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ABSTRACT. Several natural complex configuration spaces admit surprising uniformizations as arith-
metic ball quotients, by identifying each parametrized object with the periods of some auxiliary ob-
ject. In each case, the theory of canonical models of Shimura varieties gives the ball quotient the struc-
ture of a variety over the ring of integers of a cyclotomic field. We show that the (transcendentally-
defined) period map actually respects these algebraic structures, and thus that occult period maps are
arithmetic. As an intermediate tool, we develop an arithmetic theory of lattice-polarized K3 surfaces.

1. INTRODUCTION

It occasionally happens that complex varieties of a specified type are parametrized by an arith-
metic quotient of a unit ball in a surprising way. We situate this remark by recalling some as-
pects of the primordial period map. Consider Mg, the moduli space of smooth projective curves
of genus g ≥ 2. Given a smooth projective curve of genus g, the possibilities for its period
lattice are naturally parametrized by the quotient of Hg, the Siegel upper-half space of dimen-
sion g(g + 1)/2, by Sp2g(Z). The classical Torelli theorem asserts that the corresponding map
τg,C : Mg(C) → Hg/ Sp2g(Z) is an inclusion. Even more is true. On one hand, Mg has a natural
structure as a moduli space over Z. On the other hand, let Ag be the moduli space of princi-
pally polarized abelian varieties of dimension g; it, too, is a space over Z. Via the identification
Ag(C) ∼= Hg/ Sp2g(Z), we endow the latter with a structure over Z, as well. The key arithmetic
fact about the Torelli map is that τg,C, a priori a transcendental map, descends to a morphism
τg : Mg ↪→ Ag over Z (e.g., [37, §7.4]). Still, as soon as g > 3, dimMg < dimAg. This means
that many of the arithmetic structures on Ag, such as Hecke operators and modular forms, don’t
readily make sense for the moduli space of curves.

In the special case where g = 4, however, we have the intriguing observation of Kondō [25]
that M4(C) is very close to an arithmetic quotient of B9, the complex unit 9-dimensional ball.
Slightly more precisely, let N4 denote the (open, dense) locus of non-hyperelliptic curves. Kondō
shows that there exist an arithmetic group Γ of automorphisms of B9 and an open immersion
N4(C) ↪→ B9/Γ. (He even characterizes the image.) Instead of analyzing the periods of a non-
hyperelliptic curve C, the construction of [25] proceeds by constructing an auxiliary variety Z
associated to C, and analyzing its periods. Kudla and Rapoport [28] – who call such a period
map occult, in recognition of its hidden nature – observe that the theory of canonical models of
Shimura varieties produces a distinguished algebraic model of B9/Γ over Q(ζ3). They prove that
Kondō’s occult period map actually respects the structures of N4 and B9/Γ as varieties over Q(ζ3),
and conjecture that it extends to a map of integral canonical models over Z[ζ3, 1/3]. (They also
note certain stack-theoretic issues, which have since been resolved by Zheng [47]; see Remark 7.6
below.)

In fact, several different situations are known in which, for some moduli space V of low-
complexity varieties, an occult period map yields an open immersion τV,C : V(C) ↪→ Bdim V/ΓV;
see, for instance, [17] and [28], or even §7 below, for examples. In each case known to the author,
the theory of integral canonical models of Shimura varieties provides a distinguished model of
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ShΓV
(BdimV) of BdimV/ΓV over Z[ζn, 1/n] for some n = n(V). The goal of the present paper is to

show that, in many cases, τV,C descends to a morphism V ↪→ ShΓV
(BdimV) over Z[ζn, 1/2n].

Many of the original constructions involve somehow building a K3 surface out of the original
variety, and then analyzing the periods of the corresponding K3 surface. Consequently, much
of the work of the present paper is in analyzing moduli spaces RL,χ of K3 surfaces polarized by
the lattice L and equipped with a suitable action of µn. A representative result – the notation is
defined later in the paper – is:

Proposition. There are morphisms of stacks over Z[ζ3, 1/6]:

R◦L4,χ
4

κ4 //

τL4,χ4
��

N4

Sh(L4,χ
4
)

where κ4 induces an isomorphism of coarse moduli spaces, and τL4,χ
4

induces an open immersion R◦L4,χ
4
(C) ↪→

Sh(L4,χ
4
)(C).

The statement over C is, essentially, [25, Thm. 1]; taking fibers over Q(ζ3) recovers the descent
result [28, Thm. 8.1].
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(15/16)-1-0247).

2. NOTATION ON LATTICES

2.1. Lattices. Throughout this paper, a lattice is a free Z-module L of finite rank, equipped with a
nondegenerate, symmetric bilinear pairing (·, ·) (often notationally suppressed). For any nonzero
n, we let L(n) denote the lattice with the same underlying group structure as L and with pairing
(·, ·)L(n) = n(·, ·)L. We follow the conventions of [19] for lattices. Lattices used here include:

U the hyperbolic plane, which has rank 2 and pairing
(

0 1
1 0

)
;

〈1〉 the lattice of rank 1 and pairing (1);
E8 the unique positive definite unimodular lattice of rank 8;

An, Dn the (positive) lattice associated to the Dynkin diagrams of type An and Dn, respectively (in
particular, A1

∼= 〈2〉);
LK3 the lattice U⊕3 ⊕ E8(−1)⊕2, of signature (3+, 19−);

V the lattice of rank 2 and pairing
(

2 1
1 −2

)
.

The pairing induces an inclusion L ↪→ L∨; the discriminant of L is the finite abelian group
disc(L) = L∨/L, and we set ∆L = [L∨ : L] = # disc(L). Finally, let

d(L) = gcd({d ∈N : ∃〈2d〉 ↪→ L primitive}).
For use in §7, we record the following elementary facts:

Lemma 2.1. (a) If M is a primitive sublattice of L, then d(L)|d(M).
(b) d(U(n)) = n, while d(A1 ⊕ A1(−1)⊕2) = d(V ⊕ A4(−1)) = 1.
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2.2. Orthogonal groups. To L we associate the orthogonal group OL, with connected component
of identity the special orthogonal group SOL. Since we start with an integral model for SO as
the automorphism group of the lattice L, we have a natural definition of SOL(R) for any ring R.
In particular, SOL(Zp) is well-defined and, by definition, a hyperspecial subgroup of SOL(Qp).
(In Section 5.1, a choice of hyperspecial subgroup is necesary for the construction of a canonical
integral model of the relevant Shimura variety. In fact, since SOL is adjoint and split, SOL(Qp)
admits a unique SOL(Qp)-conjugacy class of hyperspecial subgroups.)

We will often have cause to work with a lattice L which comes equipped with a primitive em-
bedding ι : L ↪→ LK3. With a slight abuse of notation, we will write L⊥ for the orthogonal com-
plement ι(L)⊥ of ι(L) in LK3. Set OL = OL⊥ and SOL = SOL⊥ . An element of OL(Z) extends to an
element of OLK3(Z) acting trivially on L if and only if it acts trivially on disc(L) (e.g., [19, 14.2.6]).
More generally, if R is flat over Z, then an element of OL(R) extends to an element of OL(R) act-
ing trivially on L⊗ R if and only if it acts trivially on disc(L)⊗ R [33, Lemma 2.6]. The subgroup

of admissible orthogonal automorphisms of L⊥ is the group scheme Õ
L

fitting in the short exact
sequence

1 // Õ
L

// OL // Aut(disc(L)) // 1;

on points, we have

Õ
L
(R) = {g|L⊥⊗R : g ∈ OLK3(R)}

= ker
(

OL(R)→ Aut(disc(L))(R)
)

.

If g̃ ∈ Õ
L
(R), then there is a (necessarily unique) g ∈ OLK3(R) such that g|L⊥ = g̃ and g|L = idL.

In this way, Õ
L
(R) is naturally identified with a subgroup of OLK3(R). The group scheme S̃O

L
:=

Õ
L ×OL SOL represents admissible automorphisms of determinant one.

3. FAMILIES OF K3 SURFACES

3.1. K3 surfaces. Let k be an algebraically closed field. A K3 surface over k is a smooth, com-
plete irreducible surface Z/k with trivial canonical bundle ωZ := Ω2

Z/k
∼= OZ and such that

H1(Z,OZ) = 0. Like any smooth complete surface, a K3 surface is projective, and its mid-
dle Hodge numbers are (h2,0, h1,1, h0,2) = (1, 20, 1). If k = C, then the Betti cohomology group
H2(Z, Z), endowed with the intersection pairing (·.·), is isomorphic to LK3. The natural pairing

ΩZ ×ΩZ // ωZ

induces an isomorphism of TZ ∼= ΩZ. Since H1(Z,OZ) is trivial so is Pic0(Z), and the Néron-
Severi group NS(Z) coincides with the Picard group Pic(Z). As for any surface, NS(Z) is a free,
finitely generated Z-module, equipped with a symmetric, nondegenerate pairing

NS(Z)×NS(Z)
(·.·)
// Z.

The intersection pairing is even, nondegenerate, and of signature (1, rank(NS(Z))− 1).
Following Rizov [41] and successors, we say that a a relative K3 surface, or K3 space, over a

scheme S is an algebraic space Z → S such that each geometric fiber is a K3 surface. If Z → S is
a relative K3 surface, then H2

dR(Z/S) and H2,0(Z/S) are locally free sheaves on S [13, Prop. 2.2],
[32, §3.4] of respective ranks 22 and 1.



