therefore, there must be an index 0 ≤ l0 < (2k+1)j and a t0 ∈ [0, a′l0(k−1)) such

that q(γ′l0(t0)) = q(µ′). Furthermore, we have defined γ′ = γ′0 · γ′1 · · · γ′(2k−1)(2k+1)−1 and we have

γ′l0+n(2k+1)j(t0) = γ′l0(t0) for each 0 ≤ n < 2k−1
j

. Therefore, the 2k−1
j

values of t ∈ [0, 1) such

that q(γ′(t)) = q(µ′) all satisfy γ′(t) = γ′l0(t0), so there is exactly one ν ′ ∈ ∂R2k ∩ V2k−1 such that

q(ν ′) = q(µ′).

We can now describe VRm
≤ (S

1)/ ∼ as a simple CW complex, with one cell in each dimension

from 0 to 2K+1. See Figure 4.2 for an illustration of the case ofK = 1. We partition VRm
≤ (S

1)/ ∼

into cells C0, . . . , C2K+1: for 0 ≤ k ≤ K, define

C2k = q(R2k)

C2k+1 = q(V2k+1)− q(R2k).

Since q only identifies a measure with measures that have the same number of arcs, the collection of

subspaces q(V2k+1) for all k ≥ 0 partitions VRm
≤ (S

1)/ ∼, and thus the cells C0, . . . , C2K+1 parti-

tion VRm
≤ (S

1)/ ∼ as well. Since VRm
≤ (S

1)/ ∼ is Hausdorff by Lemma 4.7.1, to give VRm
≤ (S

1)/ ∼

the structure of a CW complex, it is sufficient to construct for each n ≥ 1 a map from a closed

n-disk Dn into VRm
≤ (S

1)/ ∼ such that the interior is mapped homeomorphically onto Cn and the

boundary is mapped into the union of the cells of lower dimensions; see Proposition A.2 of [61].

We will write each n-skeleton as Xn = C0 ∪ · · · ∪ Cn, so by the definition of the cells above, for

each 0 ≤ k ≤ K, we have

X2k = q(W2k−1) ∪ q(R2k)

X2k+1 = q(W2k+1).
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We consider the even dimensions first. For k = 0, the single 0 cell is q(R0) = {q(δ[0])}. For

each k ≥ 1, choosing a homeomorphism D2k → R2k that maps S2k−1 homeomorphically onto

∂R2k, we define the characteristic map Φ2k by the following composition:

D2k R2k VRm
≤ (S

1) VRm
≤ (S

1)/ ∼ .
∼= q

Combining Lemma 4.7.1 with the closed map lemma, we find that Φ2k is a closed map. Since

q sends distinct regular polygonal measures to distinct equivalence classes, q is injective on R2k,

and thus Φ2k maps the interior of D2k bijectively onto C2k. It can be checked43 that since Φ2k

is a closed map and the interior of D2k is Φ2k-saturated, the interior of D2k is in fact mapped

homeomorphically onto C2k. Because ∂R2k consists of measures with less than 2k + 1 arcs, the

boundary of D2k is sent into q(W2k−1) = X2k−1, as required.

For the odd dimensions, for any k ≥ 1, we consider D2k × I as a (2k + 1)-cell and con-

struct a map into VRm
≤ (S

1). Recall that P2k+1 is the set of regular polygonal measures on

2k + 1 vertices. We can choose a continuous, surjective map D2k × I → P2k+1 that, for each

t ∈ I , maps D2k × {t} homeomorphically onto the set of measures with support contained in

{[ t
2k+1

2π], [ 1+t
2k+1

2π], . . . , [ 2k+t
2k+1

2π]} and maps S2k−1 × {t} to the set of such measures with zero

mass at at least one of these points. Thus, I parameterizes the regular (2k+1)-gons and D2k×{0}

and D2k × {1} are both mapped into R2k. Define Φ2k+1 by the following composition:

D2k × I P2k+1 VRm
≤ (S

1) VRm
≤ (S

1)/ ∼q

Each element of q(V2k+1) can be represented by a unique measure in P2k+1, so by an argument

similar to the above, Φ2k+1 maps the interior of D2k × I homeomorphically onto C2k+1. Further-

more, points in the boundary of D2k × I are mapped into either q(∂P2k+1) ⊆ q(W2k−1) or q(R2k),

43In general, if f : X → Y is a closed map and A ⊆ X is an f -saturated set, then f |A : A → f(A) is a closed map.
We will use this fact once more below.
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S2k−1 X2k−1

S2k−1 S2k−1

D2k X2k

D2k S2k−1 ⊔f D2k

Φ2k|S2k−1

1 φ2k−1

f

Φ2k

1 ψ

Figure 4.6: Commutative diagram for determining the homotopy type of X2k. The front and back squares
are pushouts and the map ψ is a homotopy equivalence.

so the boundary is mapped into X2k. We have thus shown VRm
≤ (S

1)/ ∼ has the CW-complex

structure described above.

We now find the homotopy types of the skeletons: we show for each k ≥ 0 that X2k ≃ D2k ≃

{∗} and X2k+1 ≃ S2k+1. We use induction on k to construct, for each k ≥ 0, a homotopy

equivalence φ2k+1 : X2k+1 → S2k+1 that maps X2k to a point z ∈ S2k+1 and maps the cell C2k+1

homeomorphically onto S2k+1−{z}. For the base case, q(R0) = {q(δ[0])} is the single 0-cell, and

since X1 = q(W1) is formed by gluing a 1-cell to by its two boundary points to the zero cell, we

in fact have a homeomorphism X1
∼= S1 that maps C1 homeomorphically onto S1 − {[0]}.

For the inductive step, let k ≥ 1 and suppose φ2k−1 : X2k−1 → S2k−1 is a homotopy equiv-

alence that maps X2k−2 to a point z ∈ S2k−1 and maps the cell C2k−1 homeomorphically onto

S2k−1 − {z}. In the diagram in Figure 4.6, Φ2k : D
2k → X2k is the characteristic map defined

above, with the codomain restricted. By Lemma 4.7.2, Φ2k|S2k−1 is surjective onto X2k−1, and this

implies Φ2k is also surjective onto X2k. Since Φ2k is a closed map, this implies it is a quotient map,

and these facts can be used to check that the square in the diagram containing Φ2k and Φ2k|S2k−1

is a pushout. Letting f = φ2k−1 ◦ Φ2k|S2k−1 , the diagram commutes and both the front and back
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squares are pushouts. By the gluing theorem for adjunction spaces (7.5.7 of [87]), the resulting

map ψ : X2k → S2k−1 ⊔f D2k defined by the universal property of pushouts is a homotopy equiv-

alence. Since (D2k, S2k−1) has the HEP, the homotopy type of S2k−1 ⊔f D2k depends only on

the homotopy equivalence class of the map f (Proposition 0.18 of [61]). This, in turn, depends

only on the degree of the map f (see, for instance, Corollary 4.25 of [61]), which we will find by

considering the local degree at a suitable point.

Since (q|∂R2k
)−1(C2k−1) ⊆ (q|∂R2k

)−1(q(V2k−1)) ⊆ V2k−1 ∩ ∂R2k, Lemma 4.7.2 shows q re-

stricts to a bijection from (q|∂R2k
)−1(C2k−1) onto C2k−1. Furthermore, Φ2k|S2k−1 factors as

S2k−1 ∂R2k q(W2k−1),
∼= q|∂R2k

so Φ2k|S2k−1 restricts to a bijection from (Φ2k|S2k−1)−1(C2k−1) onto C2k−1. Since Φ2k is a closed

map and S2k−1 is Φ2k-saturated, Φ2k|S2k−1 : S2k−1 → X2k−1 is also a closed map. Similarly, since

(Φ2k|S2k−1)−1(C2k−1) is Φ2k|S2k−1-saturated, it can be checked that the restriction of Φ2k|S2k−1 to

(Φ2k|S2k−1)−1(C2k−1) is in fact a homeomorphism onto C2k−1. By the inductive hypothesis, we

have φ−1
2k−1(S

2k−1 − {z}) = C2k−1, and this cell is mapped homeomorphically onto S2k−1 − {z}

by φ2k−1, so we can conclude that f restricts to a homeomorphism from f−1(S2k−1 − {z}) onto

S2k−1−{z}. Therefore, the local degree of f at any point in f−1(S2k−1−{z}) is ±1, which shows

that the degree of f is ±1 (see Proposition 2.30 of [61]). This shows S2k−1 ⊔f D2k is homotopy

equivalent to the space formed by gluing the boundary of D2k to S2k−1 by the identity map, which

is homeomorphic to D2k. Thus, we find X2k ≃ S2k−1 ⊔f D2k ≃ D2k ≃ {∗}.

Finally, since CW pairs have the HEP and we have shown X2k is contractible, the quotient

map X2k+1 → X2k+1/X2k is a homotopy equivalence by Proposition 0.17 of [61] (or by our

Proposition 4.4.3). In our case, X2k+1 is obtained by gluing single a (2k + 1)-cell by its boundary

to X2k, and thus we have the homotopy equivalence φ2k+1 defined by the composition

X2k+1 X2k+1/X2k D2k+1/S2k S2k+1.
∼= ∼=
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Furthermore, φ2k+1 sends X2k to a single point of S2k+1 and sends the cell C2k+1 homeomorphi-

cally onto the remainder of S2k+1, completing the inductive step.

We have thus found the homotopy types of the skeletons. Furthermore, for r ≥ π, it can be

checked that VRm
≤ (S

1) is contractible by a straight line homotopy using Lemma 3.5.4. Recalling

the r values for which V2k+1(r) is nonempty, described in Proposition 4.3.1, we have proved the

following theorem.

Theorem 4.7.3. For each k ≥ 0, if V2k+1(r) is nonempty, then q(W2k+1(r)) ≃ S2k+1. This implies

VRm
≤ (S

1; r) ≃


S2k+1 if r ∈

[
2kπ
2k+1

, (2k+2)π
2k+3

)
{∗} if r ≥ π.

4.8 Persistent Homology
Finally, we will address the inclusion maps as the parameter r varies and find the persistent ho-

mology barcodes of the filtration VRm
≤ (S

1; _). Here we must be careful to distinguish between

the quotients we have constructed at different values of the parameter r. Let k ≥ 0 and let

r, r′ ∈
[

2kπ
2k+1

, (2k+2)π
2k+3

)
with r ≤ r′. Let the equivalence relations on VRm

≤ (S
1; r) and VRm

≤ (S
1; r′)

described in Theorem 4.6.1 be denoted ∼ and ∼′ respectively, and let the corresponding quotient

maps be q and q′ respectively. In both quotients VRm
≤ (S

1; r)/ ∼ and VRm
≤ (S

1; r′)/ ∼′, any equiv-

alence class can be represented by a regular polygonal measure with at most 2k+1 support points,

and all such regular polygonal measures represent distinct equivalence classes. Since the defini-

tion of each F̃2l+1 does not depend on the parameter r, if µ ∈ VRm
≤ (S

1; r) ⊆ VRm
≤ (S

1; r′), then

q(µ) and q′(µ) are in fact represented by the same polygonal measure. We thus have a bijection

VRm
≤ (S

1; r)/ ∼ → VRm
≤ (S

1; r′)/ ∼′ that sends the equivalence class of a regular polygonal mea-

sure in VRm
≤ (S

1; r) to the equivalence class of the same regular polygonal measure in VRm
≤ (S

1; r′).

This bijection is continuous by the universal property of quotients and is in fact a homeomorphism

by the closed map lemma, since VRm
≤ (S

1; r)/ ∼ and VRm
≤ (S

1; r′)/ ∼′ are finite CW complexes

and are therefore compact and Hausdorff (note that this homeomorphism can be viewed as the
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natural homeomorphism of the CW complexes constructed in Section 4.7). This homeomorphism

makes the following diagram commute:

VRm
≤ (S

1; r) VRm
≤ (S

1; r′)

VRm
≤ (S1;r)

∼
VRm

≤ (S1;r′)

∼′ .

q q′

The vertical maps are homotopy equivalences by Theorem 4.6.1 and the bottom map is the

homeomorphism described above. Therefore, after applying a singular homology functor Hn in

any dimension n ≥ 0 and with coefficients in any fixed field, we obtain a commutative square in

which each map is an isomorphism:

Hn(VR
m
≤ (S

1; r)) Hn(VR
m
≤ (S

1; r′))

Hn

(
VRm

≤ (S1;r)

∼

)
Hn

(
VRm

≤ (S1;r′)

∼′

)
.

Applying these facts across all scale parameters r, this shows that the quotient maps induce

an isomorphism of persistence modules between Hn(VR
m
≤ (S

1; _ )) and Hn

(
VRm

≤ (S1;_ )
∼

)
. By

Theorem 4.7.3, both VRm
≤ (S

1; r)/ ∼ and VRm
≤ (S

1; r′)/ ∼′ are homotopy equivalent to S2k+1.

