Homework 8 Due: Friday, March 27

1. Suppose \mathcal{F} is a coherent sheaf on X and $P \in X$. Suppose that the stalk \mathcal{F}_P is a free $\mathcal{O}_{X,P}$ -module. Show that there is an open neighborhood U of P such that $\mathcal{F}|_U$ is free. (HINT: Suppose $\mathcal{F}_P = \bigoplus \mathcal{O}_{X,P} f_i$. Find an open neighborhood V and a candidate $\mathcal{O}_X(U)$ -module M.

Compare \widetilde{M} to $\mathcal{F}|_{U...}$

2. Let *k* be a field, $\lambda \in k - \{0, 1\}$. Let $E_{\lambda} = \operatorname{Proj} k[X, Y, Z]/(Y^2 Z - X(X - Z)(X - \lambda Z))$, i.e., E_{λ} is

$$\mathcal{Z}_{\mathbb{P}^2}(Y^2Z - X(X - Z)(X - \lambda Z)).$$

It turns out that E_{λ} can also be described as the vanishing locus of the quadrics XW - YZ and $YW - (X - Z)(X - \lambda Z)$ in \mathbb{P}^3 .

Let $i : E_{\lambda} \to \mathbb{P}^2$ be the first embedding, and let $j : E_{\lambda} \to \mathbb{P}^3$ be the second embedding.

Show that $\mathcal{F} = i^* \mathcal{O}_{\mathbb{P}^2}(1)$ is not the same line bundle as $\mathcal{G} = j^* \mathcal{O}_{\mathbb{P}^2}(1)$.

(HINT: If you like, let s be a nonzero element $\mathcal{F}(E_{\lambda})$, and let t be a nonzero element of $\mathcal{G}(E_{\lambda})$. Using techniques from last semester, show that $E_{\lambda} - E_{\lambda,s}$ typically consists of three points, while $E_{\lambda} - E_{\lambda,t}$ typically consists of four points.)

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009