4 JEFFREY D. ACHTER

3.2. Categories of K3 surfaces. We will study three different sorts of moduli spaces of K3 surfaces.
Classically, one has R◦2d, the category of K3 surfaces equipped with a primitive ample polariza-

tion of degree 2d. On points, R◦2d(S) is the category of pairs (Z → S, λ), where Z → S is a K3
space, and λ ∈ PicZ/S(S) is étale-locally represented by an ample line bundle of self-intersection
degree 2d which is not a nontrivial tensor power of any other line bundle. This is a subcategory of
R2d, the category of K3 surfaces equipped with a primitive quasi-ample polarization of degree 2d.
(A quasi-ample, or pseudo-ample, polarization is étale-locally a line bundle which is big and nef.)

Choose a generator e0 for 〈2d〉. To specify data (Z → S, λ) is to specify a K3 space Z → S and
an embedding of lattices 〈2d〉 ↪→ PicZ/S(S) which takes e0 to the class of an ample line bundle.
(Recall that if Z/k is a K3 surface over an algebraically closed field, and if v ∈ PicZ/k(k) satisfies
(v, v) > 0, then exactly one of v and −v and represents the class of an ample line bundle. The
choice of a generator for 〈2d〉 is equivalent to the choice of a “positive cone” in 〈2d〉 ⊗R ∼= R.)

More generally, we consider lattice-polarized K3 surfaces. Let L be a primitive sublattice of LK3
of signature (1, r− 1). The set

{v ∈ L⊗R : (v, v) > 0}

has two connected components. Choose one such, V+, and, as in [15, §1] or [17, §10], define an
abstract ”ample cone” C(V+), an open subset of V+, and let L+ = L ∩ C(V)+. We suppress the
choice of V+ (and, thus, L+) from the notation, and let R◦L be the category of ample L-polarized K3
surfaces. Objects in R◦L are isomorphism classes of pairs (Z → S, α), where Z → S is a K3 space
and α : L ↪→ PicZ/S(S) is a primitive embedding of lattices such that α(L+) contains the class of
an ample line bundle. (Since α is a primitive embedding, it is equivalent to ask that α(C(V+))
contains such a class.) Here, we declare that two such data (Zi → S, αi) are isomorphic if there is
an isomorphism f : Z1 → Z2 such that f ∗α2 = α1. We define RL, the category of L-polarized K3
surfaces, analogously except that it is only assumed that α(L+) contains the class of a quasi-ample
line bundle.

(Of course, one can also make the definition of an L-polarized K3 surface without keeping
track of a positive cone, provided one is willing to identify α and −α. For a Shimura-theoretic
justification for this approach, see Remark 6.3 and, ultimately, [46, §5]. Consequently, the choice
of L+ is suppressed here.)

For a finite group scheme G, let R∗L,G be the category of tuples (Z → S, α, ρ) where (Z → S, α) ∈
RL(S) and ρ : GS ↪→ AutS(Z → S, α) is a monomorphism of group schemes. If #G is invertible on S
– equivalently, if the cardinality of G is relatively prime to the characteristic exponent of all residue
fields of points of S – then representations of G on OS-modules are rigid, and thusH2

dR(Z/S) and
H2,0(Z/S) are locally free sheaves of OS[G]-modules.

We now specialize to the case G = µn, and restrict to the category of schemes over Z[1/2∆Ln].
Let χω be a faithful character of µn, χ0 the trivial character, and χ be an arbitrary character; let
m(χω) = mχ(χω) and m(χ0) = mχ(χ0) be the multiplicities of, respectively, χ0 and χω in χ. Let
RL,µn,χω ,χ be the open and closed substack of R∗L,µn

parametrizing those (Z → S, α, ρ) such that

• µn acts onH2,0(Z/S) via χω;
• µn acts onH2(Z/S) via χ; and
• mχ(χ0) = rank(L).

In particular, the action of µn is purely non-symplectic, in the sense that no nontrivial section of
µn fixes a nonzero holomorphic 2-form.

Suppose S is irreducible and s̄ is a geometric point of S. Because 2n is invertible on S, representa-
tions of µn on OS-modules are rigid. In particular, the character of the action of µn onH2(Z/S) is
determined by the action on H2

dR(Zs̄). Moreover, it is equivalent to specify this character in terms
of the action of µn on H2

cris(Zs̄), or any of the étale cohomology groups H2(Zs̄, Q`) [21, Thm 2.2],
or (since K3 surfaces have torsion-free cohomology) H2(Zs̄, Z`).
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We will often use the symbol χ to denote the collection of data (µn, χω, χ), and thus write RL,χ

for RL,µn,χω ,χ, etc.
The possibilities for data (L, χ) such that RL,χ(C) is nonempty are reasonably well-understood.

On one hand, it is not hard to see that a purely non-symplectic group of automorphisms is finite
and cyclic; the possible orders of such a group are also known [31]. On the other hand, starting
with the work of Nikulin, one has a good classification of primitive sublattices of LK3 [38]. In §7
we will see a number of explicit examples of naturally occurring families of lattice-polarized K3
surfaces.

3.3. Stacks of K3 surfaces. It turns out that each R2d, RL, and RL,χ is a Deligne-Mumford stack. In-
deed, Rizov proves that R◦2d is a Deligne-Mumford stack [41, Thm. 4.3.3], and Beauville essentially
proves the same of RL in [8]. The partial compactification R2d of R◦2d is also Deligne-Mumford and
even smooth over Z[1/2d] [35, Prop. 2.1], albeit no longer separated (e.g., [19, 5.1.4]). Rather than
working ab ovo to study RL and R∗L,G, we find it expedient to bootstrap from Rizov’s work.

It is convenient to make at the outset a few (arbitrary) choices; the final claims are intrinsic, and
independent of these choices. Let e1, · · · , er be a Z-basis for L. Fix some λ ∈ L+.

Lemma 3.1. The category RL is a stack over Spec Z.

Proof. We must show that the diagonal RL → RL × RL is representable, and that étale descent in
the category RL is effective.

For the first claim, it suffices to show that if (Z1 → S, α1) and (Z2 → S, α2) are elements of
RL(S), then

Isom((Z1, α1), (Z2, α2))

is representable by a scheme over S. The functor Isom(Z1, Z2) is represented by a scheme over S.
(In fact, it is open in Hilb(Z1 × Z2).) Pullback by isomorphisms gives a pairing Isom(Z1, Z2)×S
PicZ2/S → PicZ1/S. Consider some i between 1 and r. Pulling back the pairing by the section
α2(ei) : S→ PicZ2/S induces a morphism βi : Isom(Z1, Z2)→ PicZ1/S. Then

Isom((Z1, α1(ei)), (Z2, α2(ei))) := Isom(Z1, Z2)×PicZ1/S,α1(ei) S

is the sub-scheme of Isom(Z1, Z2) parametrizing those isomorphisms which take α2(ei) to α1(ei).
Insofar as Isom((Z1, α1), (Z2, α2)) is the fiber product over Isom(Z1, Z2) of the r different schemes
Isom((Z1, α1(ei)), (Z2, α2(ei))), it too is represented by a scheme.

For the second, let T → S be étale and let (Z̃ → T, α̃) ∈ RL(T) be equipped with T/S descent
data. In [41, Lemma 4.3.7], the author shows that in the ample case (Z̃ → T, α(λ)) descends, as a
polarized K3 space, to S; the quasi-polarized case follows from [35, §2]. Since PicZ/S is a sheaf in
the étale topology, each α̃(ei) descends to Z/S. �

Lemma 3.2. The category RL is a Deligne-Mumford stack over Spec Z.

Proof. Because R2d(λ) is known to be a Deligne-Mumford stack, it suffices to show that the forgetful
morphism

RL
φλ

// R2d(λ)

(Z → S, α) � // (Z → S, α(λ))

is relatively representable [29, Prop. 4.5.(ii)]. Now proceed as in [8]. Let Hλ ⊂ OL(Z) be the
subgroup which stabilizes λ. Since λ⊥ is negative definite, Hλ is finite. Given an S-point S →
R2d(λ),

RL ×φλ,R2d(λ) S,
if nonempty, is a torsor under Hλ, and in particular is representable. �
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Proposition 3.3. The category RL is a smooth Deligne-Mumford stack over Spec Z[1/2∆L] of relative
dimension 20− r.

Proof. Given Lemma 3.2, it suffices to show that the local deformation space of a quasi-ample L-
polarized K3 surface is smooth. In characteristic zero, this is asserted in [15, Prop. 2.1], and details
are provided in [8, Prop. 1.4]. In positive characteristic, this follows from Deligne and Illusie’s
deformation theory; see Proposition 3.8 below. �

Now consider the moduli spaces of lattice-polarized K3 surfaces with group action.

Lemma 3.4. Suppose (Z → S, α) ∈ RL(S). Then Aut(Z → S, α) is represented by a proper finite group
scheme over S.

Proof. The automorphism functor AutS(Z) is represented by a separated, unramified group scheme
over S [41, Thm. 3.3.1]. Moreover, AutS(Z → S, α(λ)) is a closed, finite, subgroup scheme of
AutS(Z) (see [41, Prop. 3.3.3] for the polarized case; the extension to quasi-polarizations follows
from [35, p.2369]). As in the proof of Lemma 3.1, AutS(Z → S, α) is a sub-S-group scheme of
AutS(Z → S, α(λ)). The claimed properness follows from [34, Thm. 2]. �

Lemma 3.5. The forgetful morphism R∗L,G → RL is finite, and R∗L,G is a Deligne-Mumford stack.

