Homework 9
 Due: Friday, April 10

1. [Katz] Let $N=2 n+1$, and consider \mathbb{P}^{N} with coordinates $X_{0}, \cdots, X_{n}, Y_{0}, \cdots, Y_{n}$. Let

$$
F=\sum_{i=0}^{n} X_{i} Y_{i}^{q}-X_{i}^{q} Y_{i},
$$

and let Z / \mathbb{F}_{q} be the (smooth, irreducible, projective) hypersurface

$$
\mathrm{Z}=\mathcal{Z}_{\mathbb{P}_{\mathbb{P}_{q}}^{N}}(F)
$$

Show that for every hyperplane $\mathcal{Z}(L) \subset \mathbb{P}_{\mathbb{F}_{q}}^{N}$ defined over $\mathbb{F}_{q}, \mathcal{Z}(L) \cap Z$ is not smooth. If you like, you may proceed as follows.
(a) Show that $Z\left(\mathbb{F}_{q}\right)=\mathbb{P}^{N}\left(\mathbb{F}_{q}\right)$, i.e., that every point $\left[a_{0}, \cdots, a_{n}, b_{0}, \cdots, b_{n}\right]$ with each $a_{i}, b_{j} \in \mathbb{F}_{q}$ lies on Z. (Such a point corresponds to a closed point P of the scheme Z.)
(b) Suppose that $a_{0}=1$, and let f be the dehomogenization $f=f\left(1, x_{1}, \cdots, x_{n}, y_{0}, \cdots, y_{n}\right)$. Compute the linearization $d_{P}(f)$. (Hint: See 672HW7\#5)
(c) Let $\ell \in \mathbb{F}_{q}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right]$ be a linear polynomial. Show that there exists $P \in Z$ as above such that $T_{P}(Z)=\mathcal{Z}_{\mathbb{A}^{N}}(\ell)$.
(d) Finish the claim.
2. Calculate the zeta function of $\mathbb{P}_{\mathbb{F}_{q}}^{1}$.
3. Let $S=\operatorname{Spec} \mathbb{F}_{q}$.
(a) Let $P=\operatorname{Spec} \mathbb{F}_{q^{d}}$. Calculate

$$
\# \operatorname{Mor}_{S}\left(\operatorname{Spec} \mathbb{F}_{q^{e}}, P\right)
$$

(Hint: Try the case $d=e$ first.)
(b) Suppose X / S is a scheme of finite type. Show that

$$
\begin{equation*}
\# X\left(\mathbb{F}_{q^{e}}\right)=\sum_{d \mid e} d X_{d} \tag{1}
\end{equation*}
$$

where X_{d} is the set of closed points of X of degree d. (The hypothesis "finite type" is just to ensure that all quantities in (1) are finite.
4. Let X / \mathbb{F}_{q} be a scheme of finite type. Show that there is an equality of generating functions

$$
\prod_{P \in X \text { closed }}\left(1-T^{\operatorname{deg} P}\right)=\exp \left(\sum_{r \geq 1} \frac{\# X\left(\mathbb{F}_{q^{r}}\right)}{r} T^{r}\right)
$$

(Hint: Take logarithms...)
5. (a) Suppose $f(x) \in \mathbb{F}_{q}[x]$ is nonconstant. Show that $\mathcal{Z}_{\mathbb{A}^{1}}(f)$ is smooth if and only if $f(x)$ is squarefree.
(b) Using Poonen's theorem, compute

$$
\lim _{d \rightarrow \infty} \frac{\#\left\{f(x) \in \mathbb{F}_{q}[x]: \operatorname{deg} f \leq d, f \text { squarefree }\right\}}{\#\left\{f(x) \in \mathbb{F}_{q}[x]: \operatorname{deg} f \leq d\right\}}
$$