From the homology of spheres, for any r ∈
[

2kπ
2k+1

, (2k+2)π
2k+3

)
, we find that H0(VR

m
≤ (S

1; r))

and H2k+1(VR
m
≤ (S

1; r)) are one-dimensional and the homology in all other dimensions is zero.

Thus, for each k ≥ 0, we find that H2k+1(VR
m
≤ (S

1; _)) is an interval module supported on[
2kπ
2k+1

, (2k+2)π
2k+3

)
. For zero-dimensional homology, we note that the class of a fixed delta measure

is a generator for all r ≥ 0, so H0(VR
m
≤ (S

1; _)) is an interval module supported on [0,∞). This

gives us the barcodes in the following theorem, which were shown in Figure 4.1 at the beginning

of this chapter.
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Theorem 4.8.1. The filtration VRm
≤ (S

1; _ ) of Vietoris–Rips metric thickenings of the circle has

one persistent homology bar [0,∞) in dimension 0, one bar
[

2kπ
2k+1

, (2k+2)π
2k+3

)
in dimension 2k + 1

for each k ≥ 0, and no bars in the remaining dimensions.

4.9 Proof of Lemma 4.3.6
Here we prove Lemma 4.3.6, which states that µ ∈ V2k+1(r) if and only if supp(µ) is contained

in a finite set T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k + 1.

Proof of Lemma 4.3.6. Let C be the set of measures µ ∈ VRm
≤ (S

1) with supp(µ) contained in

some finite set T ⊂ S1 such that diam(T ) ≤ r and arcsr(T ) = 2k+1. We must show C = V2k+1,

and we start by noting that V2k+1 ⊆ C. We first show C ⊆ V2k+1. We can write any α ∈ C

in the form α =
∑n

i=0 aiδ[θi], with ai ≥ 0 for each i and such that diam({[θ0], . . . , [θn]}) ≤ r

and arcsr({[θ0], . . . , [θn]}) = 2k + 1 (note that some ai may be 0, allowing for the case when

the support of µ is strictly contained in {[θ0], . . . , [θn]}). For each positive integer j, let αj =∑n
i=0

(
(1− 1

j
)ai +

1
j

1
(n+1)

)
δ[θi]. Then αj ∈ V2k+1 for each j and the sequence {αj} converges to

α, so α ∈ V2k+1.

The remainder of the proof will handle the converse: we suppose µ ∈ VRm
≤ (S

1) − C and

show µ ∈ VRm
≤ (S

1) − V2k+1. If k = 0, then this is true since V1 is closed (by Lemma 4.3.5) and

V1 ⊆ C; thus, we may assume for the remainder of the proof that k ≥ 1. If arcsr(µ) > 2k+1, then

µ ∈ VRm
≤ (S

1)−W2k+1, so µ ∈ VRm
≤ (S

1)− V2k+1 because Lemma 4.3.5 implies V2k+1 ⊆ W2k+1.

Thus, we consider the case where arcsr(µ) ≤ 2k + 1, and in this case, we must in fact have

arcsr(µ) < 2k + 1 because V2k+1 ⊆ C. Then for any finite set T ⊂ S1 with diam(T ) ≤ r such

that supp(µ) ⊆ T , we must have arcsr(T ) < 2k + 1, since µ /∈ C.

We examine the ways that points can be added to supp(µ) to produce such a set T . Begin by

coloring the points of supp(µ) blue and the points opposite them red. From here on, whenever we

color a point red or blue, we assume the point opposite it is colored the opposite color, and thus it

is sufficient to describe colored points on half the circle. Fix some blue point [θ] ∈ supp(µ), and

let A1, . . . , AN be all arcs between consecutive colored points on a fixed half of the circle between

176



the blue point [θ] and the red point [θ + π]. Then diam(Ai) is the length of the arc Ai for each i.

In general, if a finite set of points on the circle are colored blue and the points opposite them are

colored red, the set of blue points has diameter at most r if and only if the distance between any

blue point and any red point is at least π − r. Following this restriction on distances, we search

for a way to color additional points of an arc Ai that produces the greatest increase in the number

of arcs of the set of blue points. Adding a pair of antipodal points, with one red and one blue,

increases the number of arcs of the set of blue points by two if and only if the blue point is placed

between consecutive colored points that are both red, which happens if and only if the red point

is placed between consecutive colored points that are both blue. If the endpoints of Ai are both

the same color, without loss of generality we let them be blue and note that after adding additional

points, the increase in the number of arcs is equal to two times the number of new red points in

Ai immediately counterclockwise of a blue point. There can be at most ⌊diam(Ai)
2(π−r) ⌋ such red points

because of the required distance between red and blue points, and this number of new red points can

be achieved by placing points of alternating colors at distance π − r from each other, beginning at

one endpoint A and continuing until no new red points can be placed. Therefore 2⌊diam(Ai)
2(π−r) ⌋ is the

maximal increase in the number of arcs of the set of blue points that can be produced by coloring

additional points of Ai, and this maximal increase can be achieved. By similar reasoning, if one

endpoint of Ai is red and the other is blue, we find that the maximal increase is 2⌊diam(Ai)−(π−r)
2(π−r) ⌋.

If T ⊂ S1 is any finite subset with diam(T ) ≤ r and such that supp(µ) ⊆ T , then T can be

obtained as a set of blue points meeting the description above. Using the bounds on the maximal

increases described above, we have

arcsr(T ) ≤ arcsr(µ) +
∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋

where I is the set of all i such that Ai has endpoints of the same color and J is the set of all i

such that Ai has endpoints of opposite colors. Furthermore, this bound is tight, since the maximal

increase can be achieved for each Ai, so since µ /∈ C implies arcsr(T ) < 2k+1 for a T producing
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the maximal increase in arcs, we have

arcsr(µ) +
∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋
< 2k + 1.

We can now choose an ε > 0 such that increasing any diam(Ai) by 2ε does not increase the

value of any floor function above. Specifically, choose ε > 0 so that

ε < (π − r)min
i∈I

(⌊diam(Ai)

2(π − r)

⌋
+ 1− diam(Ai)

2(π − r)

)

and

ε < (π − r)min
i∈J

(⌊diam(Ai)− (π − r)

2(π − r)

⌋
+ 1− diam(Ai)− (π − r)

2(π − r)

)
,

noting that each minimum is taken over a finite set of positive values. By Lemma 4.3.4(1), there

exists a δ > 0 such that if ν ∈ VRm
≤ (S

1) and dW (µ, ν) < δ, then each point of supp(µ) has a point

of supp(ν) that is at distance less than ε. For any such ν, choose one such point in supp(ν) for

each point of supp(µ) to define a set U ⊆ supp(ν), and color the points of U green and the points

opposite them orange. Shrinking ε if necessary, we can assume each green point is within ε of a

unique blue point, and the ordering of the green and orange points matches the ordering of the cor-

responding blue and red points. This implies that arcsr(U) = arcsr(µ); that the arcs A1, . . . , AN

above have corresponding arcs A′
1, . . . , A

′
N defined analogously for corresponding the green and

orange points; and that for each i the endpoints of A′
i differ from the corresponding endpoints of

Ai by less than ε. Since U ⊆ supp(ν), arcsr(ν) can be bounded by the same method we used to

bound arcsr(T ) above, replacing Ai with A′
i for each i. We have diam(A′

i) < diam(Ai) + 2ε for
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each i, so by the choice of ε,

arcsr(ν) ≤ arcsr(U) +
∑
i∈I

2
⌊diam(A′

i)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(A′

i)− (π − r)

2(π − r)

⌋
= arcsr(µ) +

∑
i∈I

2
⌊diam(Ai)

2(π − r)

⌋
+
∑
i∈J

2
⌊diam(Ai)− (π − r)

2(π − r)

⌋
< 2k + 1.

This shows ν /∈ V2k+1, so µ has an open neighborhood that does not intersect V2k+1, and we can

conclude µ ∈ VRm
≤ (S

1)− V2k+1.

4.10 Continuity of G2k+1

We now return to check that eachG2k+1 is continuous. The intuition is described in Section 4.6.

The main challenge is that there is not a unique natural way to extend the definition of F̃2k+1 to

∂V2k+1× I , which makes it difficult to consider a limit as µ approaches ∂V2k+1. To handle this, we

consider all sensible ways one could attempt to extend F̃2k+1 to a given point in ∂V2k+1 × I and

find that there are finitely many. This allows us to use a compactness argument to consider a limit

as µ approaches ∂V2k+1.

In the proof, it will be convenient to bound the 1-Wasserstein distance between measures by

specifying how only part of the mass is transported. Formally, this will be described by a partial

transport plan between measures µ =
∑n

i=1 aiδ[θi] and µ′ =
∑n′

j=1 a
′
jδ[θ′j ], which is defined to be an

indexed set κ = {κi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n′} of nonnegative real numbers such that
∑n

i=1 κi,j ≤

a′j for all j and
∑n′

j=1 κi,j ≤ ai for all i. A partial transport plan gives an incomplete description of

how mass is transported from µ to µ′, and the cost of a partial transport plan is defined in the same

way as the cost of a transport plan. Any partial transport plan from µ to µ′ can be completed to

a transport plan from µ to µ′: that is, given a partial transport plan κ, there exists a transport plan

κ′ such that κi,j ≤ κ′i,j for all i, j. The cost of transporting the remaining mass not accounted for

179



by the partial transport plan κ can be bounded using the diameter of S1 (as a metric space): the

maximum distance between two points of S1 is π.

Proof of continuity of G2k+1. Note that G1 = F̃1 is continuous, so we let k ≥ 1. It is sufficient

to check sequential continuity for each point in ∂V2k+1, since the continuity of q2k−1 and F̃2k+1

imply that G2k+1 is continuous on V2k+1 and W2k+1 − V2k+1, which are open in W2k+1. Suppose

{(µn, tn)}n is a sequence in W2k+1 × I that converges to (µ, t) ∈ ∂V2k+1 × I . We need to show

{G2k+1(µn, tn)}n converges to G2k+1(µ, t) = q2k−1(µ). For the subsequence consisting of those

(µn, tn) in W2k−1 × I , we have G2k+1(µn, tn) = q2k−1(µn), and we can apply continuity of q2k−1

to show this subsequence converges. Thus, we can reduce to the case where (µn, tn) ∈ V2k+1 × I

for all n.

Let l < k be such that µ ∈ V2l+1. By Lemma 4.3.4(3), for any µ′ ∈ V2k+1 sufficiently close

to µ, if we extend the arcs of µ′ on either side by π−r
2

, we obtain disjoint arcs A0, . . . , A2k that

collectively contain the support of µ. Let (x, τ) be a coordinate system that excludes a point

not in these arcs and assume the arcs are in counterclockwise order starting from the excluded

point. As before, we let vx,µ
′

2k+1 : S
1 → R be a function such that for any [θ] in some Ai, we have

[θ] ∈ A
vx,µ

′
2k+1([θ])

. With µ fixed as above, define

mx,µ′ =

∫
S1

(
x− 2π

2k + 1
vx,µ

′

2k+1

)
dµ

and writing µ as µ =
∑N

i=1 aiδ[θi], define Jx,µ′ : I → V2l+1 by

Jx,µ
′
(t) =

N∑
i=1

aiδτ((1−t)x([θi])+t( 2π
2k+1

vx,µ
′

2k+1([θi])+m
x,µ′ ))

.

This mimics the definition of F̃2k+1, but applies it to µ, which is not in V2k+1(r). By an argument

similar to that in the proof of Lemma 4.5.1, each Jx,µ′(t) is in fact in V2l+1. Since Jx,µ′ is contin-

uous, Jx,µ′(I) is compact. Note that the only reason Jx,µ′ depends on µ′ is because of the use of

vx,µ
′

2k+1 in these definitions. Since there are only finitely many points in supp(µ) and finitely many
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indices of arcs they are assigned to by vx,µ
′

2k+1, there are only finitely many sets Jx,µ′(I) that can be

obtained from all possible µ′. Taking the union of these finitely many Jx,µ′(I) for all possible µ′,

we obtain a compact set S ⊆ W2k+1.

Any open set of q2k−1(W2k+1) containing G2k+1(µ, t) = q2k−1(µ) has a preimage equal to a

(q2k−1)-saturated open subset U ⊆ W2k+1 containing µ. For any such U , we show S ⊆ U by

showing F̃2l+1(J
x,µ′(t), 1) = F̃2l+1(µ, 1) for each t ∈ I and each µ′ meeting the description above.