Proof. First, the forgetful functor R∗L,G → RL is relatively representable. Indeed, for any affine
scheme S and any (Z → S, α) ∈ RL(S), both GS and AutS(Z → S, α) are relatively representable,
and thus Hom(GS, AutS(Z → S, α)) is representable, too; and the condition that a homomor-
phism be injective is open. Therefore, R∗L,G is also a Deligne-Mumford stack. The properness (and
finitude) in Lemma 3.4 imply that R∗L,G → RL is proper and quasifinite, thus finite. �

Proposition 3.6. The category RL,χ is a smooth Deligne-Mumford stack over Z[ζn, 1/6∆Ln] of relative
dimension m(χω)− 1.

Proof. All that needs to be checked is smoothness; this is done in Lemma 3.9. �

3.4. Local calculations. If Z/C is a complex K3 surface, then (the local Torelli theorem asserts
that) the deformation theory of Z is well-captured by its Hodge theory. In particular, let Def(Z)
be the deformation functor of Z, with base point s. Then there is a canonical isomorphism

Ts Def(Z) ∼ // Hom(H2,0(Z), H2,0(Z)⊥/H2,0(Z)).

There is a parallel deformation theory for K3 surfaces in arbitrary characteristic, which we review
here. Let k be an algebraically closed field of characteristic p > 0, with ring of Witt vectors W =
W(k).

Let Z/k be a K3 surface. The deformation functor Def(Z) is formally smooth over Spf W of
relative dimension 20; Def(Z) is pro-represented by a formal scheme noncanonically isomorphic
to Spf W[[t1, · · · , t20]] [13, Cor. 1.2], [41, 4.1.1]. Let s be the base point of Def(Z), corresponding to
Z/k itself.

Lemma 3.7. There is a canonical isomorphism of k-vector spaces

Ts Def(Z) ∼ // Hom(Fil2 H2
dR(Z/k), Gr1 H2

dR(Z/k)).

Sketch. See [13, 2.4] [39, 5.2], [40, 5.1]. Briefly, let A be a nilpotent extension of k with a divided
power structure. The intersection pairing (·.·) extends to a pairing on the crystal H2

cris(Z). To give a
deformation of Z to A is to lift Fil2 H2

cris(Z)(k) to an isotropic direct summand of H2
cris(Z)(A). Now

use the fact [13, (2.3.7)] that the orthogonal complement to Fil2 H2
cris(Z)(k) is Fil1 H2

cris(Z)(k). �
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If 2d is invertible in k and (Z, λ) ∈ R2d(k), then Def(Z, λ) ⊂ Def(Z) is prorepresentable, and
formally smooth of dimension 19 over Spf W [13, 1.5 and 1.6], [32, 3.8], [41, 4.1.3]. More generally,
we have:

Proposition 3.8. Let L be a lattice of rank r and discriminant ∆L, and suppose that ∆L is invertible in
k. Let (Z/k, α) ∈ RL(k) be an L-polarized K3 surface. Then Def(Z, α) is prorepresentable and formally
smooth of dimension 20− r over Spf W.

Proof. As in 3.3, let e1, · · · , er be a Z-basis for L, and let Li = α(ei) ∈ Pic(Z). Then Def(Z, α) =
Def(Z, {L1, · · · ,Lr}) is the largest formal subscheme of Def(Z) to which each of the line bundles
Li extends. Thus, Def(Z, α) is the scheme theoretic intersection of the Def(Z,Li). Now, each
Def(Z,Li) is the vanishing locus in Def(Z) of a single function fi [13, 1.5]. So (any component of)
Def(Z, α) has codimension at most r in Def(Z, α), and it suffices to show that the dimension of the
tangent space of Def(Z, α) at the base point is exactly 20− r.

Since Z is smooth and proper, there is a crystalline Chern class map c1 : NS(Z)→ H2
cris(Z/W).

Moreover, since the crystalline cohomology of Z is torsion-free and the Hodge to deRham spectral
sequence for H•(Z/W) degenerates at E1, the Chern class map yields an inclusion c̄1 : NS(Z)/p NS(Z) ↪→
H2

cris(Z/k) ∼= H2
dR(Z/k) [13, Rem. 3.5].

Let c̄1(α) ⊂ H2
dR(Z/k) be the span of c̄1(α(e1)), · · · , c̄1(α(er)); it is actually a subspace of Fil1 H2

dR(Z/k)
(e.g., [32, 3.4]).

Since ∆L is invertible in k, L1, · · · ,Lr are linearly independent in NS(Z)/p NS(Z), and thus
dim c̄1(α) = r. Now use the fact (e.g., [32, Thm. 3.8(3)], modelled after [40, 5.1.2]) that a line
bundle L extends to a given deformation Z̃/A if and only if c1(L) is orthogonal to the corre-
sponding lift Fil2 H2

cris(Z̃)(A). Under the isomorphism of Lemma 3.7, we see that the tangent space
Ts Def(Z, α) corresponds to homomorphisms from Fil2 H2

dR(Z/k) into the orthogonal complement
of c̄1(L1), · · · , c̄1(Lr) in Gr1 H2

dR(Z/k). Because these Chern classes are linearly independent over
k and (·.·) is nondegenerate, the codimension of Ts Def(Z, α) in Ts Def(Z) is r. �

We now suppose that data χ = (µn, χω, χ) is chosen so that RL,χ is nonempty, and further
assume that n is invertible in k.

Lemma 3.9. Suppose (Z, α, ρ) ∈ RL,χ(k) and char(k) - 2∆Ln. The (equicharacteristic) tangent space to
RL,χ at (Z, α, ρ) has dimension m(χω)− 1.

Proof. By the crystalline local Torelli theorem ([9, Rem. 3.23] and [20, Lemma 3.1]; see also [39,
Thm. 5.3 and Rem. (5.3.1)] and [40, 5.1.2] for characteristic at least 5), it suffices to identify the
sublocus of Def(Z, α) to which the G-action on H2

cris(Z) extends. Thus, let c̄1(α)
⊥ be the orthogonal

complement of c̄1(α), and consider the inclusions of formal deformation spaces Def(Z, α, ρ) ⊂
Def(Z, α) ⊂ Def(Z). Computing equicharacteristic tangent spaces at the base point s, we have

Ts Def(Z) Hom(Fil2 H2
dR(Z/k), Gr1 H2

dR(Z/k))∼
oo

Ts Def(Z, α)
?�

OO

Hom(Fil2 H2
dR(Z/k), c1(α)

⊥/ Fil2 H2
dR(Z/k))∼

oo
?�

OO

Ts Def(Z, α, ρ)
?�

OO

HomG(Fil2 H2
dR(Z/k), c1(α)

⊥/ Fil2 H2
dR(Z/k))∼

oo
?�

OO

By definition of RL,χ, the χ-eigenspace of Fil1 H2
dR(Z/k) is fully contained in c1(α)

⊥; the result now
follows. �
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4. PERIOD MAPS FOR COMPLEX K3 SURFACES

4.1. Period maps. The global complex Torelli theorem for K3 surfaces asserts that the isomor-
phism class of a K3 surface Z/C is determined by the isomorphism class of H2(Z, Z) as a polar-
ized Hodge structure. Via Hodge theory, one thus obtains a good global understanding of the
moduli of complex K3 surfaces, as follows.

Let Z be a marked K3 surface, i.e., a K3 surface Z/C equipped with an isometry φ : H2(Z, Z)
∼→

LK3. The image of φC(H2,0(Z)) determines an element of the period domain

XLK3 = {[σ] ∈ P(LK3 ⊗C) : (σ, σ) = 0, (σ, σ̄) > 0},

and the isomorphism class of Z is determined by the class of φC(H2,0(Z)) in O(LK3)\XLK3 . (We re-
call a useful description of XLK3 below in 4.2.) We remind the reader that the action of the orthogo-
nal group O(LK3) on XLK3 is not properly discontinuous, and thus the quotient space O(LK3)\XLK3

is not even Hausdorff.
Now suppose that Z is equipped with a polarization λ of degree 2d. Recall that we have fixed

an embedding ι : 〈2d〉 ↪→ LK3. A marking φ of Z induces an identification of the primitive coho-
mology P2

λ(Z, Z) with 〈2d〉⊥ ⊂ LK3, and thus φC(H2,0(Z)) lies in

X〈2d〉 := X〈2d〉⊥ = {[σ] ∈ P(〈2d〉⊥ ⊗C) : (σ, σ) = 0, (σ, σ̄) > 0} ⊂ XLK3 .

Recall (Section 2) that Õ
〈2d〉

(Z) consists of those orthogonal automorphisms of 〈2d〉⊥ which
admit an extension to LK3 fixing 〈2d〉. We thus have a natural inclusion

Õ
〈2d〉

(Z)\X〈2d〉 � � // OLK3(Z)\XLK3 .

The strong Torelli theorem for polarized K3 surfaces implies that there is an open immersion

R◦2d,C
� � τ2d,C

// Õ
〈2d〉

(Z)\X〈2d〉.

e.g., [19, Thm. 6.3.4] which extends to an isomorphism of coarse moduli spaces R2d,C → Õ
〈2d〉

(Z)\X〈2d〉

[19, Rem. 6.4.5].
More generally, for a primitive sublattice L ⊂ LK3 of signature (1, r− 1), we set

XL = XL⊥ = {[σ] ∈ P(L⊥ ⊗C) : (σ, σ) = 0, (σ, σ̄) > 0}

and obtain an open immersion

RL,C
� � τL,C

// Õ
L
(Z)\XL;

see [15, §3] and [17, §11] for more details.
Finally, fix data χ = (µn, χω, χ) and suppose that (Z, α, ρ) ∈ RL,χ(C). A choice of marking φ on

Z induces an action of µn on LK3 with character χ. The period point φC(H2,0(Z)) then lies in

XL,χ = {[σ] ∈ P((L⊥C )(χ
ω)) : (σ, σ) = 0, (σ, σ̄) > 0}

where we single out an eigenspace for the action of µn on L⊥ by

L⊥C (χ
ω) = {v ∈ L⊥ ⊗C : ∀ζ ∈ µn(C), ζv = χω(ζ)v}.

Let OL,χ be the group of automorphisms of L⊥ which commute with the action of µn; if R is a ring
over Z[ζn], then

OL,χ(R) = {g ∈ OL(R) : ∀ζ ∈ µn(R), gζv = ζgv}.



ARITHMETIC OCCULT PERIOD MAPS 9

Let Õ
L,χ

be the subgroup of admissible automorphisms of L⊥. Then we again have an open im-
mersion

RL,χ,C
� � // Õ

L,χ
(Z)\XL,χ.

Recall that mχ(χω) = m(χω) = dim L⊥C (χ
ω) is the multiplicity of the faithful character χω in

the representation χ, and that L ⊂ LK3 is the module of µn-invariants.
If n ≥ 3, then χω is imaginary, and

XL,χ ∼= Bmχ(χω)−1,

the complex unit ball of dimension mχ(χω)− 1.
If n = 2, then χω is real; L⊥C (χ

ω) = L⊥R(χ
ω) ⊗ C; and XL,χ is a type IV Hermitian symmetric

space of dimension mχ(χω)− 1.

4.2. Period spaces. Since L has signature (1, r− 1), L⊥ has signature (2, 19− (r− 1)). It is tradi-
tional in the K3 literature to describe the relevant period space as

XL = XL⊥
∼=

OL(R)

SO2(R)×O20−r(R)

To facilitate comparison with the Shimura variety literature, we prefer to recall that the special
orthogonal group SOL(R) already acts transitively on XL, and we in fact have

XL ∼=
SOL(R)

SO2(R)× SO20−r(R)
.

It is perhaps worth noting that the special orthogonal group of a definite form is connected, while
SO2,20−r(R) has two topological components, indexed by the two classes of the spinor norm. In
particular, XL consists of two connected components, say XL+ and XL−; these components are
stabilized by the component SOL(R)+ ⊂ SOL(R) of elements with trivial spinor norm.

Let Γ ⊂ OL(R) be any arithmetic group. Then Γ has finite covolume, and in particular meets
every topological component of OL(R). We have isomorphisms of complex analytic spaces

Γ\XL ∼= (Γ ∩OL(R)+)\XL+ ∼= (Γ ∩ SOL(R))\XL.

In particular, the period map is an open immersion

RL,C
� � τL // S̃O

L
(Z)\XL.

5. SHIMURA VARIETIES

5.1. Integral canonical models. We review some basic concepts concerning Shimura varieties,
referring the reader to [10] for foundational material, [12] for canonical models, [23] for inte-
gral canonical models, and [46] for stack-theoretic issues. All Shimura data are assumed to be
of abelian type, so that the cited references suffice.

Let (G, X) be a Shimura datum, consisting of a reductive group G/Q and a conjugacy class X

of homomorphisms RC/RGm → GR of R-groups, subject to the usual axioms. Further assume that
(G, X) is of abelian type.

Let K ⊂ G(A f ) be a neat compact open subgroup of the finite adelic points. The holomorphic
analytic quotient stack Shan

K [G, X] := [G(Q)\(X×G(A f )/K)] is represented by the analytification
of a smooth complex quasiprojective variety ShK(G, X). The variety ShK(G, X) and the stack
ShK[G, X] both descend to the reflex field E(G, X).
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More generally, let K ⊂ G(A f ) be an open compact subgroup, and let K0 ⊂ K be a neat sub-
group of finite index. Define the corresponding Shimura stack by ShK = [ShK0 [G, X]/(K/K0)]; it
is independent of the choice of K0.

Fix a prime p, let v be a prime of E(G, X) lying over p, and let Kp ⊂ G(Qp) be hyperspecial.
Then the pro-variety

ShKp := lim
←

Kp⊂G(A
p
f )

ShKpKp(G, X)

admits an extension to OE(G,X),v as a pro-scheme with continuous G(A
p
f )-action, which we con-

tinue to denote ShKp . What makes this model the integral canonical model is the following extension
property: If T is any regular, formally smooth (pro-)scheme over OE(G,X),v, then any morphism
TE(G,X) → ShKp extends to all of T (e.g., [23, §(2.3.7)].

Consequently, for any K ⊂ G(A f ) hyperspecial at p, ShK[G, X] extends canonically to a smooth
Deligne-Mumford stack over OE(G,X),v. (If necessary, one can start with the canonical integral
model of ShK0 [G, X] for some neat compact open subgroup K0 ⊂ K, and then pass to the quotient
by the action of K/K0.)

In fact, let K ⊂ G(A f ) be an open compact subgroup, and let M = M(K) be the (finite) product
of all primes p such that the component Kp is not hyperspecial. Using [30, Thm. 2.2.1], we see that
ShK[G, X] admits a canonical integral model over OE(G,X)[1/M].

A morphism f : (G1, X1) → (G2, X2) of Shimura data is a morphism G1 → G2 of algebraic
groups which induces a morphism X1 → X2. For future use, we collect some standard functorial-
ities for morphisms of Shimura varieties.

Lemma 5.1. Let f : (G1, X1) → (G2, X2) be a morphism of Shimura data. Let K1 ⊂ G1(A f ) and
K2 ⊂ G2(A f ) be compact open subgroups such that f (K1) ⊆ f (K2).

(a) Then f induces a morphism fK1,K2 : ShK1 [G1, X1]→ ShK2 [G2, X2] of Shimura stacks over E.
(b) If K1 and K2 are hyperspecial at all p - M, then fK1,K2 extends to a morphism of Shimura stacks

over OE[1/M].
(c) If f : G1 → G2 is injective, then fK1,K2 is a closed morphism of Shimura stacks. If K2 is a

sufficiently small compact open subgroup of G2(A f ) which contains K1, then the generic fiber of
fK1,K2 is a closed embedding.

Proof. Part (a) and (the generic fiber of) part (c) are due to Deligne [10, 1.15]; see also [36, 5.16 and
13.8]. The extension to integral models follows from the extension property and the smoothness
of the integral model of lim ←

K1
ShK1 [G1, X1]. �

5.2. Orthogonal Shimura varieties. Fix a nondegenerate lattice L of signature (2, n−), and let
GL = SOL⊗Q be the associated special orthogonal group. Let XL be the corresponding Hermitian
symmetric space (§4.2).

Inside GL(A f ) we single out the admissible integral automorphisms:

KL := ker GL(Ẑ)→ Aut(disc(L))(Ẑ).

The local component at p, KL,p, is hyperspecial if p - ∆L. Consequently, we have an integral
canonical model

ShL := ShKL [GL, XL]

over Z[1/2∆L]. (By inverting 2, we sidestep the intricacies of orthogonal groups and Shimura
varieties in even characteristic.)

Note that K∩ SOL(R)+ = S̃OL(Z), and thus [12, 2.1.2]

(5.2.1) ShL,C
∼= SOL(Z)+\X+

L
∼= S̃OL(Z)\XL.
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If K ⊂ KL ⊂ GL(A f ) is any compact open subgroup, then there is a surjection ShK[GL, XL] →
ShL of stacks over Z[1/2∆LN(K)]. In particular, let KL,N = ker(KL → GL(Z/N)), and let ShL,N =
ShKN [GL, XL], a stack over Z[1/2∆LN]. There is a surjection ShL,N → ShL, with each geometric
fiber a torsor under KL/KL,N ∼= GL(Z/N).

Now fix a primitive embedding of lattices L1 ↪→ L2, with respective signatures (2, n1,−) and
(2, n2,−).

Lemma 5.2. There is a closed morphism

ShL1

ψL1,L2 // ShL2

of Shimura stacks over Z[1/(2∆L1 ∆L2)] whose generic fiber is a closed embedding.

Proof. The chosen embedding gives an inclusion GL1 → GL2 of groups over Q, which induces
XL1 ↪→ XL2 . Because of the admissibility condition, we have an inclusion KL1 ↪→ KL2 , whence
(Lemma 5.1) a morphism ψL1,L2 : ShL1 → ShL2 over Z[1/(2∆L1 ∆L2)]. To verify that ψL1,L2,Q is a
closed embedding, it suffices to check that ψL1,L2,C is an inclusion. This last claim follows from
the description (5.2.1) and the fact that S̃OL1(Z) consists of those orthogonal transformations of
determinant one which lift to automorphisms of L2. �

Similarly, for each positive integer N, there is a closed morphism ShL1,N → ShL2,N whose generic
fiber is a closed embedding.

5.3. Unitary Shimura varieties. Let K be a quadratic imaginary field. Let L be a free OK-module
of rank r, equipped with a nondegenerate Hermitian form h(·, ·) of signature (1, r− 1). Attached
to this is a Shimura datum (GOK ,L, XOK ,L), where GOK ,L = U(L, h) is the group of OK-linear auto-
morphisms of L which preserve h, and XOK ,L

∼= Br−1, the unit complex ball of dimension r − 1.
Let KOK ,L be the stabilizer in GOK ,L(A f ) of L. Let ShOK ,L = ShKOK ,L [GOK ,L, XOK ,L]; it’s the moduli
space of abelian varieties of dimension r equipped with an action by OK of signature (1, r − 1)
and a polarization λ with ker(λ) ∼= disc(L). (More precisely, the relevant Shimura datum is
(U(L⊗Q, h), X(L⊗Q,h)); the choice of lattice L inside the Q-vector space L⊗Q defines the integral
structure on GOK ,L(A

f ).)
More generally, suppose K is a CM field, with maximal totally real subfield K+, and again

let L be a free OK-module of rank r, equipped with a nondegenerate Hermitian form h. The
archimedean signature of (L, h) is determined by data

(5.3.1) {(mσ, nσ)}σ:K+↪→R.