We mimic the proof of Lemma 4.5.2, omitting details. As in the proof of Lemma 4.5.2, we can

choose (x, τ) to be a valid coordinate system for both µ and Jx,µ′(t) and such that all points of

supp(µ) and supp(Jx,µ
′
(t)) are sent into (0, 2π) by x. Since the masses of the corresponding

arcs of µ and Jx,µ′(t) agree, following Equation 4.1 before Lemma 4.5.2, it is sufficient to check

that mx
2l+1(µ) = mx

2l+1(J
x,µ′(t)). If A′

0, . . . , A
′
2l are the arcs of µ, we have mx

2l+1(µ) =
∫
S1 x dµ−∑2l

i=0
2iπ
2l+1

µ(A′
i), and analogously formx

2l+1(J
x,µ′(t)). Again, since the arc masses of µ and Jx,µ′(t)

agree, we only must check that
∫
S1 x dµ =

∫
S1 x d(J

x,µ′(t)). Using the notation above for µ and

Jx,µ
′
(t), we have

∫
S1

x d(Jx,µ
′
(t)) =

N∑
i=1

aix ◦ τ
(
(1− t)x([θi]) + t

(
2π

2k + 1
vx,µ

′

2k+1([θi]) +mx,µ′
))

=
N∑
i=1

ai

(
(1− t)x([θi]) + t

(
2π

2k + 1
vx,µ

′

2k+1([θi]) +mx,µ′
))

= (1− t)

∫
S1

x dµ+ t

∫
S1

2π

2k + 1
vx,µ

′

2k+1dµ+ tmx,µ′

=

∫
S1

x dµ,

where the last equality follows from the definition of mx,µ′ .

Therefore we have S ⊆ U , and since S is compact and U is open in W2k+1, there exists44

an ε > 0 such that any point within ε of S is contained in U . We will show that even though

{F̃2k+1(µn, tn)}n does not necessarily converge to a specific point in S, the points of the sequence

44This is a general fact about compact subsets of metric spaces, which was also used in the proof of Lemma 4.4.5.
See, for instance, Exercise 2 in Section 27 of [41].
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become arbitrarily close to S as n approaches infinity and are thus contained inU for all sufficiently

large n. Since µn approaches µ, we can set µ′ = µn for all sufficiently large n. We can also make

a choice of a coordinate system (x, τ) that meets the requirements above simultaneously for all µn

with n sufficiently large: for instance, let x exclude a point opposite a point of supp(µ). Then we

have

mx,µn =

∫
S1

(
x− 2π

2k + 1
vx,µn2k+1

)
dµ

mx
2k+1(µn) =

∫
S1

(
x− 2π

2k + 1
vx,µn2k+1

)
dµn,

where mx
2k+1 is as defined in Section 4.5. Thus,

Jx,µn(tn) =
N∑
i=1

aiδτ((1−tn)x([θi])+tn( 2π
2k+1

vx,µn2k+1([θi])+m
x,µn )),

and if µn =
∑Nn

j=1 an,jδ[θn,j ], then

F̃2k+1(µn, tn) =
Nn∑
j=1

an,jδτ((1−tn)x([θn,j ])+tn(
2π

2k+1
vx,µn2k+1([θn,j ])+mx

2k+1(µn)))
.

We show that F̃2k+1(µn, tn) becomes close to S by showing the distance between F̃2k+1(µn, tn)

and Jx,µn(tn) approaches zero as n approaches infinity. For all sufficiently large n, we will have a

bound |mx,µn−mx
2k+1(µn)| < ε

2
by Lemma 4.3.7(2) and the fact that

∫
S1
x dµn approaches

∫
S1
x dµ

as n approaches infinity (by Lemma 4.2.1, replacing xwith a suitable bounded continuous function

that does not change the value of the integrals). As long as n is sufficiently large, we can define the

arcs A0, . . . , A2k as above with µ′ = µn and these arcs collectively contain supp(µ) and supp(µ′).

We now fix n and let {κi,j} be an optimal transport plan between µ and µn. Distinct arcs are

separated by a distance of at least π − r, so a mass of no more than dW (µ,µn)
π−r may be transported

between distinct arcs by {κi,j}. Thus, letting B = {(i, j) | vx,µn2k+1([θi]) = vx,µn2k+1([θn,j])}, we have

∑
(i,j)∈B

κi,j ≥ 1− dW (µ, µn)

π − r
.
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We define a partial transport plan for the measures Jx,µn(tn) and F̃2k+1(µn, tn) by using the same

values κi,j for (i, j) ∈ B. We will use the fact that for (i, j) ∈ B, the distance |x([θi])−x([θn,j])| is

the arc length between [θi] and [θn,j] in the arcAvx,µn2k+1([θi])
containing them, so |x([θi])−x([θn,j])| =

dS1([θi], [θn,j]). Thus, the cost of this partial transport plan is bounded by

∑
(i,j)∈B

κi,jdS1

(
τ((1− tn)x([θi]) + tn(

2π
2k+1

vx,µn2k+1([θi]) +mx,µn)),

τ((1− tn)x([θn,j]) + tn(
2π

2k+1
vx,µn2k+1([θn,j]) +mx

2k+1(µn)))
)

≤
∑

(i,j)∈B

κi,jdR

(
(1− tn)x([θi]) + tn(

2π
2k+1

vx,µn2k+1([θi]) +mx,µn),

(1− tn)x([θn,j]) + tn(
2π

2k+1
vx,µn2k+1([θn,j]) +mx

2k+1(µn))
)

≤(1− tn)
∑

(i,j)∈B

κi,j|x([θi])− x([θn,j])|+ tn
∑

(i,j)∈B

κi,j|mx,µn −mx
2k+1(µn)|

=(1− tn)
∑

(i,j)∈B

κi,jdS1([θi], [θn,j]) + tn
∑

(i,j)∈B

κi,j|mx,µn −mx
2k+1(µn)|

<(1− tn)dW (µ, µn) + tn
ε

2

≤dW (µ, µn) +
ε

2

There is mass at most dW (µ,µn)
π−r remaining, and this mass can be transported arbitrarily at a cost of at

most π
π−rdW (µ, µn). This shows there exists a transport plan between Jx,µn(tn) and F̃2k+1(µn, tn)

with cost at most (1 + π
π−r )dW (µ, µn) +

ε
2
. Thus, for all sufficiently large n, we have

dW (Jx,µn(tn), F̃2k+1(µn, tn)) < ε.

Therefore, for all sufficiently large n, F̃2k+1(µn, tn) is within ε of Jx,µn(tn) and is thus within

ε of S, so it is in U . So for any open neighborhood of q2k−1(µ) in q2k−1(W2k+1), we have shown

q2k−1 ◦ F̃2k+1(µn, tn) is in this neighborhood for all sufficiently large n, so {G2k+1(µn, tn)}n con-

verges to G2k+1(µ, t). This completes the proof that G2k+1 is continuous.
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Chapter 5

Anti-Vietoris–Rips Metric Thickenings

This chapter, like the last, uses our techniques for simplicial metric thickenings to study spe-

cific filtrations. In this case, the filtrations are primarily motivated not by topological data analysis,

but by graph theory. They arise in connection to graph coloring problems and build on previous

work that has used algebraic topology in the study of graph coloring. In Section 5.1, we begin

with an overview of this motivation and introduce the main objects of study, Borsuk graphs and

anti-Vietoris–Rips metric thickenings of spheres, particularly the circle. In Section 5.2, we find

the homotopy types of the anti-Vietoris–Rips metric thickenings of the circle, mimicking the tech-

niques of the previous chapter. The content of this chapter is part of ongoing joint work, planned

to be published in a future paper [40].

5.1 Graph Coloring and Topology
Although graph coloring is a combinatorial problem, topological approaches are sensible to

consider because graphs are fundamentally topological objects. In addition to this, coloring prob-

lems may be stated for graphs defined from topological objects or with some topological condition

imposed. The problem of coloring planar graphs, for instance, considers only graphs meeting a

certain topological condition. The proof of the five color theorem45 takes advantage of this topo-

logical condition, making use of the Euler characteristic. Another more abstract application of

topology to graph coloring is found in Gottschalk’s topological proof of the De Bruijn–Erdős the-

45The five color theorem states that any simple planar graph can be colored using at most five colors. It is the precursor
to the four color theorem, which lowers the number of colors to four; see [88, 89].
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orem, which states that if all finite subgraphs of a graph G can be colored with n colors, then G

can be as well; the proof is based on Tychonoff’s theorem [90, 91].

An application of algebraic topology to a graph coloring problem was given by Lovász in [92].

The main result gives the chromatic numbers of the Kneser graphs K(n, k), which have as vertices

the k-element subsets of a set with n elements, with an edge between subsets when they are disjoint.

The proof uses the topology of the neighborhood complex of a graph G, which is the simplicial

complex on the vertex set of G in which a set of vertices forms a simplex when they share a

common neighbor. It also makes use of the Borsuk–Ulam theorem, which is itself connected

to certain graphs called Borsuk graphs; Lovász in fact cites the similarity between the Borsuk

graphs and the Kneser graphs as the motivation for the proof. We will examine Borsuk graphs and

their connection to the Borsuk–Ulam theorem in Section 5.1.2, and we will see related simplicial

complexes in Section 5.1.3.

Before this, in Section 5.1.1, we will see how one particular Borsuk graph, whose vertex set is

the circle, leads to a generalization of graph coloring. We set some terminology and conventions

here. We will consider graphs to be one-dimensional simplicial complexes and will shortly explore

their connection with more general simplicial complexes. In particular, all graphs considered here

are simple and undirected. A “graph coloring” will always mean a proper coloring, that is, an

assignment of colors to the vertices of a graph such that no two adjacent vertices are assigned

the same color. An n-coloring is a coloring of a graph using at most n different colors, and the

chromatic number χ(G) of a graph G is defined to be the least number46 of colors required to

color G. A graph homomorphism G → H is a function from the vertex set of G to the vertex set

of H that sends edges to edges – in particular, two adjacent vertices in G may not be sent to the

same vertex. We will need to be careful to distinguish between graph homomorphisms, continuous

46In general, we can define a coloring of a graph with a set of colors of any cardinality, and the “least number” of
colors required may be an infinite cardinal in the case of graphs with infinite vertex sets [93]. While we will consider
graphs with infinite vertex sets here, we will only need to discuss colorings with a finite number of colors and finite
chromatic numbers.
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functions, and general functions, as soon we will construct graphs whose vertex sets are topological

spaces.

5.1.1 Reinterpretation of Graph Coloring

We can make a simple reformulation of graph coloring in terms of graph homomorphisms: an

n-coloring of a graph G is the same thing as a graph homomorphism h : G→ Kn, where Kn is the

complete graph on n vertices. Here, the vertices of Kn represent the n colors, and the condition

that h be a graph homomorphism assures that adjacent vertices in G are sent to distinct colors.

Some basic properties of graph colorings are clearly displayed in this point of view. Given a graph

homomorphism G → H , if H can be colored with n colors, then G can as well: this follows by

composing with a given homomorphism to Kn to obtain the composite G→ H → Kn. Similarly,

we have the trivial statement that an n-coloring of a graph is also anm-coloring for allm ≥ n: this

follows by composing G→ Kn → Km. Abstractly, we can phrase the problem of coloring graphs

in terms of the contravariant hom-functors Hom(_, Kn) from the category of graphs to Set, or even

more generally the bifunctor Hom(_, K_), where K_ is the functor sending n ∈ N to Kn (see the

beginning of Chapter 2 of [44]). This follows a general theme in category theory of understanding

an object in terms of its relationship to others: graph coloring aims to partly understand graphs in

terms of their homomorphisms to Kn.

Replacing Kn with other graphs of a particular sort will in fact allow us to gain more infor-

mation about colorability. For any r ∈ R, let Bor(S1; r) be the graph with vertex set S1 and with

an edge between two points when the distance between them is at least r in the geodesic metric

dS1 . These graphs are called Borsuk graphs of the circle [92]; we will generalize them to spheres

of higher dimensions shortly. It is at least visually plausible that these graphs should be consid-

ered continuous analogs of the complete graphs Kn, and we will justify this idea in the next few

results. With this perspective, we will ask when maps exist from a given graph into Bor(S1; r).

The parameter r also lends itself to this interpretation: just as we can embed Kn → Km when

n ≤ m, we also have the (reversed) inclusions Bor(S1; r1) ⊆ Bor(S1; r2) when r1 ≥ r2. Thus,
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given any t ∈ [1,∞), we define a t-circular coloring (or simply t-coloring) of a graph G to be a

graph homomorphismG→ Bor(S1; 2π
t
). We further define the circular chromatic number [94,95]

of G by

χC(G) = inf{t ∈ [1,∞) | there exists a t-coloring of G}.

Note that the set in the definition is upward closed, since if there is a t-coloring and t < t′, we

can compose with the inclusion Bor(S1; 2π
t
) → Bor(S1; 2π

t′
) to get a t′-coloring. The next theorem

is an analog of the De Bruijn–Erdős theorem for circular colorings, and the corollary following

it shows that the set in the definition of χC(G) is in fact the closed interval [χC(G),∞). We

will mimic the technique of the topological proof of the De Bruijn–Erdős theorem, making use of

Tychonoff’s theorem.

Theorem 5.1.1. For any t ∈ [1,∞), if all finite subgraphs of a graph G can be t-colored, then G

can be t-colored.