Let GOK ,L = U(L, h); the associated Hermitian symmetric domain XOK ,L has dimension ∑ mσnσ.
If there exists some σ0 such that (mσ0 , nσ0) = (1, r− 1), and if mσnσ = 0 for σ 6= σ0, then we again
have XOK ,L

∼= Br−1. Again, let ShOK ,L = ShKOK ,L [GOK ,L, XOK ,L].
In the applications pursued here, it turns out that either L is unimodular, or there is some prime

p which is totally ramified in OK; OK acts on disc(L) through its quotient Fp; and disc(L), as
an abelian group, is isomorphic to (Z/p)2b(r−1)/2c. This shows up in the analysis by Kudla and
Rapoport [28] of occult period maps. The only impact on the present study is that it shapes the
structure of the polarization in the moduli-theoretic intepretation of ShOK ,L.

In any event, the Shimura stack ShOK ,L admits a smooth integral model over OK[1/∆(K)∆L].

5.4. Shimura varieties and K3 surfaces. Let L ↪→ LK3 be a primitive sublattice of signature (1, r−
1). Consistent with earlier notation, we set

ShL = ShKL [GL, XL] = ShKL⊥
[GL⊥ , XL⊥ ].

Now let χ = (µn, χω, χ) determine an action of µn on L⊥ as in 3.2. Let E(χ) = Q(ζn).
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• If n ≥ 3, let Sh(L,χ) = ShOE(χ),L⊥ ; then Sh(L,χ)(C) is an arithmetic quotient of a complex ball.

• If n = 2, let Sh(L,χ) = ShL⊥ ; then Sh(L,χ)(C) is an arithmetic quotient of a Hermitian sym-
metric space of type IV.

With this notation, we have:

Lemma 5.3. The periods of a structured K3 surface determine holomorphic open immersions

RL,C
τL,C

// ShL
C

R(L,χ),C

τ(L,χ),C
// Sh(L,χ).

Proof. The period domain of a family of structured K3 surfaces is computed in, e.g., [15] and [17].
The interpretation in terms of Shimura varieties is standard, and is drawn out (in some cases) in,
for instance, [27, 32, 41]. �

Remark 5.4. In the case of a datum (L, χ), the complement of the image of τ(L,χ), when known,
is often a ball quotient in its own right; see, e.g., [25] for a representative example. Kudla and
Rapoport, in several cases, interpret this complement as a ”special cycle”. In particular, this com-
plement is itself a Shimura variety. The author conjectures that this structure of the complement
holds integrally, as well. In the special case of cubic surfaces, this is worked out in [2]; for now, it
seems that the general case remains open.

6. INTEGRAL PERIOD MAPS

With the notation established above, the Torelli theorem for complex K3 sufaces asserts that
there is an open immersion

R2d,C
� � τ2d,C

// Sh
〈2d〉
C

of stacks over C. In fact, it is known that this map preserves arithmetic:

Proposition 6.1. The period map τ2d,C descends to a morphism τ2d : R2d → Sh〈2d〉 of stacks over Q.

Proof. Rizov has proved this for R◦2d, using an analogue of CM theory for K3 surfaces; see [42, p.14]
and [46, Thm. 5]. The statement for R2d follows from descent relative to Spec C → Spec Q, since
R◦2d is dense in R2d. �

Using Proposition 6.1 as a starting point, we will show that other period maps also descend to
a natural field of definition and extend integrally. We start with an interlude on level structures,
so that we can work with quasiprojective schemes and verify descent in an elementary fashion.

6.1. Level structures. It is possible to define the notion of a lattice polarized K3 surface with K

level structure for an essentially arbitrary open subgroup of GL(Ẑ); but we will content ourselves
here with a more limited notion which is adequate for our purposes. (See [46, §5.2] and [42] for
more details in the case L = 〈2d〉.)

Fix an integer N > 2 which is relatively prime to 2p∆L. Then SOL(Z/N) is admissble; any
automorphism of L⊥ ⊗Z/N lifts uniquely to LK3 ⊗Z/N as an element which fixes L.
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If (Z → S, α) ∈ RL(S), a full level N structure on (Z → S, α) is an isomorphism of formed
spaces β : LK3 ⊗Z/N ∼→ R2 f∗Z/N(1) such that the following diagram commutes:

LK3 ⊗Z/N
β

∼
// R2 f∗Z/N(1)

L

OO

α // PicZ/S(S)

c1,N

OO

where the right-hand vertical map is the Chern class, and the left-hand map is induced by the
fixed inclusion L ↪→ LK3.

Since N > 2, RL,N is representable by a smooth, quasiprojective scheme over Z(p) (see, e.g., [42,
Cor. 2.4.3] for the case L = 〈2d〉). Moreover, because of the admissibility condition, RL,N → RL is
Galois, with covering group isomorphic to {g ∈ SOLK3(Z/N) : g|L⊥⊗Z/N = id}.

As before, given L, choose a primitive embedding of lattices 〈2d〉 ↪→ L. The forgetful maps
yield a Cartesian diagram

RL,N
� � //

��

R〈2d〉,N ∼= R2d,N

��

RL
� � // R〈2d〉

where the horizontal arrows are closed immersions, and the vertical arrows are quotients by suit-
able subgroups of SOLK3(Z/N).

6.2. Descent to the reflex field.
Lemma 6.2. (a) Let L ↪→ LK3 be a primitive lattice of signature (1, r− 1). Then the complex period

map τL,C descends to a morphism τL : RL → ShL of stacks over Q.
(b) Let (L, χ) be as in 3.2. Then the complex period map τ(L,χ),C descends to a morphism τ(L,χ) of stacks

over E(χ).

Proof. We address part (a) in detail. Fix some N > 2. Since RL = [RL,N/GL(Z/N)] and ShL =
[ShL

N/GL(Z/N)], it suffices to show that the complex period map with level N structure, τL,N,C :
RL,N,C → ShL

N,C descends to Q. Choose a primitive embedding 〈2d〉 ↪→ L. We have a commuting
diagram of universally injective morphisms of complex reduced quasiprojective varieties

(6.2.1) RL,N,C
� � τL,N,C

//
� _

φL,2d,C

��

ShL
N,C� _

ψ
GL ,G〈2d〉
��

R2d,N,C
� � // Sh

〈2d〉
N,C.

Since RL,N,C → R2d,N,C and R2d,N,C → Sh
〈2d〉
N,C descend to Q, so does ψGL,G〈2d〉 ◦ τL,N,C. Since ψGL,G〈2d〉 is

universally injective (Lemma 5.2), τL,N,C is Aut(C/Q)-equivariant on C-points, and thus descends
to Q as well.

The proof of (b) is exactly the same, except that the role of GL(Z/N) is now played by the finite
unitary group G(L,χ)(Z/N), and (6.2.1) is replaced with

R(L,χ),N,C
� �

τ(L,χ),N,C
//

� _

φ(L,χ),L,C

��

Sh
(L,χ)
N,C� _

ψ
G(L,χ) ,GL

��

RL,N,C
� � // ShL

N,C.
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�

6.3. Integral extension. Granting the existence of integral canonical models of Shimura varieties,
it is not hard to see that τ2d extends to a morphism of stacks over Z[1/6d]; this is achieved in [41,
Thm. 4.3.3]. We refer to [32, Cor. 5.15] for the difficult extension of this work to Z[1/2].

Remark 6.3. In fact, in [32], the proof naturally gives rise to a period map for a trivial double cover
of R2d. Taelman has observed [46] that by viewing the period map as measuring the primitive
cohomology twisted by the determinant, the need for a double cover is eliminated.

Following Taelman’s analysis [46, §5], let K∗L = {γ ∈ ÕL(Ẑ) : det(γ) ∈ {±1}}. Then KL⊥ acts
on L⊥ via the determinant; Taelman defines, for instance, a period map

R2d(C)→ [SO〈2d〉(C)\(X〈2d〉 × SO2d(A f )/(K〈2d〉)∗].

The target space is isomorphic, as an analytic space, to our ShK〈2d〉 [G〈2d〉, X〈2d〉]. However, this
target naturally identifies a polarized Hodge structure (H, s) with (H,−s). In this way, the effect
of a choice of generator of 〈2d〉 is erased.

More generally, by following Taelman’s formulation, we can suppress the choice of a “positive
light cone” in the definition of RL in 3.2; two L-polarizations which agree up to sign are identified
by the action of K∗L through its determinant.

We now secure analogous results for other period maps.

Lemma 6.4. (a) Let L ↪→ LK3 be a primitive lattice of signature (1, r − 1). Then the period map
extends to a morphism τL : RL → ShL of stacks over Z[1/2∆(L)].

(b) Let (L, χ) be as in 3.2. Then the period map extends to a morphism τ(L,χ) : R(L,χ) → Sh(L,χ) of
stacks over OE(χ)[1/2∆(L)].

Proof. Since ShL is separated, it suffices to show that, for a fixed p - 2∆(L), τL extends to Z(p).
Let N ≥ 3 be a natural number relatively prime to p. Since RL,N is smooth (Proposition 3.8), the
extension property of the integral canonical model implies that the morphism τL extends to Z(p).

The proof of (b) is the same, except that the necessary smoothness is secured in Lemma 3.9. �

Remark 6.5. The generic fiber of the morphism ShL ↪→ Sh〈2d〉 is a closed immersion (Lemma
5.2). If it were known that ψL⊥,〈2d〉⊥ is a closed immersion of Shimura stacks, one could give an
elementary proof of Lemma 6.4, as follows. Suppose p - ∆(L)d(L); choose d with p - d such that
there exists a primitive 〈2d〉 ↪→ L. We start with a diagram as in (6.2.1), where all objects are
defined over Z(p), except that τL is only known to be defined over Q:

RL,N
τL //

φ

��

ShL
N� _

ψ
��

R2d,N
� � τ2d // Sh

〈2d〉
N

We know that φ is a closed immersion and τ2d is an open immersion, and thus the composition
RL,N → Sh

〈2d〉
N is a locally closed immersion. All schemes involved are Noetherian and RL,N is

reduced, so the image of RL,N is an open subscheme of a closed subscheme of Sh
〈2d〉
N [45, Tag

03DQ]. We are operating under the hypothesis that ψ is a closed immersion (Lemma 5.1). Since
ShL

N is reduced, ψ maps ShL
N isomorphically onto its image, a closed subscheme of Sh〈2d〉

N .

https://stacks.math.columbia.edu/tag/03DQ
https://stacks.math.columbia.edu/tag/03DQ
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We have observed (§5.4) that τ2d ◦ φ maps the characteristic zero fiber RL,N,Q into ψ(ShL
N,Q)

inside Sh
〈2d〉
N . Since ψ(ShL

N) is closed, RL,N,Q is dense in RL,N (by flatness over Z(p); see Proposition
3.3) and τ2d ◦ φ(RL,N) is locally closed, it follows that τ2d ◦ φN(RL,N) ⊆ ψ(ShL

N).
In particular, τ2d ◦ φ factors through a locally closed immersion τL : RL,N → ShL

N . We again
invoke the fact that, for Noetherian schemes, a locally closed immersion factors as an open im-
mersion followed by a closed immersion. The fact that dimRL,N = dimShL

N (and the reducedness
of RL,N) now implies that, in any such factorization, the closed immersion must be the identity
map and therefore τ2d is an open immersion.

7. FROM COMPLETE INTERSECTIONS TO K3 SURFACES

Thanks especially to works of Kondō, we know that sometimes one can associate a structured
K3 surface to certain types of complete intersection varieties. Some of these constructions are
reviewed here, with an eye towards making sense of these associations in families, and ultimately
explaining the arithmetic origin of Kondō’s analytic ball-quotient maps.

In an attempt to minimize repetition in the statement of our main results, we make the following
definition:

Definition 7.1. Say that (R◦,N, S, κ, τ) satisfies (†) over O if there is a diagram

(†) R

τ
��

κ // N

S

of stacks overOwhere κ induces an isomorphism on coarse moduli spaces, and τ induces an open
immersion R◦(C) ↪→ S(C).

We should note that, in many of the examples studied here (§7.2, 7.3, 7.7), Kudla and Rapoport
have already shown that a transcendentally-defined occult period map descends to a natural cy-
clotomic field of definition [28, §9]. Their method of proof goes back (at least) to Deligne [11,
Thm. 2.12]. Roughly speaking, one shows that a monodromy representation is so large that a
certain abelian scheme admits no automorphisms, and thus descends. This strategy presumably
also dispatches §7.6, perhaps with [14] providing the necessary monodromy calculation. Applica-
tions §7.4 and 7.5 don’t literally fit within the framework of unitary Shimura varieties attached to
quadratic imaginary fields, which may explain their omission from [28].

7.1. Stacks of varieties with group action. In Kondō’s constructions, the original variety is en-
coded in the fixed locus of the group action on the K3 surface. If a group scheme G/S acts on a
scheme Z/S, one can define ZG, the fixed point stack [43, Prop. 2.5].

Lemma 7.2. Suppose Z → S is a K3 space and G ⊂ AutZ/S(S) is a nontrivial finite cyclic group.
(a) The fixed locus ZG → S is a scheme.
(b) If s ∈ S, then ZG

s is smooth, and has at most one component of dimension one and genus at least
two.

(c) If S is irreducible with generic point η, and if Cη ⊂ ZG
η is a curve of genus at least two, then the

closure C of Cη in ZG is a smooth, proper relative curve over S.

Proof. Since Z → S is an algebraic space, so is ZG [43, Rem. 3.4(ii)]; since all components of all
fibers are smooth (see below) of dimension at most one, ZG is actually a scheme.

The smoothness assertion of (b) is proved in [7, Lemma 2.2] (in characteristic zero) and [22,
Prop. 1.4] (in positive characteristic). The fact that there is at most one curve of general type is also
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in [7, Lemma 2.2]. (While the statement is only claimed for complex K3 surfaces, the argument
relies on nothing more than the Hodge index theorem.)

Part (c) follows from the upper semicontinuity, on ZG, of the function z 7→ dim(ZG
v(z)) [18,

IV.13.1.3]. �

We will occasionally have cause to work with the stacks of smooth relative uniform cyclic covers
of projective spaces, as in [5]. Recall that if X → S is a smooth scheme, then a smooth relative
uniform cyclic cover of degree n consists of a morphism f : Y → X which commutes with an
action of µn on Y such that the branch divisor of f is smooth over S, and, Zariski-locally on X, Y
is µn-equivariantly isomorphic to OY(U)[y]/(yn − h). With a slight adjustment of the notation of
[5], let H(n, m, d) be the stack of smooth relative uniform cyclic covers f : Y → P→ S of degree n,
where P→ S is a Brauer-Severi scheme of dimension m, and the branch divisor of f has degree d.
Thus, for example, H(2, 1, 2g+ 2) is the moduli stack of hyperelliptic curves of genus g. (A Brauer-
Severi scheme P → S of dimension m is an S-scheme which, étale-locally on S, is isomorphic to
the projective space of dimension m.)

In the special case where m = 1, let H̃(n, 1, d) be the stack of smooth relative uniform cyclic
covers of Brauer-Severi curves equipped with a labelling of the branch locus; there is a forgetful
map H̃(n, 1, d) → H(n, 1, d), with fiber a torsor under the symmetric group Sd on d letters. (Since
a Brauer-Severi scheme with a section is trivial, the underlying scheme of an object in H̃(n, 1, d) is
actually a family of projective lines, rather than merely étale-locally a family of projective lines.)

Let M̃0,d be the moduli space of d distinct, labelled points in P1. By sending a labelled branched
cover of the projective line to its branch locus, we obtain a morphism H̃(n, 1, d) → M̃0,d. In fact,
this morphism is the rigidification along µn; it factors as H̃(n, 1, d) → H̃(n, 1, d)(µn

∼→ M̃0,d, and
in particular induces an isomorphism on coarse moduli spaces. This morphism is Sd-equivariant,
and we have H(n, 1, d)→ M0,d.

Below, we will often have a morphism α : S → T of smooth stacks. Then each stack is normal,
and in particular has a normal coarse moduli space. If α induces a bijection on geometric points,
then (by Zariski’s main theorem) α induces an isomorphism of coarse moduli spaces.

7.2. Curves of genus four. Here we follow [25]. The argument given here is also a prototype for
the remainder of this section.

Let C/k be a smooth, projective nonhyperelliptic curve of genus 4 with no vanishing theta
constants, over an algebraically closed field in which 6 is invertible. Its canonical model is the
(complete) intersection in P3 of quadric and cubic surfaces Q and S. Let v : Z → Q be the triple
cover of Q branched along C; then Z comes equipped with an action by µ3. Let M1 and M2 be
smooth lines on Q which represent the two rulings, and let Ni = v−1Mi. Then each Ni is an elliptic
curve, and the two of them pair as (N1, N2) = 3. Moreover, N1 and N2 span a primitive lattice
of Pic(Z), isomorphic to L4 := U(3). Let L4 ↪→ LK3 be a primitive embedding; the orthogonal
complement of this copy of U(3) is L⊥4 ∼= U(3)⊕U ⊕ E8(−1)⊕2 [25, p. 386]. In the notation of §2,
d(L4) = 3, and so there is a closed immersion RL ↪→ R〈6〉 of smooth stacks over Z[1/6].

The action of µ3 on Z is nonsymplectic, in the sense that χω, the character of the representation
of µ3 by which µ3 acts on H0(Z, Ω2), is faithful. Kondō explicitly writes down a certain repre-
sentation ρ of µ3 on L⊥4 . (Of course, L⊥4 is free over Z[ζ3], in accordance with [31, Lemma 1.1].)
Let χ4 be the character of ρ⊕ ρ⊕2

triv. In the case where k = C, Kondō shows that Z is an element
of RL4,χ

4
(C). Let N4 be the moduli space of nonhyperelliptic curves of genus 4. It is not hard to

extend the work in [25] to show:

Lemma 7.3. There is a morphism κ4 : R◦L4,χ
4
→ N4 of stacks over Z[ζ3, 1/6] which is a bijection on

geometric points.
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Proof. Suppose (Z → S, α, ρ) ∈ R◦L4,χ
4
(S). In particular, Z → S is an algebraic space. Let B =

Zµ3 → S be the scheme of fixed points (Lemma 7.2).
We will show that every fiber of B→ S is a smooth, projective, nonhyperelliptic curve of genus

4. Then B is a scheme over S, and the sought-for functor κ4 : R◦L4,χ
4
→ N4 is then given by

(Z → S, α, ρ) 7→ (Zµ3 → S).
So, let s be a point of S. If s has residue characteristic zero, the proof of [25, Thm. 1] shows that

Bs is a smooth, projective, nonhyperelliptic curve of genus 4.
If s has positive characteristic p ≥ 5, since R◦L4,χ

4
is smooth over Z[ζ3, 1/6], s lifts to characteristic

zero. More precisely, there exist a mixed characteristic discrete valuation ring A, with general and
special fibers η and ◦, and a point P ∈ R◦L4,χ

4
(Spec A) with P◦ = s. The characteristic zero result

for Bη , combined with the specialization argument of Lemma 7.2(c), shows there is a (necessarily
unique) smooth projective curve Cs of genus 4 in Bs.