Proof. Let G = (V,E). The statement holds if E = ∅, so we will suppose E ̸= ∅. Give the space

X =
∏

v∈V S
1 the product topology, and note that a t-coloring of G is an element {sv}v∈V ∈ X

such that dS1(sv, sw) ≥ 2π
t

for any {v, w} ∈ E. For any finite subgraph H = (VH , EH) such that

EH ̸= ∅, define fH : X → R by

fH({sv}v∈V ) = min
{v,w}∈EH

dS1(sv, sw)

and let CH = f−1
H

(
[2π
t
,∞)

)
. Then CH consists of the set of elements of X that restrict to t-

colorings of H . Since each fH is continuous, being the minimum of a finite number of continuous

functions, each CH is closed.

Suppose that every finite subgraph of G is t-colorable, implying each CH is nonempty. The

collection {CH}H over all finite subgraphs H with nonempty edge set has the finite intersection

property: given such subgraphs H1, . . . , Hn, the intersection CH1 ∩ · · · ∩ CHn must be nonempty,

since the induced subgraph of G on the union of the vertex sets of H1, . . . , Hn is also a finite

subgraph and can thus be t-colored. By Tychonoff’s theorem, X is compact, so
⋂
H CH must
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contain some element {sv}v∈V . This elements satisfies dS1(sv, sw) ≥ 2π
t

for any {v, w} ∈ E as

each edge appears in some finite subgraph, so G is t-colorable.

Corollary 5.1.2. For any t ∈ [1,∞), if χC(G) = t, then there exists a t-coloring of G.

Proof. If χC(G) = t then for any finite subgraph H = (VH , EH), we also have χC(H) ≤ t, so

there exist t′-colorings of H for t′ arbitrarily close to t. If EH = ∅, then H is 1-colorable and thus

t-colorable. If EH ̸= ∅, the continuous function gH :
∏

v∈VH S
1 → R given by gH({sv}v∈VH ) =

min{v,w}∈EH
dS1(sv, sw) has compact image because the domain is compact, so t is in the image,

which means there must exist a t-coloring of H . Theorem 5.1.1 then implies G is t-colorable.

The following theorem relates the circular chromatic number to the usual chromatic number,

which explains its name. The theorem is well known (see [95]), and our proof adapts previous

ideas to the language used here. The choice of the condition t ∈ [1,∞) in the definitions of

circular colorings and χC is included so that the theorem holds in the case of graphs with no

edges47, which have a chromatic number of 1.

Theorem 5.1.3. If G is a graph and either χ(G) or χC(G) is finite, then χ(G) = ⌈χC(G)⌉.

Proof. Let n ∈ Z+. We will exhibit a pair of graph homomorphisms Kn → Bor(S1; 2π
n
) and

Bor(S1; 2π
n
) → Kn, which will show there exists a graph homomorphism G → Kn if and only if

there exists a graph homomorphism G → Bor(S1; 2π
n
). This will imply χ(G) ≤ n if and only if

χC(G) ≤ n as required, since χ(G) ≤ n if and only if there is a homomorphism G → Kn and by

Corollary 5.1.2, χC(G) ≤ n if and only if there is a homomorphism G→ Bor(S1; 2π
n
).

Let {0, 1, . . . , n−1} be the vertices of Kn and write points on the circle as [θ] with θ ∈ [0, 2π).

A homomorphism Kn → Bor(S1; 2π
n
) is given by k 7→

[
2πk
n

]
, since two points on the circle

of the form
[
2πk
n

]
and

[
2πk′

n

]
with k ̸= k′ are at a distance of at least 2π

n
. A homomorphism

47If we had used R+ in the definitions of circular colorings and χC instead, then graphs with no edges would have
been assigned circular chromatic numbers of 0, so the theorem would have needed to exclude these graphs. As
currently stated, Theorem 5.1.3 does not allow the null graph (the graph with no vertices, which may or may not be
considered a valid graph depending on context and preference), although we could simply alter the definition of the
circular chromatic number in this one case so that the result holds.
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Bor(S1; 2π
n
) → Kn is given by sending any [θ] with θ ∈

[
2πk
n
, 2π(k+1)

n

)
to k, since then any two

points at distance at least 2π
n

are sent to different vertices in Kn.

In this proof, the two homomorphisms relate usual colorings to circular colorings, where the

homomorphism Kn → Bor(S1; 2π
n
) embeds Kn as a subgraph on n evenly spaced points and the

homomorphism Bor(S1; 2π
n
) → Kn colors the circle by splitting it into n arcs of equal length. In

particular, since this shows there is a correspondence between n-colorings and n-circular colorings

for n ∈ Z+, we can use either to test for n-colorability. Furthermore, the theorem shows that the

circular chromatic number provides more information than the usual chromatic number, since the

usual chromatic number can be recovered from it.

To summarize our interpretation of graph coloring, complete graphs Kn can be understood as

creating a copy of Z+ out of graphs, which we then use to study other graphs, and similarly, the

Borsuk graphs of the circle Bor(S1; r) can be understood as a line of graphs. The essential features

of the chromatic number and circular chromatic number are recorded by the properties below, with

n ∈ Z+ and t ∈ [1,∞).

χ(G) ≤ n ⇐⇒ ∃ (G→ Kn)

χC(G) ≤ t ⇐⇒ ∃ (G→ Bor(S1; 2π
t
))

χ(G) ≤ n ⇐⇒ χC(G) ≤ n

Categorically speaking, these properties can be formulated as adjunctions between appropriate

categories (in fact posets, making the adjunctions Galois connections).

5.1.2 Borsuk Graphs

The Borsuk graphs of the circle we defined above have a natural generalization to spheres,

considered in [92]. We will use the geodesic metric on the sphere Sn, which defines the distance

between two points to be the length of the shortest geodesic between them: this is always a path

along a great circle, so the geodesic metric is given explicitly by dSn(v, w) = cos−1(v · w). For
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any r ∈ R, we now define48 the Borsuk graph Bor(Sn; r) to have vertex set Sn and an edge

between two points if and only if the distance between them is at least r. The Borsuk graphs

of S0 are simple to understand: Bor(S0; r) has two vertices that are connected by an edge if

and only if r ≤ π (as long as we use the formula for the geodesic metric above, which gives

dS0(−1, 1) = cos−1(−1) = π). The Borsuk graphs of spheres of dimension greater than 1 do

not have as close of a connection to chromatic numbers as the Borsuk graphs of the circle, since

coloring these graphs is more complicated. They are, however, of topological interest in their own

right, as shown by the following theorem connecting them to the Borsuk–Ulam theorem, observed,

for instance, in [92].

Theorem 5.1.4. The statement that χ(Bor(Sn; r)) ≥ n + 2 for any r < π is equivalent to the

Borsuk–Ulam theorem.

Proof. We will use the following statement that is equivalent to the Borsuk–Ulam theorem, some-

times called the Lusternik–Schnirelmann theorem [96–98]: if Sn is covered by n + 1 closed

sets C0, C1, . . . , Cn, then at least one Ci contains a pair of antipodal points. First, assuming

this theorem, we fix r < π and suppose that Bor(Sn; r) has been colored with n + 1 colors.

For i = 0, 1, . . . n, let Ci be the closure of the set of points of color i. Then some Ci contains

a pair of antipodal points, and thus there is a pair of points with distance in (r, π] colored the

same color, contradicting the fact that they are connected by an edge in Bor(Sn; r). This shows

χ(Bor(S1; r)) ≥ n+ 2.

For the converse, we now assume χ(Bor(Sn; r)) ≥ n + 2 for any r < π and suppose Sn is

covered by closed sets C0, C1, . . . , Cn. For any r ∈
(
arccos

( −1
n+1

)
, π
)
, it is impossible to (n+ 1)-

color Bor(Sn; r), so the setsC0, C1\C0, . . . , Cn\(C0∪· · ·∪Cn−1) do not define an (n+1)-coloring.

This implies there must be a pair of points contained in a single Ci with distance at least r. Letting

r approach π, we can thus choose a “nearly antipodal” sequence {(pn, qn)}n in Sn × Sn such that

dSn(pn, qn) → π and for each n, both pn and qn are in the same Ci. By compactness, there is a

48The Borsuk graphs can also be defined using the usual Euclidean metric on the sphere. This simply has the effect of
distorting or “reindexing” the filtration, as the graphs are the same and appear in the same order.
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convergent subsequence, so some Ci × Ci contains a convergent subsequence. Thus, since Ci is

closed, it contains a pair of antipodal points.

We can also quickly determine χ(Bor(Sn; r)) for r ≥ π. If r = π, then Bor(Sn; π) has edges

connecting each pair of antipodal points and no others, so it has chromatic number 2. If r > π,

then Bor(Sn; r) is just the vertex set Sn with no edges, so its chromatic number is 1. For S1, the

chromatic numbers are known at all parameters: we have χ(Bor(S1; r)) = ⌈2π
r
⌉ by Theorem 5.1.4

and Theorem 5.1.5 below.

On the other hand, for r < π and n > 1, the chromatic numbers of Bor(Sn; r) are more difficult

to understand. At parameters r just below π, we get an n+ 2 coloring of Bor(Sn; r) by projecting

the points of an inscribed regular (n + 1)-simplex in Sn radially outward and coloring according

to the facets, breaking ties arbitrarily. This gives χ(Bor(Sn; r)) = n + 2 for r ∈ (π − ε, π), for a

small enough ε > 0 depending on n. While it can be tempting to guess that the chromatic number

of n + 2 holds for r as low as the distance between two vertices of the inscribed simplex, this

is unfortunately not true (see Section 4 of [99]). The diameter of one of the regions formed by

projecting a facet of the regular simplex to the sphere can be found explicitly [100] to give the

range of r for which this coloring is valid; interestingly, as n → ∞, these diameters approach

π. At general scale parameters, the chromatic numbers can at least be bounded by solutions to

packing and covering problems on Sn, that is, the problems of placing points on a sphere with

a large spread or covering the sphere with balls of a given size. These bounds are given in the

following theorem.

Theorem 5.1.5. For any n ≥ 1, m ≥ 2, let pn,m be the greatest r ≥ 0 such that m points can be

placed on Sn with each pair of points at distance at least r. Let cn,m be the least r ≥ 0 such that

m points can be placed on Sn such that each point in Sn is at distance at most r
2

from one of these

m points. Then for any r < pn,m, we have χ(Bor(Sn; r)) ≥ m+ 1 and for any r > cn,m, we have

χ(Bor(Sn; r)) ≤ m.

Proof. If r > cn,m, then we can choose a set of m points x1, . . . , xm ∈ Sn such that each point

of Sn is at distance strictly less than r
2

from some xi. For each i, let Ui be the open ball of radius
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r
2

centered at xi and color Sn by coloring points of U1 color 1, coloring points of U2 \ U1 color 2,

and so on, in general coloring points of Ui \ (U1 ∪ · · · ∪Ui−1) color i. This gives an m-coloring of

Bor(Sn; r), since any two points colored the same color must be in the same r
2
-ball and thus must

have distance strictly less than r.

For the other bound, let r < pn,m and choose m points x1, . . . xm ∈ Sn with pairwise distances

strictly greater than r. We immediately have χ(Bor(Sn; r)) ≥ m, since these m points form a

clique in Bor(Sn; r). With some more work, we can improve this bound by 1. Suppose for a

contradiction we have colored Bor(Sn; r) with m colors. Since each dSn(xi, xj) > r for any

indices i and j, we can find an ε > 0 such that dSn(xi, xj) > r+ε for all i and j. Any element g of

SO(n+1) rotates our set of m points on Sn to obtain the points g ·x1, . . . , g ·xm, all with pairwise

distances greater than r + ε. Moreover, for any g ∈ SO(n+ 1), there is some open neighborhood

V of g such that for any h ∈ V , dSn(g ·xi, h ·xi) < ε for each i. This implies dSn(g ·xi, h ·xj) > r

for all i ̸= j, so for each i, g · xi cannot have the same color as any h · xj with i ̸= j, and thus

g · xi and h · xi must be the same color. This shows that nearby points in SO(n + 1) produce the

same coloring of the m points: more formally, for any permutation σ of the indices 1, . . . ,m, if Uσ

is the set of g ∈ SO(n + 1) such that g · xi has color σ(i) for each i, then Uσ must be open. The

collection {Uσ}σ over all permutations σ is then a partition of SO(n + 1) into open sets, so since

SO(n + 1) is connected, we must in fact have Uσ = SO(n + 1) for some σ. But for any i and j,

there is a g ∈ SO(n + 1) such that g · xi = xj . With m ≥ 2, this implies distinct points xi ̸= xj

are the same color, contradicting the fact that they are connected by an edge in Bor(Sn; r).