Moreover, the quotient Zs/µ4 is a quadric (cone) [25, p. 389], and Cs maps isomorphically onto
its image in the quotient. Insofar as Cs is a genus 4 curve lying on a quadric surface in P3, it is not
hyperelliptic.

This defines the morphism R◦L4,χ
4
→ N4. Now let k be an algebraically closed field in which 6

is invertible. The construction at the beginning of this subsection – modified to take a minimal
resolution, if necessary, to account for the impact of vanishing theta characteristics – gives a set-
theoretic section to R◦L4,χ

4
(k)→ N4(k). �

We can finally explain the arithmetic origin of Kondō’s observation that N4(C) is an arithmetic
ball quotient.

Proposition 7.4. The tuple (R◦L4,χ
4
,N4, Sh(L4,χ

4
), κ4, τL4,χ

4
) satisfies (†) over Z[ζ3, 1/6].

Proof. This simply summarizes the foregoing. Consider κ4 from Lemma 7.3. Since it yields a
bijection on geometric points, it induces an isomorphism of coarse moduli spaces. For τL4,χ

4
, Kudla

and Rapoport [28, Thm. 8.1] interpret Kondō’s isomorphism [25, Thm. 1] map as a morphism

R◦L4,χ
4
,C → Sh

(L4,χ
4
)

C
(see §5.4). Then Lemma 6.4 shows that this map descends and spreads to

Z[ζ3, 1/6]. �

Remark 7.5. In characteristic zero, Kudla and Rapoport use a transcendental construction, and the
fact that Sh(L4,χ

4
) is a moduli space for abelian varieties with action by Z[ζ3], to interpret Kondō’s

construction as a morphism of stacks N4,C → Sh
(L4,χr)

C
. They then use a monodromy argument [28,

p.579] to show that this map descends to a morphism of stacks over Q(ζ3), and conjecture that it
extends to a morphism over Z[ζ3].

Remark 7.6. Let R◦L4,χ
4
( µ3 be the rigidification of R◦L4,χ

4
along µ3 ([1]; see also [43, §5]). Then

R◦L4,χ
4
(µ3 has the same coarse moduli space as R◦L4,χ

4
, and the morphism of Proposition 7.4 factors

as
R◦L4,χ

4

// R◦L4,χ
4
(µ3 // N4.

In this notation, Kudla and Rapoport conjecture [28, Rem. 7.2] that the second map is an isomor-
phism of stacks. In fact, this has recently been resolved using transcendental means by Zheng
[47, Prop. 7.9], who goes on to show that, at least over C, there is an open immersion of orbifolds

N4,C → Sh
(L4,χ

4
)

C
. Zheng also proves analogous statements in the situations of §7.3 and 7.7 below.

7.3. Curves of genus three. Kondō has given [24] a similar characterization of N3(C), the set
of complex nonhyperelliptic curves of genus 3. This construction also descends to arithmetic
geometry, as follows.
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Let C/k be a smooth, projective nonhyperelliptic curve of genus 3 over an algebraically closed
field in which 2 is invertible. Its canonical model is a smooth, plane quartic curve; let v : Z → P2

be the cyclic quartic cover ramified along C. Then Z is a K3 surface, and inside Pic(Z) is a lattice
L3 ∼= A1 ⊕ A1(−1)⊕7 [24, p. 222]. (Briefly, Z is a double cover of Y, itself a double cover of P2

branched along C. Then Y is a del Pezzo surface of degree two, and thus may also be obtained
as the blowup of a projective plane at seven points. The seven copies of A1(−1) in Pic(Z) are
obtained from lifts to Z of the seven exceptional divisors; the remaining element of modulus two
is the pullback of the class of a line on the projective plane.) Then L3 embeds primitively into LK3,
with orthogonal complement L⊥3 ∼= U(2)⊕2 ⊕ D8(−1)⊕ A1(−1)⊕2, and d(L3) = 2.

By construction, Z comes equipped with an action by µ4. Then µ4 acts on the space of holomor-
phic two forms via a faithful character, χω. The action ρ of µ4 on L⊥3 is given explicitly in [24, §2],
and we let χ4 be the character of ρ⊕ ρ⊕8

triv.

Proposition 7.7. There is a morphism κ3 : R◦L3,χ
3
→ N3 so that (R◦L3,χ

3
,N3, Sh(L3,χ

3
), κ3, τL3,χ

3
) satisfies

(†) over Z[
√
−1, 1/2].

Proof. As in Lemma 7.3, the map κ3 is given by (Z → S, α, ρ) 7→ (Zµ4 → S); [24, p. 225] and the
étale Lefschetz fixed point theorem [SGA 5.III.(4.11.3)] provide the necessary geometric input to
show that Zµ4 is a relative nonhyperelliptic curve of genus 3. The fact that κ3 gives a bijection on
geometric points is established by the construction at the beginning of this section. The asserted
behavior of τL3,χ

3
is a special case of Lemma 6.4. �

Remark 7.8. See [28, §7] for earlier results over Q(
√
−1).

7.4. Curves of genus six. Following [6], let N6 denote the moduli stack (over Z[1/2]) of non-
special curves of genus 6. (Thus, a curve is represented by a point in N6 if it is smooth, projective
and irreducible of genus 6, and neither hyperelliptic, trigonal, bielliptic, nor smooth quintic and
planar.)

In fact, let C/k be a non-special curve over an algebraically closed field. The canonical embed-
ding of C is a quadric section of a unique quintic del Pezzo surface Y in P5. Let Z be the double
cover of Y branched along C. (If C has fewer than five g2

6’s, then one must actually take the mini-
mal resolution of this cover.) Then Z is a K3 surface with an action by µ2 = {±1}, and this action
fixes a lattice in Pic(Z) isomorphic to L6 := A1 ⊕ A1(−1)4 [6, §2.1]. (Note that d(L6) = 2.)

Proposition 7.9. There is a morphism κ6 : R◦L6,χ
6
→ N6 such that (R◦L6,χ

6
,N6, Sh(L6,χ

6
), κ6, τL6,χ

6
) satisfies

(†) over Z[1/6].

Proof. As before, κ6 is given by sending (Z → S, α, ρ) ∈ R◦L6,χ
2
(S) to its fixed locus Zµ2 → S (see [6,

p. 1452] for the argument, valid in any characteristic, that each geometric fiber Zµ2
s̄ is a non-special

curve of genus 6). The construction described above gives a set-theoretic section on geometric
points, and τL6,χ

6
is supplied by Lemma 6.4. �

7.5. Five points on a line. Kondō has also explained how, in favorable cases, one can associate a
structured K3 surface to certain configuration spaces of points.

For instance, as in [26], consider the moduli space M̃0,5 of five distinct, ordered points in P1. (In
fact, our discussion extends to the case of stable configurations of points.)

Fix an embedding β : P1 ↪→ P2 as a coordinate line, and let Q∞ ∈ P2 denote a point “at infinity”
which is not contained in β(P1).

Initially, let k be an algebraically closed field, and let (P1, · · · , P5) ∈ M̃0,5(k) be an ordered 5-
tuple of distinct points. Following [26, Sec. 3.1-3.2], let C be the cyclic degree five cover of P1

ramified exactly at P1, · · · , P5. It naturally admits a model as a plane curve inside P2, intersecting
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β(P1) exactly at Qi := β(Pi) for i = 1, · · · , 5. Let Li denote the line connecting Qi and Q∞; and let
E0 = β(P1).

Next, let X be the minimal resolution of the double cover of P2 branched along the sextic plane
curve C + E0, with covering involution τ. The degree five automorphism of C also induces a
degree five automorphism σ of X. Moreover, because of our construction, we can identfy certain
divisor (classes) on X which are fixed by τ.

Indeed, for 1 ≤ i ≤ 5, there is an exceptional curve Ei of the minimal resolution of singularities
corresponding to Qi ∈ C ∩ E0. Moreover, the inverse image of Li in X is the union of two smooth
rational curves Fi,− and Fi,+, which pass (respectively) through the two points R− and R+ of X
lying over Q∞. The involution τ exchanges Fi,− and Fi,+, and σ stabilizes each of Fi,− and Fi,+.

Finally, there is a sixteenth tautological cycle on X, namely, the inverse image E0,X of E0 in X. It
is stable under σ and τ.

Let L5 be the lattice generated by these sixteen divisors, equipped with the intersection pairing.
Then L5 ∼= V ⊕ A4(−1)⊕ A4(−1) [26, Lemma 4.2], and d(L5) = 2. The labelling of the original
points, combined with the labelling of the points in X over Q∞, yields an inclusion L5 ↪→ Pic(X).