Packing problems for spheres are summarized, for instance, in [101], and results on these

problems can be used to give bounds on the chromatic numbers of Borsuk graphs via Theo-

rem 5.1.5. For instance, the bound in Chapter 1, Equation (57) of [101] shows that χ(Bor(Sn; r)) >

2−(n+1) log2(sin t)(1+o(1)) for all r < t, where the term o(1) uses little-o notation as n→ ∞.
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5.1.3 Anti-Vietoris–Rips Metric Thickenings of Spheres

The Borsuk graphs considered in the previous section connect points of a sphere that are far

apart, as measured by the parameter r. Here we consider the simplicial complex analogs, which

build simplices on sets of points of the spheres that are pairwise far apart. We will formulate

this definition abstractly for any metric space (X, dX), keeping in mind our focus on the case

of X = Sn. Because the condition that points be pairwise far apart is the opposite of the con-

dition for Vietoris–Rips complexes, that points be pairwise close together, the resulting simpli-

cial complexes are called the anti-Vietoris–Rips simplicial complexes. While these are not as

common as Vietoris–Rips complexes, they have been studied before: see Definition 4.1 of [102]

and [103, 104]. To parallel the definition of Vietoris–Rips complexes we gave in Section 3.3.1,

let spread({x1, . . . , xn}) = min{dX(xi, xj) | i ̸= j} and define the anti-Vietoris–Rips complexes

with ≥ and > conventions respectively by

AVR≥(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ spread({x1, . . . , xn}) ≥ r
}

AVR>(X; r) =
{
{x1, . . . , xn} ⊆ X

∣∣ spread({x1, . . . , xn}) > r
}
.

Again, we use the convention of omitting the ≥ or > subscript when a statement holds for either

convention. We can also give these the simplicial metric thickening topology, defining the anti-

Vietoris–Rips metric thickenings:

AVRm
≥ (X; r) =

{
n∑
i=1

aiδxi

∣∣∣∣ ai ≥ 0 for all i,
∑
i

ai = 1, spread({x1, . . . xn}) ≥ r

}

AVRm
> (X; r) =

{
n∑
i=1

aiδxi

∣∣∣∣ ai ≥ 0 for all i,
∑
i

ai = 1, spread({x1, . . . xn}) > r

}
.

These families of simplicial complexes and metric thickenings come with inclusion maps from

higher parameters to lower: if r1 ≤ r2, we have AVR≥(X; r2) ⊆ AVR≥(X; r1) and similarly

for the other cases. Thus, they define contravariant filtrations indexed by R, which behave just

193



like usual (covariant) filtrations as defined in Section 3.1. We can thus apply any concepts we

have defined for filtrations to these contravariant filtrations, including morphisms, interleavings,

and persistent homology, with the necessary modifications for maps from higher parameters to

lower. The Borsuk graphs of the previous section define contravariant filtrations as well. We have

morphisms

Bor(Sn; _) ↪→ AVR≥(S
n; _) → AVRm

≥ (S
n; _),

where the first is given by the inclusions of Bor(Sn; r) into AVR≥(S
n; r) as the 1-skeleton (where

Bor(Sn; r) is given the topology of a simplicial complex) and the second by the usual maps from

the simplicial complex to the metric thickening (see Proposition 3.5.1). The complex AVR≥(S
n; r)

is in fact the clique complex of Bor(Sn; r), meaning it has a simplex for each clique in Bor(Sn; r).

We have seen that we can test graphs for colorability by determining if we can find graph

homomorphisms G → Bor(S1; r) as r varies, and we have defined a t-coloring to be a graph

homomorphism G→ Bor(S1; 2π
t
). Composing with the maps above, any t-coloring yields contin-

uous maps G → AVR≥(S
1; 2π

t
) and G → AVRm

≥ (S
1; 2π

t
). In fact, since a graph homomorphism

is determined by where it sends vertices, we could equivalently define a t-coloring on a graph G

as a simplicial map G → AVR≥(S
1; 2π

t
). If V is the vertex set of G, this can be visualized in the

following diagram.
V S1

G AVR≥(S
1; 2π

t
)

Note that this diagram consists of continuous maps only if S1 is given the discrete topology, as

the vertex set of a simplicial complex is discrete. We can remedy this by replacing the simplicial

complex with the metric thickening, so in the following diagram, all maps are continuous when S1

is given its usual topology.
V S1

G AVRm
≥ (S

1; 2π
t
)

194



In this way, AVR≥(S
1; r) and AVRm

≥ (S
1; r) can be viewed as spaces that can “test for colorability,”

and this opens the possibility of using topological properties of these spaces and techniques from

persistence. This is a perspective that will be explored further in [40].

Finally, we note that anti-Vietoris–Rips complexes differ from Vietoris–Rips complexes in that

they do not allow arbitrarily close points to be vertices in the same simplex, as long as r > 0. For

spheres, this implies that for a given r > 0, all simplices of AVR(Sn; r) are finite-dimensional, and

in fact, we can find an upper bound for their dimension depending on r, so each AVR(Sn; r) is an

N -dimensional simplicial complex for some N depending on r. For r close enough to π, there are

at most two points in a simplex of AVR(Sn; r), and switching to the metric thickening topology,

this will allow us to find the homotopy types at these scale parameters in the next theorem. Before

giving these homotopy types, we note that the argument used for spheres generalizes to show that

AVR(X; r) is finite-dimensional for any totally bounded metric space X and any r > 0: covering

X by a finite number M of r
2
-balls, any set of M + 1 points must have two in a single ball and

thus at distance less than r, so any simplex in AVR(X; r) must have at most M vertices. The same

statements hold for metric thickenings, with the number of vertices in a simplex replaced by the

number of points in the support of a measure. This property will be on display in the following

section, where we find the homotopy types of the anti-Vietoris–Rips metric thickenings of the

circle at all remaining scale parameters, and the following theorem gives a preview.

Theorem 5.1.6. For any r ∈ (2π
3
, π], we have AVRm

≥ (S
n; r) ≃ RP n.

Proof. For any r ∈ (2π
3
, π], there are measures in AVRm

≥ (S
n; r) with two points in their support,

including at least the measures supported on antipodal pairs. We can also check that there are

no measures supported on more than two points: suppose for a contradiction that there are three

points on Sn with spread greater than 2π
3

, and by rotating, assume without loss of generality that

one point is e1 = (1, 0, . . . , 0). Then the other two, v and w, must have first coordinates v1 = v · e1

and w1 = w ·e1 that are less than cos(2π
3
) = −1

2
, so we get ∥v−v1e1∥2 = 1−v21 < 3

4
, and similarly

∥w−w1e1∥2 < 3
4
. By Cauchy–Schwarz, v ·w = v1w1+(v−v1e1) · (w−w1e1) >

1
2
· 1
2
− 3

4
= −1

2
,

contradicting the assumption that dSn(v, w) > 2π
3

.
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Thus, all measures of AVRm
≥ (S

n; r) are of the form µ = aδx + bδy with dSn(x, y) ≥ r and

a + b = 1. For each such measure, we define µ = aδ ax−by
∥ax−by∥

+ bδ by−ax
∥by−ax∥

, noting that µ = µ

if either a = 0 or b = 0. We can further define a support homotopy (see Section 4.2.2) that

moves the support points of µ, moving x to ax−by
∥ax−by∥ and moving y to by−ax

∥by−ax∥ along geodesics.

The induced homotopy then moves each µ to the corresponding µ, and since this homotopy fixes

measures supported on pairs of antipodal points, it is a deformation retraction of AVRm
≥ (S

n; r)

onto the space of measures supported on antipodal pairs. By a straight line homotopy, this space

then deformation retracts to {1
2
δx +

1
2
δ−x | x ∈ Sn}, which is homeomorphic to RP n.

In the case of S1, just before the last step of the proof, we find that AVRm
≥ (S

1; r) is homotopy

equivalent to the space of measures supported on antipodal points. This space is homeomorphic

to the Möbius strip, represented by
(
[0, π] × [0, 1]

)
/ ∼ with (0, y) ∼ (π, 1 − y): any measure

supported on an antipodal pair of points in S1 can be written as aδ(cos θ,sin θ) + (1− a)δ(− cos θ,− sin θ)

with θ ∈ [0, π), which we identify with (θ, a) in the Möbius strip. The last step of the proof

retracts this Möbius strip to its central circle, which can be viewed as RP 1. This implies that for

r1 ∈ (2π
3
, π] and r2 > π, the map S1 ∼= AVRm

≥ (S
1; r2) ↪→ AVRm

≥ (S
1; r1) ≃ S1 has degree 2,

since the set of delta measures on points of S1 forms the outer circle of the Möbius strip. We

will see this behavior again in the following section and will in fact find similar behavior for the

lower scale parameters. More generally, the space of measures on Sn whose supports are pairs of

antipodal points is a fiber bundle over RP n, with fiber [0, 1]. With r1 and r2 as above, the map

Sn ∼= AVRm
≥ (S

n; r2) → AVRm
≥ (S

n; r1) ≃ RP n is the double cover of RP n by Sn.

5.2 Homotopy Types of AVRm
≥(S

1; r)

In the previous section, we saw that graph coloring problems are fundamentally connected to

the Borsuk graphs of the circle Bor(S1; r), and we introduced the analogous simplicial complexes

and metric thickenings, AVR(S1; r) and AVRm(S1; r). Here we find the homotopy types of the

metric thickenings AVRm(S1; r) at all scale parameters. Because these spaces are closely related

to the Vietoris–Rips metric thickenings of the circle, our technique will be based on the technique
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we used in Chapter 4. We will omit some of the technical details, as they are very similar and will

appear in an upcoming paper [40].

To begin, we will reuse much of the notation from Chapter 4, making the necessary changes.

Write points on S1 as [θ] = (cos(θ), sin(θ)), and write the standard k-simplex as ∆k. Let r ∈ (0, π]

and for each k ∈ Z+, let Vk(r) be the subspace of AVRm
≥ (S

1; r) consisting of measures whose sup-

port has exactly k points; these are analogous to the spaces denoted V2k+1(r) in Chapter 5.2, but

here, each point in the support forms its own “arc,” separated by a distance of at least r from

all other points in the support. Let Wk(r) = V1(r) ∪ · · · ∪ Vk(r), so that Wk(r) is the sub-

space of measures whose support has at most k points. Note Vk(r) is empty for k > 2π
r

; we let

K = K(r) = ⌊2π
r
⌋ so that Vk(r) is nonempty for exactly k = 1, 2, . . . , K and AVRm

≥ (S
1; r) =

WK(r). Let Pk(r) ⊆ Vk(r) consist of the measures whose support consists of k evenly spaced

points around the circle – again call these “regular polygonal measures.” As before, we will

also single out a specific regular k-gon for each k: let Rk(r) ⊆ Pk(r) consist of all measures

whose support is {[0], [2π
k
], . . . , [2π(k−1)

k
]}. Note that for 1 ≤ k ≤ K, we have homeomorphisms

Rk(r) ∼= int∆k−1 ∼= intDk−1 and Pk(r)−Rk(r) ∼= int (∆k−1 × I) ∼= intDk.

We define a support homotopy that averages measures to regular polygonal measures, similar

to our technique in Chapter 4. Let Q(S1, Vk) = {([θ], µ) ∈ S1 × Vk | [θ] ∈ supp(µ)} and define a

support homotopy Fk : Q(S1, Vk) → S1 as follows. Any µ ∈ Vk can be written as µ =
∑k−1

i=0 aiδ[θi]

with angles chosen such that x < θ0 < · · · < θk−1 < x+2π for some x ∈ R. Temporarily defining

m =
∑k−1

i=0 ai
(
θi − 2πi

k

)
, let

Fk([θi], µ, t) =
[
(1− t)θi + t(m+ 2πi

k
)
]
.

We get an induced homotopy F̃k : Vk × I → Vk, defined for µ =
∑k

i=1 aiδ[θi] with ai > 0 for

each i, by F̃k(µ, t) =
∑k

i=1 aiδFk([θi],µ,t). As in Chapter 4, we define an equivalence relation ∼

on AVRm
≥ (S

1; r) by setting µ1 ∼ µ2 if and only if for some k ≥ 0, µ1 and µ2 are in Vk(r) and

F̃k(µ1, 1) = F̃k(µ2, 1). The quotient map q : AVRm
≥ (S

1; r) → AVRm
≥ (S

1; r)/ ∼ is a homotopy
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equivalence, which can be shown by taking a sequence of quotients and applying Proposition 4.4.3

as in Chapter 4.

5.2.1 Cell Complexes

We now decompose AVRm
≥ (S

1; r)/ ∼ as a cell complex with one 0-cell and two cells of each

positive dimension k with k ≤ K. Within AVRm
≥ (S

1; r)/ ∼, the k-cells are given by Ck =

q(Pk(r)−Rk(r)) for 1 ≤ k ≤ K and C ′
k = q(Rk+1(r)) for 0 ≤ k ≤ K − 1. Let

Y 0 = C ′
0

X1 = C ′
0 ∪ C1

Y 1 = C ′
0 ∪ C1 ∪ C ′

1

X2 = C ′
0 ∪ C1 ∪ C ′

1 ∪ C2

. . . ,

so that AVRm
≥ (S

1; r)/ ∼ = XK . Note that Y 0 is a point, X1 is a copy of S1, andX2 is the Möbius

strip observed after Theorem 5.1.6. We define characteristic maps for the cells Ck and C ′
k, using

∆k−1 × I and ∆k as k-cells. Define Φk : ∆
k−1 × I → Xk by

Φk((a0, . . . , ak−1), t) = q

(
k−1∑
i=0

aiδ[ 2π(i+t)
k ]

)
,

and define Φ′
k : ∆

k → Y k by

Φ′
k(a0, . . . , ak) = q

(
k∑
i=0

aiδ[ 2πi
k+1 ]

)
.