There is an embedding L5 ↪→ LK3. The orthogonal complement of L5 is computed in [26, §4.3],
and a structure ρ of L⊥5 as a µ5-representation is described in [26, §5.2]. Let χ5 be the character of
ρ⊕ ρ⊕10

triv . Then X is represented by a k-point of R◦L5,χ5
. Conversely, we have:

Lemma 7.10. There is a morphism κ5 : R◦L5,χ
5
→ M̃0,5 so that (R◦L5,χ

5
, M̃0,5,Sh(L5,χ

5
), κ5, τL5,χ

5
) satisfies

(†) over Z[ζ5, 1/10].

Proof. As usual, it suffices to describe κ5. The previous construction gives the desired inverse on
geometric points, and thus we have an induced isomorphism of coarse moduli spaces.

Suppose (Z → S, ι, α) ∈ R◦L5,χ
5
(S). Then there is also an involution β ∈ AutZ/S(S). (In char-

acteristic zero, this is described in the last paragraph of the proof of [26, Lemma 5.7]; in positive
characteristic, this then follows from a specialization argument.) The fixed locus Zβ is the disjoint
union of a curve C → S with each fiber smooth and projective of genus 6 (use loc. cit. and Lemma
7.2(c)) and a relative rational curve. Moreover, the action of µ5 on Z restricts to an action of µ5 on
C. The lattice polarization, in particular the numbering of the cycles E1, · · · , E5, labels the fixed
sections Cµ5 → S. The quotient curve C/µ5 → S has fibers of genus zero, and the sought-for
configuration is (Cµ5 ⊂ C/µ5) ∈ M̃0,5(S). �

In this case, diagram (†) is part of a larger diagram of moduli stacks. By its construction, the
map κ5 : R◦L5,χ

5
→ M̃0,5 factors through H̃(5, 1, 5). Now, if (CS → P1

S) ∈ H(5, 1, 5)(S), then Pic0
C/S

has an action by Z[ζ5], of signature (5.3.1) Σ = {(2, 1), (0, 3)}. Inside A6 we have AZ[ζ5],Σ, the
locus of principally polarized abelian 6-folds with an action by Z[ζ5] of signature Σ. Consider the
classical Torelli map τ6 : M6 → A6. The image of the restriction to H(5, 1, 5) of τ6 is open in AZ[ζ5],Σ.

Of course, AZ[ζ5],Σ is a Shimura variety in its own right. The complex-analytic uniformization of
AZ[ζ5],Σ is worked out in detail in [44, Case (5)]. Let G = GZ[ζ5],L⊥5

, and let XG be the corresponding
Hermitian symmetric domain; it is isomorphic to the unit 2-ball B2. There is a compact open
subgroup K0 ⊂ G(A f ) such that AZ[ζ5],Σ

∼= ShK0 [G, XG].

(Briefly, let M = Z[ζ5]⊕3, endowed with the Hermitian form h represented by diag(1, 1, 1−
√

5
2 ).

The unitary group of (M, h) is an integral form of G, and K0 is the stabilizer of the lattice M.
Conversely, K

(L5,χ
5
) can be recovered from K0 as those group elements which act trivially on the

discriminant group of L.)
Then K0 ⊃ K

(L5,χ
5
) := KZ[ζ5],L⊥6

, with quotient group K0/K
(L5,χ

5
) ∼= O(disc(L⊥)) ∼= O3(F5) ∼=

{±1} × S5.
We summarize this discussion in:



20 JEFFREY D. ACHTER

Proposition 7.11. There is a diagram of stacks over Z[ζ5, 1/10]:

R◦L5,χ
5

κ5

++
//

τL5,χ5

��

H̃(5, 1, 5) //

[S5]

��

M̃0,5

[S5]

��

H(5, 1, 5) //

[µ2]

��

M0,5

Sh(L5,χ
5
) [K0/K

(L5,χ5)]
// AZ[ζ5],Σ

where an arrow is labelled [Γ] if it is a quotient by the finite group Γ; the given factorization of κ5 is, on
coarse moduli spaces, a composition of isomorphisms; and τL5,χ

5
,C is an open immersion.

Proof. Since the canonical models of both Sh(L5,χ
5
) and AZ[ζ5],Σ receive maps from RL5,χ

5
over

Z[ζ5, 1/10] with dense image, it suffices to observe that the quotient map Sh(L5,χ
5
) → AZ[ζ5],Σ

is defined on the canonical models. �

7.6. Six points on a line. In [17, §12], Dolgachev and Kondō show that the configuration space of
six labelled points on the (complex) projective line is an arithmetic quotient of B4.

The pointwise construction of loc. cit. works over an arbitrary algebraically closed field k. Let
(P1, · · · , P6) ∈ M̃0,6 be an ordered 6-tuple of distinct points. Let C be the cyclic degree three
cover of P1 ramified exactly at the Pi, and let Z′ be the cyclic triple cover of the ambient weighted
projective space P(1, 1, 2) ramified along C. (Explicitly, let f (X0, X1) be a homogeneous form
of degree 6 vanishing at the Pi; then Z′ is given by the equation X3

3 + X3
2 + f (X0, X1) = 0 in

P(1, 1, 2, 2).) Then Z′ comes with an action by µ3 × µ3; we single out the action of µ3 on Z′ via
the diagonal embedding µ3 ↪→ µ3 ×µ3 ↪→ Autk(Z′). The variety Z′ has three ordinary nodes; its
minimal resolution, Z, is a K3 surface, and the µ3 action lifts to Z. One finds that, by construction,
PicZ/k(k) comes equipped with a primitive inclusion of the lattice L′6 := U⊕ E6(−1)⊕ A2(−1)⊕3,
with orthogonal complement A2(1)⊕ A2(−1)⊕3, and that d(L′6) = 2. As a Z[ζ3]-module, (L′6)

⊥

is free of rank 4, and comes equipped with a Hermitian form of signature (3, 1). Let ρ be the
corresponding µ3-representation, and let χ′6 be the character of ρ⊕ ρ⊕14

triv . As usual, we have (†)
for R◦(L′6,χ′

6
), M̃0,6 and Sh(L′6,χ′

6
) over Z[ζ3, 1/6].

Alternatively, we could use the strategy of §7.5, and compute the periods of C directly. If (C →
S → P1

S) ∈ H(3, 1, 6), then C/S is a family of curves of genus 4, and Pic0
C/S has an action by Z[ζ3]

of signature (1, 3). (This is case (2) of [44].) The moduli space AZ[ζ3],(1,3) of principally polarized
abelian fourfolds with action by Z[ζ3] of signature (1, 3) is isomorphic to ShK0 [G, XG], where G =

GZ[ζ3],(L′6)⊥
and K0 is the stabilizer of the lattice (L′6)

⊥. There is a surjection Sh(L′6,χ′
6
) → ShK0 [G, XG]

with covering map K0/K
(L′6,χ

6
) ∼= O(disc((L′6)

⊥)) ∼= µ2 × S6 (it seems that, in the third displayed
equation of [17, p.93], the authors may have neglected to account for the discriminant kernel) and
we obtain:
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Proposition 7.12. There is a diagram of stacks over Z[ζ3, 1/6]:

R◦L′6,χ′
6

κ′6

++
//

τL′6,χ′6

��

H̃(3, 1, 6) //

[S6]

��

M̃0,6

[S6]

��

H(3, 1, 6) //

[µ2]

��

M0,6

Sh(L′6,χ′
6
) [K0/K

(L′6,χ′6)]
// AZ[ζ3],(1,3)

where an arrow is labelled [Γ] if it is a quotient by the finite group Γ; the given factorization of κ′6 is, on
coarse moduli spaces, a composition of isomorphisms; and τL5,χ

5
,C is an open immersion.

7.7. Cubic surfaces. Let Cub2 be the moduli space of cubic surfaces. If V/C is a complex cubic
surface, then either by associating a cubic threefold [4] or a K3 surface [16] to it and measuring its
periods, one obtains an open immersion Cub2(C) ↪→ B4/Γ. The arithmetic nature of this map is
explored in [2]. Unfortunately, there is a stack-theoretic mistake there. While Cub2 and H(3, 3, 3)
have isomorphic coarse moduli spaces, they are not literally the same stack; H(3, 3, 3) → Cub2 is
the rigidification along the µ3-action. We take the present opportunity to correct this oversight,
and recast the main result in the framework developed here.

Let Cub3 be the moduli space of smooth projective cubic threefolds. If T ∈ Cub3(C), then
its intermediate Jacobian is a principally polarized abelian fivefold. This gives a period map
Cub3(C) → A5(C), which is known to be an embedding. By using either monodromy consid-
erations [11, Thm. 2.12] or the arithmetic nature of intermediate Jacobians [3, Thm. 6.1], one can
show that this period map descends to a morphism Cub3 → A5 of stacks over Q. Using the
algebro-geometric construction of the intermediate Jacobian as a Prym, one can actually spread
out this out to achieve a morphism Cub3 → A5 of stacks over Z[1/2] [2, Cor. 3.5].

Now, points of H(3, 3, 3) correspond to cyclic triple covers of P3 branched along a cubic surface;
as such, they are smooth projective threefolds in their own right. The µ3 action on the threefold
induces an action of Z[ζ3] on the corresponding intermediate Jacobian, with signature (1, 4). Ulti-
mately, one obtains

Proposition 7.13. There is a diagram of stacks over Z[ζ3, 1/6]

Cub3

��

H(3, 3, 3)? _oo κ //

_�

τ

��

Cub2

A5 AZ[ζ3],(1,4)
? _oo

in which τ is an open immersion, and κ induces an isomorphism of coarse moduli spaces.
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