Then Φk and Φ′
k map the interiors of the cells homeomorphically onto Ck and C ′

k respectively.

In general, the image of Φ′
k intersects Ck, so it glues part of the boundary of a k-cell to another

k-cell. The cells and characteristic maps above thus describe AVRm
≥ (S

1; r)/ ∼ not as a CW

complex, but as a more general cell complex, in which cells may attach to previously attached cells

198



of the same dimension. Specifically, beginning with the 0-cell C ′
0 = Y 0 = q(δ[0]), for 1 ≤ k ≤ K,

the space Xk is homeomorphic to the adjunction space obtained by attaching a k-cell to Y k−1 by

the map

Φk|∂(∆k−1×I) : ∂(∆
k−1 × I) → Y k−1,

and for 1 ≤ k ≤ K − 1, the space Y k is homeomorphic to the adjunction space obtained by

attaching a k-cell to Xk by the map

Φ′
k|∂∆k : ∂∆k → Xk.

In other words, the following diagrams are pushouts.

∂(∆k−1 × I) Y k−1 ∂∆k Xk

∆k−1 × I Xk ∆k Y k

Φk|∂(∆k−1×I) Φ′
k|∂∆k

Φk Φ′
k

This can be verified using the closed map lemma and the fact that AVRm
≥ (S

1; r)/ ∼ is Hausdorff,

which can be proved using the method of Lemma 4.7.1.

5.2.2 Homotopy Types and Proof Outline

Having found the cell complex above, we are in the right position to find the homotopy types.

This will be more intricate than the analogous step in Chapter 4; we will find that some of the

gluing maps are more difficult to understand and will need to use some additional algebraic tools.

The homotopy types of AVRm
≥ (S

1; r) are given in the following theorem and illustrated below

in Figure 5.1.
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Theorem 5.2.1. The homotopy types of AVRm
≥ (S

1; r) are as follows:

AVRm
≥ (S

1; r) ≃


S1 if r ∈ (2π

3
,+∞)

S2n−1 if r ∈
(

2π
2n+1

, 2π
2n−1

]
, for n ≥ 2

∗ if r ∈ (−∞, 0].

Given 2π
3
< r ≤ r′ < +∞, the map AVRm

≥ (S
1; r′) → AVRm

≥ (S
1; r) is a degree 1 map if either

π < r ≤ r′ or r ≤ r′ ≤ π and is a degree 2 map if r ≤ π < r′. Similarly, for any n ≥ 2,

given 2π
n+1

< r ≤ r′ ≤ 2π
n−1

, the map AVRm
≥ (S

1; r′) → AVRm
≥ (S

1; r) is a degree 1 map if either

2π
2n
< r ≤ r′ or r ≤ r′ ≤ 2π

2n
and is a degree 2 map if r ≤ 2π

2n
< r′.

Figure 5.1: The homotopy types of AVRm≥ (S1; r).

We will verify these homotopy types using the fact that AVRm
≥ (S

1; r) ≃ AVRm
≥ (S

1; r)/ ∼

= XK . As for the maps, the homotopy equivalence AVRm
≥ (S

1; r) ≃ AVRm
≥ (S

1; r)/ ∼ we have

constructed is natural in r; that is, given r1 ≤ r2, the following diagram commutes, where the

quotients are those constructed above using r2 and r1 respectively.

AVRm(S1; r2) AVRm(S1; r1)

AVRm(S1; r2)/ ∼ AVRm(S1; r1)/ ∼

Therefore, Theorem 5.2.1 will be implied by the following theorem, which we prove in the follow-

ing sections.
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Theorem 5.2.2. For all r ∈ (0, 2π] and all 1 ≤ k ≤ ⌊2π
r
⌋, we have

Xk ≃


Sk if k is odd

Sk−1 if k is even.
Y k ≃


Sk ∨ Sk if k is odd

∗ if k is even.

Furthermore, for odd k, the map Sk−1 ≃ Xk−1 ↪→ Xk ≃ Sk−1 is a degree two map, determining

it up to homotopy.

The homotopy types, along with the fact that the homotopy equivalences we will construct are

natural in the parameter r, imply the persistent homology the filtration AVRm
≥ (S

1; _). The degree

two maps between spheres have an interesting effect: over fields of characteristic 2, these induce

zero maps on homology, but for other fields, they induce isomorphisms. This means the barcodes

depend on the characteristic of the field. The barcodes are given in the following theorem.

Theorem 5.2.3. Using homology with coefficients in a field with characteristic 2, the persistent

homology barcodes of AVRm
≥ (S

1; _) consist of

• one bar (−∞,∞) in dimension 0

• two bars (2π
3
, π] and (π,∞) in dimension 1

• two bars ( 2π
2n+1

, 2π
2n
] and (2π

2n
, 2π
2n−1

] in dimension 2n− 1 for each n ≥ 2

and no bars in the remaining dimensions.

Using homology with coefficients in a field with characteristic other than 2, the persistent

homology barcodes of AVRm
≥ (S

1; _) consist of

• one bar (−∞,∞) in dimension 0

• one bar (2π
3
,∞) in dimension 1

• one bar ( 2π
2n+1

, 2π
2n−1

] in dimension 2n− 1 for each n ≥ 2

and no bars in the remaining dimensions.
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The homotopy types are determined by the diagrams in Figures 5.2 and 5.3, in which the front

and back squares are pushouts. In each case, the back square shows the cell structure we have

defined, where we have identified cells with disks, and we use the pushout as the definition of the

lower right space, which we simply mark with its homotopy type. The gluing theorem for adjunc-

tion spaces (7.5.7 of [87]) shows that if the three diagonal maps are homotopy equivalences such

that the diagram commutes, then the dotted map given by the universal property of pushouts is a

homotopy equivalence (this relies on the fact that the inclusion Sk−1 ↪→ Dk is a closed cofibra-

tion). We begin with base case of Y 0 ∼= ∗ and inductively show that following the sequence of the

four diagrams gives the homotopy equivalences for the next two Xk and the next two Y k. The four

parts of the inductive step, one for each diagram, are given in the following four sections.

Sk−1 Y k−1 Sk−1 Xk

Sk−1 ∗ Sk−1 Sk

Dk Xk Dk Y k

Dk Sk Dk ≃ Sk ∨ Sk

Φk|Sk−1

1

Φ′
k|Sk−1

1

Φk

1

Φ′
k

1

Figure 5.2: Diagrams for odd k

Sk−1 Y k−1 Sk−1 Xk

Sk−1 Sk−1 ∨ Sk−1 Sk−1 Sk−1

Dk Xk Dk Y k

Dk ≃ Sk−1 Dk ≃ ∗

Φk|Sk−1

1

Φ′
k|Sk−1

1
Ψk

Φk

1

Φ′
k

1

Figure 5.3: Diagrams for even k
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Figure 5.4: The four parts of the inductive step, visualized in low dimensions.

5.2.3 First Step for Odd k

We begin by assuming Y k−1 ≃ ∗ for an odd k. The left diagram in Figure 5.2 describes the

gluing of Dk to the contractible space Y k−1 to show Xk ≃ Xk/Y k−1 ∼= Sk. The homotopy

equivalence Xk → Sk collapses all of Y k−1 to a single point and maps the open cell Ck homeo-

morphically onto the complement of this point. The composite Dk Φk−→ Xk → Sk is then the map

that quotients the boundary of Dk to a point.

5.2.4 Second Step for Odd k

The right diagram in Figure 5.2 describes the gluing of a k-cell to Xk, where Xk ≃ Sk. Up to

homotopy, there is only one option for the gluing map Sk−1 → Sk since πk−1(S
k) is trivial, so we

get Y k ≃ Sk ∨ Sk. We will make this homotopy equivalence more explicit for use in the next step

by finding points y, y ∈ Y k and a homotopy equivalence Y k → Sk ∨ Sk that takes y into the first

sphere, takes y into the seconds sphere, and is injective on a neighborhood around each.

Recall we have let q : AVRm
≥ (S

1; r) → AVRm
≥ (S

1; r)/ ∼ be the quotient map. For a suffi-

ciently small ε > 0, which we will impose conditions on later, set

y = q

(
k−1∑
i=0

1
k
δ[π

k
+ε+ 2π

k
i]

)
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y = q

(
k−1∑
i=0

1
k
δ[π

k
−ε+ 2π

k
i]

)
.

These measures, the centers of their respective k-gons, lie in the cell Ck. The closure of the cell

Ck is the image of Φk : ∆
k−1 × I → Xk, which we will treat as a quotient of a prism, where

the quotient is only nontrivial on the boundary. Divide the prism into upper and lower halves

U = Φk(∆
k−1 × [0, 1

2
]) and L = Φk(∆

k−1 × [1
2
, 1]), and let E = Φk(∆

k−1 ×{1
2
}). Let Ny and Ny

be small open balls containing y and y, so that Ny ⊆ U and Ny ⊆ L; we will impose additional

conditions on these neighborhoods later.

Now start with the homotopy equivalence f : Xk → Xk/Y k−1 from the previous step, where

Xk/Y k−1 ∼= Sk. More explicitly, Xk/Y k−1 ∼= Ck/∂Ck, so f(E) becomes an equator Sk−1 of Sk;

that is, we have a homeomorphism of pairs (Xk/Y k−1, f(E)) ∼= (Sk, Sk−1). Since Y k is formed

by gluing a k-cell to Xk by the map Φ′
k|∂∆k , the gluing theorem for adjunction spaces [87, 7.5.7]

gives a homotopy equivalence Y k → Xk/Y k−1 ⊔f◦Φ′
k|∂∆k

∆k as in the following diagram.

∂∆k Xk

∂∆k Xk/Y k−1

∆k Y k

∆k Xk/Y k−1 ⊔f◦Φ′
k|∂∆k

∆k

Φ′
k|∂∆k

f

Let ht be a homotopy of f ◦ Φ′
k|∂∆k that moves points radially outward from y in U and radially

outward from y in L until reaching the boundaries (this requires that the image of Φ′
k|∂∆k does not

contain y or y, which is verified below). Replacing f ◦Φ′
k|∂∆k with the homotopic map h1, we get

a homotopy equivalence

Y k → Xk/Y k−1 ⊔h1 ∆k (5.1)

204



and h1 has image contained in f(E) ∼= Sk−1. Since (Xk/Y k−1, f(E)) ∼= (Sk, Sk−1), Equation 5.1

should be viewed as gluing a k-cell to the equator of Sk.

We show that h1 is a degree 1 map into f(E) allowing us to contract the newly glued k-cell.

Let c = f
(
q
(∑k−1

i=0
1
k
δ[π

k
+ 2π

k
i]

))
(the center of the prism). Any point in h−1

1 (c) must be mapped

by Φ′
k|∂∆k to the center of a k-gon lying between y and y in the prism. Points mapped to the centers

of k-gons are of the form ( 1
k
, . . . , 1

k
, 0, 1

k
. . . , 1

k
) ∈ ∂∆k. If it is the j th coordinate that is 0, we have

Φ′
k(

1
k
, . . . , 1

k
, 0, 1

k
. . . , 1

k
) = q

(
k∑

i=0,i ̸=j

1
k
δ[ 2πi

k+1 ]

)

= q

 k−1
2∑

i= 1−k
2

1
k
δ[π+ 2πj

k+1
+ 2πi

k+1 ]


= q

 k−1
2∑

i= 1−k
2

1
k
δ[π+ 2πj

k+1
+ 2πi

k ]

 ,

where the second line reindexed support points and the third line applies the definition of q to

choose a regular polygonal representative. These are the centers of the k + 1 different k-gons that

contain support points at
[
π + 2πj

k+1

]
for 0 ≤ j ≤ k. Equivalently these are the centers of the k-gons

with support points at [0],
[

2π
k(k+1)

]
, . . . ,

[
2π

k(k+1)
k
]
. As long as ε is chosen small enough, the only

one of these lying between y and y is the center of the k-gon with a support point at 2π
k(k+1)

k+1
2

= π
k

.

This yields one point in h−1
1 (c). The same reasoning extends to small open neighborhoods of the

points in ∂∆k. The neighborhood around the one point in h−1
1 (c) is mapped into the prism by

Φ′
k, locally an affine map, and projected away from y and y onto f(E), which shows h1 maps it

homeomorphically onto a neighborhood of c in f(E). This shows h1 has degree 1.

Since h1 glues a cell ∆k to f(E) with degree 1, where (Xk/Y k−1, f(E)) ∼= (Sk, Sk−1), the

resulting space is a CW-complex with the closure of the newly attached cell forming a contractible

subcomplex. Thus, we can contract the newly attached ∆k in Equation 5.1 to obtain a homotopy
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equivalence

Y k → Xk/(Y k−1 ∪ E) ∼= Sk/Sk−1 ∼= Sk ∨ Sk. (5.2)

The centers of the k-gons found above also show that as long as Ny and Ny are chosen small

enough, they are disjoint from the image of Φ′
k|∂∆k . With the right choice ofNy andNy, projection

away from y and y in U and L does not move a point from outside the neighborhood to inside, so

this implies the image of h does not intersect them either. This implies the homotopy equivalence

of Equation 5.1 is injective on Ny and Ny. Therefore the homotopy equivalence in Equation 5.2

can be chosen to be injective on Ny and Ny, sending one into the first Sk of the wedge sum and the

other into the second.

5.2.5 First Step for Even k

Now let k be even, one greater than in the previous steps. In the left diagram of Figure 5.3, the

map Ψk : S
k−1 → Sk−1∨Sk−1 must make the diagram commute, so it is given by Φk|Sk−1 followed

by the homotopy equivalence Y k−1 → Sk−1∨Sk−1 found in Equation 5.2 the previous step. We can

understand the map Ψk using the (k − 1)th homotopy group of Sk−1 ∨ Sk−1, which can be found

by cellular approximation, as described in [105], or can be found using Hilton’s theorem [106],

which gives a general description of the homotopy groups of wedge sums of spheres. For k ≥ 4,

the homotopy group is given by πk−1(S
k−1 ∨Sk−1) ∼= Z⊕Z. The case of k = 2 is different, since

π1(S
1 ∨ S1) ∼= Z ∗Z; we will write the remainder of this part assuming k ≥ 4, and the k = 2 case

can be handled by either working with this fundamental group separately, or using Theorem 5.1.6,

which covered this case.

The map Ψk represents an element of πk−1(S
k−1 ∨ Sk−1) ∼= Z⊕ Z, the components of which

are determined by the degrees of the maps formed by composing with quotient maps that collapse

the spheres: Sk−1 Ψk−→ Sk−1 ∨ Sk−1 → Sk−1 ∨ ∗ and Sk−1 Ψk−→ Sk−1 ∨ Sk−1 → ∗∨ Sk−1. We give

orientations to the two spheres of Y k−1 ≃ Sk−1∨Sk−1 by letting them inherit the orientation from

Sk−1 ≃ Xk−1 → Y k−1 → Sk−1 ∨ Sk−1, where we use the fact shown above that the homotopy

equivalence of Equation 5.2 was injective on a neighborhood around the points y and y defined in
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the previous step. We find the degrees determining Ψk by summing local degrees, and it is thus

sufficient to find local degrees of Φk|Sk−1 at points in the preimages of y and y.

Writing y and y with the new k (one greater than before) and shifting indices for convenience,

they are given by

y = q

(
k−2∑
i=0

1
k−1

δ[π+ε+ 2π
k−1

i]

)

y = q

(
k−2∑
i=0

1
k−1

δ[π−ε+ 2π
k−1

i]

)
.

Again, we will later make a choice of a sufficiently small ε > 0. A point x = ((a0, . . . , ak−1), t) in

Φ−1
k (y) must have one coordinate ai equal to 0 and the remaining ai equal to 1

k−1
. Applying Φk to

such a point and rewriting the measure, we get

y = Φk(x) = q

 k
2
−1∑

i=1− k
2

1
k−1

δ[θ+ 2π
k
i]

 (5.3)

for some θ. Applying the definition of q to find a regular polygonal representative and using the

definition of y, we must find θ satisfying

q

(
k−2∑
i=0

1
k−1

δ[π+ε+ 2π
k−1

i]

)
= y = Φk(x) = q

 k
2
−1∑

i=1− k
2

1
k−1

δ[θ+ 2π
k−1

i]

 .

We thus get one solution for [θ] for each vertex of the regular (k − 1)-gon representing y, each

yielding a point in Φ−1
k (y). We choose representatives θj = π + ε+ 2π

k−1
j with 0 ≤ j ≤ k − 2 and

let xj be the corresponding point in Φ−1(y). Explicitly, letting x = xj in Equation 5.3, we have

Φk(xj) = q

 k
2
−1∑

i=1− k
2

1
k−1

δ[π+ε+ 2π
k−1

j+ 2π
k
i]

 .

Finally, we find their coordinates: suppose xj = ((a0,j, . . . , ak−1,j), tj). The measure in the expres-

sion above has support contained in a regular k-gon, and has zero mass at the vertex at [ε+ 2π
k−1

j].
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Using the definition of Φk, this means ai,j = 0 for the i such that 2π(i+tj)

k
= ε + 2π

k−1
j with

tj ∈ [0, 1], that is, for i = j + 1
k−1

j + k
2π
ε − tj . Since 0 ≤ j ≤ k − 2, this is solved by i = j and

tj =
k
2π
ε+ 1

k−1
j, as long as ε is chosen to be sufficiently small (specifically ε < 2π

(k−1)k
). Thus, xj

has aj,j = 0 for each 0 ≤ j ≤ k − 2. We can compute local degrees by noting that the attaching

map Φk|Sk−1 restricts to an embedding of a neighborhood around each xj , so that the local degree

at each is ±1. Determining the sign requires that we understand the orientation at each point and

at its image. Fortunately, since our maps Φk and Φ′
k preserve the ordering of vertices, taking the

indexed vertices of ∆k to points in order counterclockwise on the circle, we can determine orienta-

tions of faces as usual based on the parity of vertices – we will use this approach below as well. In

this case, the sign of the local degree at xj is determined by the parity of j, since aj = 0 specifies

a face of ∆k−1 × I with orientation (−1)j . Thus, after fixing an orientation of ∂(∆k−1 × I), we

conclude that the local degree at xj is (−1)j .

Summing these local degrees shows the map Sk−1 Ψk−→ Sk−1 ∨ Sk−1 → Sk−1 ∨ ∗ has degree

+1 (where we have let y be mapped into the first sphere of the wedge sum). Repeating the above

analysis for y, we find that there is one point in Φ−1
k (y) in each face for 1 ≤ j ≤ k − 1, so that

the map Sk−1 Ψk−→ Sk−1 ∨ Sk−1 → ∗ ∨ Sk−1 has degree −1 (alternately, this follows since Φ−1
k (y)

is obtained from Φ−1
k (y) by reflecting points on the circle around the first coordinate axis, so each

point in Φ−1
k (y) with aj = 0 corresponds to a point in Φ−1

k (y) with ak−1−j = 0). These degrees

determine the corresponding element of πk−1(S
k−1 ∨ Sk−1) ∼= Z⊕ Z and thus determine the map

Ψk up to homotopy. It is homotopic to the map that glues a k-cell into the region between the

two spheres of Sk−1 ∨ Sk−1 when one smaller sphere is pictured inside the other, as this produces

degrees of ±1 (see Figure 5.5); collapsing onto one of the spheres gives Xk ≃ Sk−1. In more

detail, choosing a point x ∈ Sk−1, we have

Xk ≃ (Sk−1 × I)/({x} × I) ≃ Sk−1 × I ≃ Sk−1. (5.4)
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Figure 5.5: The orientations and the degree two map can be pictured using normal vectors on the boundary
spheres in Equation 5.4. One normal vector points inward and the other outward, since the two degrees
determining Ψ are +1 and −1, so after collapsing to Sk−1, the two normal vectors agree.

Furthermore, since Ψk glues the k-cell to the two spheres of Sk−1 ∨ Sk−1 with opposite degrees,

and since the two spheres have been assigned orientations by the map Sk−1 ≃ Xk−1 → Y k−1 ≃

Sk−1 ∨ Sk−1, the following composite map Sk−1 → Sk−1 is a degree two map.

Xk−1 Y k−1 Xk

Sk−1 Sk−1 ∨ Sk−1 Sk−1

≃ ≃ ≃

Since elements of πk−1(S
k−1) ∼= Z are determined by degree, we have thus found the map Sk−1 ≃

Xk−1 ↪→ Xk ≃ Sk−1 up to homotopy.

5.2.6 Second Step for Even k

For the final step, shown in the right diagram of Figure 5.3, we will show that the composite

Sk−1 Φ′
k|Sk−1−−−−−→ Xk −→ Sk−1

is a degree 1 map, where Xk → Sk−1 is the homotopy equivalence from the previous step. This

will imply Y k is homotopy equivalent to Dk glued to Sk−1 by a degree 1 map, which is homotopy

equivalent to Dk and thus contractible. The main difficulty arises from the lack of an explicit

homotopy in the previous step, where we relied on the homotopy group πk−1(S
k−1 ∨ Sk−1). We

will circumvent this difficulty by using a different, homotopic attaching map that lets us focus our
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attention onXk−1. As this subspace is easier to understand (recall we haveXk−1 ≃ Xk−1/Y k−2 ∼=

Sk−1), this will allow us to compute the degree.

The case of k = 2 can be done directly by noting that the path around the boundary of triangle

C ′
2 intersects each regular 2-gon exactly once, so after collapsing the Möbius strip X2 to its central

circle, the attaching map has degree 1. We will thus assume k ≥ 4 (this will only make a difference

in one particular part of the proof).

We begin by replacing Φ′
k|∂∆k : ∂∆k → Xk by a homotopic map. Recall Φ′

k is defined by

Φ′
k(a0, . . . , ak) = q

(
k∑
i=0

aiδ[ 2πi
k+1 ]

)
,

and the image of the boundary is contained inXk. On the face σk = {(a0, . . . , ak) ∈ ∆k | ak = 0},

the definition of the quotient map q lets us represent the output with a regular polygonal measure:

Φ′
k|σk(a0, . . . , ak−1, 0) = q

(
k−1∑
i=0

aiδ[ 2πk i+
∑k−1

j=0 aj(
2πj
k+1

− 2πj
k )]

)
.

Omitting the final coordinate 0, can write any point in σk as (1 − s)( 1
k
, . . . , 1

k
) + s(b0, . . . , bk−1),

where s ∈ [0, 1] and (b0, . . . , bk−1) ∈ ∂σk (so at least one bi is 0). This expression is unique unless

s = 0, in which case the point is the center ( 1
k
, . . . , 1

k
); topologically, this expresses σk as the cone

on its boundary. Writing points of σk in this way and letting ei be the standard basis vectors, the

equation above becomes

Φ′
k|σk

(
k−1∑
i=0

(
(1− s) 1

k
+ sbi

)
ei

)
= q

(
k−1∑
i=0

((1− s) 1
k
+ sbi)δ[ 2πk i+

∑k−1
j=0 ((1−s)

1
k
+sbj)( −2π

k(k+1)
j)]

)
.

Define Gk : σk × I → Xk by

Gk

(
k−1∑
i=0

(
(1− s) 1

k
+ sbi

)
ei, t

)
= q

(
k−1∑
i=0

ciδ[ 2πk i+m]

)
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where

ci = c(bi, s, t) =


(1− t)

(
(1− s) 1

k
+ sbi

)
+ t
(
(1− 2s) 1

k
+ 2sbi

)
if s ∈ [0, 1

2
]

(1− t)
(
(1− s) 1

k
+ sbi

)
+ tbi if s ∈ [1

2
, 1]

and

m = m(b0, . . . , bk−1, s, t)

=


∑k−1

j=0

(
(1− t)

(
(1− s) 1

k
+ sbj

)
+ t 1

k

)(
−2π
k(k+1)

j
)

if s ∈ [0, 12 ]∑k−1
j=0

(
(1− t)

(
(1− s) 1

k
+ sbj

)
+ t
(
(2− 2s) 1

k
+ (2s− 1)bj

))(
−2π
k(k+1)

j
)

if s ∈ [12 , 1].

This is a well-defined function into Xk since
∑

i ci = 1 and the measures are supported on at

most k points. By Lemma 3.5.5, we see that Gk is continuous since all ci and m are continuous.

Furthermore Gk(−, 0) = Φ′
k|σk and Gk remains stationary on ∂σk (this follows from setting s = 1

in the definition). This shows that Φ′
k|σk is homotopic to Gk(−, 1) relative to ∂σk. We record that

Gk(−, 1) is given explicitly by

Gk

(
k−1∑
i=0

(
(1− s) 1

k
+ sbi

)
ei, 1

)

=


q

(∑k−1
i=0 ((1− 2s) 1

k
+ 2sbi)δ[ 2πk i−

(k−1)π
k(k+1) ]

)
if s ∈ [0, 1

2
]

q
(∑k−1

i=0 biδ[ 2πk i+
∑k−1

j=0 ((2−2s) 1
k
+(2s−1)bj)( −2π

k(k+1)
j)]

)
if s ∈ [1

2
, 1].

The points in σk with s ∈ [0, 1
2
) form an open (k − 1)-disk and are mapped by Gk(−, 1) onto

the collection of equivalence classes of regular polygonal measures supported on the regular k-gon

with a vertex at
[
− (k−1)π
k(k+1)

]
. We will let τk be the points of σk with s ∈ [0, 1

2
] and refer to it as

the “central simplex” of σk: it is geometrically a simplex but is not a face of σk, as its vertices

are contained in the interior of σk. The points with s ∈ [1
2
, 1] are sent to equivalence classes of

measures supported on at most k − 1 vertices, which thus lie in Xk−1.
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We will rotate in steps of 2π
k+1

around the circle to define a homotopy on the other faces of

∆k. For 0 ≤ l ≤ k, let σl = {(a0, . . . , ak) ∈ ∆k | al = 0} be the lth face of ∆k. We define

Gl : σl × I → Xk by cyclically permuting the input and rotating the output of Gk: from here on,

we write the indices of the basis vectors ei modulo k + 1, so this map is given by

Gl

(
k−1∑
i=0

(
(1− s) 1

k
+ sbi

)
ei+l+1, t

)
= q

(
k−1∑
i=0

ciδ[ 2πk i+m+ 2π
k+1

(l+1)]

)

with ci and m as above. Equivalently, we have defined Gl(l + 1 · x, t) = l + 1 · Gk(x, t), where

l + 1 indicates the class of l + 1 in Z
(k+1)Z , which acts on the points of simplices by permuting

basis vectors and on equivalence classes of measures by rotating delta measures on the circle.

Since Φ′
k has this same rotational symmetry, i.e. l + 1 · Φ′

k(x) = Φ′
k(l + 1 · x), and Gk(−, 0) =

Φ′
k|σk , we find that Gl(−, 0) = Φ′

k|σl and Gl remains stationary on ∂σl. Furthermore, since the

various Φ′
k|σl glue along the boundaries of the faces σl to define Φ′

k, the various Gl glue along the

∂σl × I to define a homotopy G : ∂∆k × I → Xk where G(−, 0) = Φ′
k|∂∆k . Just as Gk(−, 1)

covered the regular k-gon with a vertex at
[
− (k−1)π
k(k+1)

]
, each Gl(−, 1) covers the regular k-gon

with a vertex at
[
− (k−1)π
k(k+1)

+ 2π
(k+1)

(l + 1)
]
, which is equivalently the regular k-gon with a vertex at[

− (k−1)π
k(k+1)

− 2π(l+1)
k(k+1)

]
. Taking the union of these regular polygonal measures for 0 ≤ l ≤ k, we see

that G covers k + 1 evenly spaced k-gons on the circle, each at an angle of 2π
k(k+1)

from the next.

As above, we let τl be the “central simplex” of σl, the set of points of σl written with s ∈ [0, 1
2
],

which are mapped onto these k-gons. Finally, G sends the points of σl \ τl into Xk−1.

Since Y k is obtained by gluing ∆k to Xk by Φ′
k|∂∆k , it is homotopy equivalent to the space

obtained by gluing ∆k to Xk by G(−, 1). To show that Y k is contractible, it suffices to show that

G(−, 1) : ∂∆k → Xk ≃ Sk−1 is a map of degree 1. To determine the degree, we will introduce a

rotated copy of this attaching map, which will allow us “cancel” the k-gonal measures in the image

and focus our attention on the part of the image in Xk−1. Let G̃ be defined by rotating the output

of G by 2π
k

. The two maps G(−, 1) and G̃(−, 1) then map the central simplices of the faces of ∆k

onto the same set of regular k-gons described above, but with opposite orientations: rotating by 2π
k
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corresponds to a k-cycle of the vertices of a regular k-gon, which is an odd permutation since k is

even.

We now distinguish between the domains of G(−, 1) and G̃(−, 1), writing them as ∂∆k
1 and

∂∆k
2, with fixed orientations. Let τ1,0, . . . τ1,k ⊆ ∂∆k

1 and τ2,0, . . . , τ2,k ⊆ ∂∆k
2 be the central sim-

plices of their faces, as above, and letN be defined by gluing ∂∆k
1 and ∂∆k

2 together by identifying

τ1,l and τ2,l via a k-cycle of their vertices, mirroring the behavior of G(−, 1) and G̃(−, 1) above.

Since the identifications reverse orientation, removing the interiors of these central simplices from

N leaves an orientable (k− 1)-manifold M (this is analogous to the connected sum of manifolds).

From here on, we will identify ∂∆k
1 and ∂∆k

2 with spheres Sk−1
1 and Sk−1

2 , and will simply write the

collections of central simplices as disjoint unions of disks Dk−1. For instance, with this notation,

N and M are described by the following pushout squares.

∐k
i=0D

k−1 Sk−1
1

Sk−1
2 N

∐k
i=0 S

k−2 Sk−1
1 −

∐k
i=0 intD

k−1

Sk−1
2 −

∐k
i=0 intD

k−1 M

Since we have definedN by identifying the central simplices via appropriate cycles of vertices,

G(−, 1) and G̃(−, 1) glue to define a map χ : N → Xk, which restricts to a map ψ : M → Xk−1

(recall we observed that points with s ∈ [1
2
, 1] in the definition of Gk were sent into Xk−1):

M N

Xk−1 Xk.

ψ χ

This map ψ accomplishes our goal of focusing attention on Xk−1.
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We now use maps on homology to show that the degree of G(−, 1) can be found by finding the

degree of ψ; we use homology with integer coefficients throughout. The space N is the union of

the two spheres Sk−1
1 and Sk−1

2 with intersection
∐k

i=0D
k−1. Each of these spaces can be expanded

slightly to an open set without changing the homotopy type, so we get a Mayer–Vietoris sequence,

a portion of which is shown below49.

0 ∼= Hk−1(
∐k

i=0D
k−1) Hk−1(S

k−1
1 )⊕Hk−1(S

k−1
2 ) Hk−1(N)

Hk−2(
∐k

i=0D
k−1) ∼= 0

This gives the isomorphism Hk−1(N) ∼= Z ⊕ Z. We also have Hk−1(M) ∼= Z since M is an

orientable manifold. By the previous steps of the proof, the homology groups of Xk−1 and Xk and

the map induced by inclusion are implied by the fact that both are homotopy equivalent to Sk−1

and the map is the degree two map between them. The diagram below shows these homology

groups up to isomorphism.

Hk−1(M) Hk−1(N) Z Z⊕ Z

Hk−1(X
k−1) Hk−1(X

k) Z Z

Hk−1(ψ) Hk−1(χ)

z 7→(z,z)

degψ

2

The map Hk−1(M) → Hk−1(N) induced by inclusion is given by z 7→ (z, z) since Hk−1(M)

is generated by the fundamental class of M and Hk−1(N) is generated by classes representing

Sk−1
1 and Sk−1

2 . The map Hk−1(ψ) is multiplication by degψ. The map Hk−1(χ) can be described

by composing with the isomorphism from the Mayer–Vietoris sequence above:

Hk−1(S
k−1
1 )⊕Hk−1(S

k−1
2 ) Hk−1(N) Hk−1(X

k).
∼= Hk−1(χ)

49The final isomorphismHk−2(
∐k

i=0D
k−1) ∼= 0 in the sequence is the only part of the proof that uses the assumption

that k ≥ 4.
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The composite map is induced by the two maps G(−, 1) and G̃(−, 1). But these maps are homo-

topic, since G̃ is defined by rotating the output of G, so they have the same degree. Commutativity

of the diagram above then implies that Hk−1(χ) must be given by (z1, z2) 7→ (z1 + z2) degψ, so

G(−, 1) has the same degree as ψ. So to show thatG(−, 1) has degree 1 and Y k is thus contractible,

we just need to show that ψ has degree 1.

Let Q ⊆ Xk−1 be the set of centers of regular (k − 1)-gons, that is,

Q =

{
q

(
k−2∑
i=0

1
k−1

δ[
x+

2π
k−1

i
]
)∣∣∣ x ∈ [0, 2π

k−1
)

}
.

We see that Q is homeomorphic to a circle, which we will assign a circumference of 2π
k−1

based on

the values x in the definition. We aim to find the degree of ψ as the sum of local degrees at points

in the preimage of a point in Q. As ψ is defined by G and G̃, we begin by finding the image of G,

which by symmetry will imply that of G̃. We have im(G(−, 1)) ∩ Q =
⋃k
l=0 im(Gl(−, 1)) ∩ Q,

and since each im(Gl(−, 1)) ∩ Q is found by rotating im(Gk(−, 1)) ∩ Q by 2π
k+1

(l + 1), we can

focus our attention on Gk(−, 1). By our expression for Gk(−, 1), we note that im(Gk(−, 1)) ∩ Q

is exactly the image of the set of points of σk of the form
∑k−1

i=0

(
(1− s) 1

k
+ sbi

)
ei with s ∈ [1

2
, 1]

and with one bi equal to 0 and the rest equal to 1
k−1

. Let

Tn =

{
k−1∑
i=0

(
(1− s) 1

k
+ sbi

)
ei

∣∣∣ bn = 0, bi =
1

k−1
for i ̸= n, s ∈ [1

2
, 1]

}
,

so that im(Gk(−, 1)) ∩Q =
⋃k−1
n=0Gk(Tn, 1).
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We compute Gk(Tn, 1) as follows: letting bn = 0 and bi = 1
k−1

for all i ̸= n, we have

Gk(Tn, 1) =

{
q

(
k−1∑
i=0

biδ[ 2πk i+
∑k−1

j=0 ((2−2s) 1
k
+(2s−1)bj)( −2π

k(k+1)
j)]

) ∣∣∣∣∣ s ∈ [1
2
, 1]

}

=

q
k−1∑

i=0
i ̸=n

1
k−1

δ[ 2π
k
i+(2−2s) −2π

k2(k+1)

∑k−1
j=0 j+(2s−1) −2π

(k−1)k(k+1)

∑k−1
j=0,j ̸=n j

]
 ∣∣∣∣∣ s ∈ [1

2
, 1]


=

q
k−1∑

i=0
i ̸=n

1
k−1

δ[ 2πk i+
−2π(2−2s)(k−1)

2k(k+1)
+

−2π(2s−1)(k−1)k
2(k−1)k(k+1)

+
2π(2s−1)n

(k−1)k(k+1) ]

 ∣∣∣∣∣ s ∈ [1
2
, 1]


=

q
k−1∑

i=0
i ̸=n

1
k−1

δ[ 2πk i+
−π(k−2)(k−1)−2πn

(k−1)k(k+1)
+

−2π(k−1)+4πn
(k−1)k(k+1)

s]

 ∣∣∣∣∣ s ∈ [1
2
, 1]

 .

In the final line above, the coefficient of s shows that as s ranges from 1
2

to 1, the measure rotates

by −π(k−1)+2πn
(k−1)k(k+1)

in S1, with the sign indicating the direction of rotation. The regular (k − 1)-gon

representatives rotate by the same amount; thus, Gk(−, 1) embeds Tn, which is homeomorphic

to an interval, into Q as an interval with signed length −π(k−1)+2πn
(k−1)k(k+1)

. Moreover, taking a small

enough open neighborhood in ∂∆k of any point in the interior of Tn that allows the nonzero bi, our

expression for Gk(−, 1) shows that Gk(−, 1) embeds this neighborhood into Xk−1. Therefore the

local degree at each point in the interior of Tn is ±1.

The preimage ψ−1(Q) consist of the points of Tn for all n and their rotations to the other faces

σl, and the degree of ψ can be computed by summing the local degrees at the points in the preimage

of any point inQ that is not the endpoint of someG(Tn, 1) or their rotations. The set of such points

has length 2π
k−1

, the circumference of Q, while the length of G(Tn, 1) found above measures the set

of points in Q whose preimage includes a point of Tn. Since all points must yield the same degree,

we can find the degree by taking a signed sum of the lengths of the G(Tn, 1) and their rotations

and dividing by 2π
k−1

, with signs determined by orientations.

216



The orientation with whichG(_, 1) maps a neighborhood of a point in the interior of Tn is given

by the sign of the length found above (accounting for the s coordinate) times (−1)n+1 (accounting

for the bi coordinates, since bn = 0 in the definition of Tn). Therefore, the signed length in Q

covered by all Tn and thus by all of σk is

k−1∑
n=0

(−1)n+1−π(k−1)+2πn
(k−1)k(k+1)

=
k−1∑
n=0

(−1)n+1 2πn
(k−1)k(k+1)

= 2π
(k−1)k(k+1)

k−1∑
n=0

(−1)n+1n

= π
(k−1)(k+1)

,

where we have used the fact that k is even. Finally, rotating the portion covered by σk to account

for the other faces σl of ∆k, the k + 1 faces each cover a signed length of π
(k−1)(k+1)

in Q, so

G(−, 1) covers a length of π
k−1

, and symmetrically G̃(−, 1) does as well50. Therefore, the map

ψ : M → Xk−1 covers a signed length of 2π
k−1

in Q, since the choice of orientations used in the

definition means it covers the lengths covered by G(−, 1) and G̃(−, 1) with the same sign. As

described above, this signed length must be equal to the degree of ψ times 2π
k−1

, the circumference

of Q, so we conclude that ψ has degree 1. This implies G(−, 1) has degree 1, which implies Y k is

contractible, completing the proof.

50This point in the argument shows the reason for the introduction of the manifold M and the map ψ. Alone, G(−, 1)
can be seen to cover half of Q, so M serves to show that this half coverage implies the expected degree of G(−, 1).
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