Homework 7 Due: Friday, March 13

Let *X* be a scheme and $P \in X$. Let \mathfrak{m}_P be the maximal ideal of $\mathcal{O}_{X,P}$ and $\kappa(P) = \mathcal{O}_{X,P}/\mathfrak{m}_P$ be the residue field. (In the case where $X = \operatorname{Spec} A$ and $P = [\mathfrak{p}]$, $\kappa(P) = \operatorname{Frac} A/\mathfrak{p}$.)

The cotangent space to X at P is $(T_P X)^{\vee} = \mathfrak{m}_P/\mathfrak{m}_P^2 \otimes_{\mathcal{O}_{X,P}} \kappa(P)$; the tangent space is $T_P X = (\mathfrak{m}_P/\mathfrak{m}_P^2)^{\vee} = \operatorname{Hom}((T_P X)^{\vee}, \kappa(P))$.

If $f : X \to Y$ is a morphism of schemes and P = f(Q), then f induces maps $\mathfrak{n}_Q \to \mathfrak{m}_P$, and thus maps $\kappa(Q) \hookrightarrow \kappa(P), (T_P Y)^{\vee} \to (T_P X)^{\vee}$ and a $\kappa(P)$ -linear map

$$T_P X \xrightarrow{d_P f} T_Q Y \otimes_{\kappa(Q)} \kappa(P).$$

1. Consider the closed subscheme $X = \operatorname{Spec} k[x, y]/(y^2 - (x^3 - x)) = \operatorname{Spec} A$ of $\mathbb{A}_k^2 = \operatorname{Spec} k[x, y] = \operatorname{Spec} B$, equipped with its natural inclusion $\iota : X \to \mathbb{A}_k^2$.

Let *P* be the origin. Viewed as a point of *X*, it corresponds to a maximal ideal $\mathfrak{m} = \mathfrak{m}_P \subset A$; as a point of \mathbb{A}^2_k , it corresponds to a maximal ideal $\mathfrak{n} = \mathfrak{n}_P \subset B$.

- (a) Calculate $(T_P X)^{\vee}$, $T_P X$, $(T_P Y)^{\vee}$ and $T_P Y$.
- (b) Calculate the induced maps $(T_P Y)^{\vee} \to (T_P X)^{\vee}$ and $d_P \iota : T_P X \to T_P Y$. There's a canonical isomorphism of residue fields $A/\mathfrak{m}_P \cong B/\mathfrak{n}_P \cong k$, so no need to worry about residue fields.
- (c) [VQA] Draw a picture which explains all this.
- 2. Let $X = \operatorname{Spec} \mathbb{Z}[i]$, $Y = \operatorname{Spec} \mathbb{Z}$, and $f : X \to Y$ be the natural morphism of schemes.
 - (a) Let $P = [(1+2i)\mathbb{Z}[i]] \in X$ and $Q = [5\mathbb{Z}] \in Y$. Compute $d_P f$.
 - (b) Same thing for $P = [3\mathbb{Z}[i]]$, $Q = [3\mathbb{Z}]$.
 - (c) Same thing for $P = [(1+i)\mathbb{Z}[i]], Q = [2\mathbb{Z}].$
- 3. Let (*A*, m) be a Noetherian local ring. The formal completion of *A* at m, or the m-adic completion of *A*, is

$$\widehat{A} = \lim_{\stackrel{\leftarrow}{n}} A/\mathfrak{m}^n.$$

It is a local ring, with maximal ideal $\widehat{\mathfrak{m}} = \lim_{n \to \infty} \mathfrak{m}/\mathfrak{m}^n$.

(a) Describe the natural map

$$A \longrightarrow \widehat{A}.$$

Show that it is an injection. You may use the following result, stated last semester, which follows from the Artin-Rees Theorem:

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009 **Theorem** Let (A, \mathfrak{m}) be a Noetherian local ring. Then $\bigcap_{n \ge 0} \mathfrak{m}^n = (0)$.

- (b) Calculate the completion for the following pairs:
 - i. $(k[x]_{(x)}, (x));$
 - ii. $(\mathbb{Z}_{(p)}, (p))$.
- (c) Let *A* be a ring and $\mathfrak{p} \subset A$ prime. Show that

$$\lim_{\stackrel{\leftarrow}{n}} A/\mathfrak{p}^n \cong \widehat{A}_\mathfrak{p}$$

(HINT: Localization is exact.)

- 4. Let X = Spec A be an irreducible affine scheme. Suppose $P \in X$.
 - (a) There is a canonical map between *X* and Spec $\widehat{\mathcal{O}}_{X,P}$. Which way does it go?
 - (b) Suppose X = A¹ = Spec k[t], P = (t). Describe the closure of the image of this morphism.
 The answer may be surprising. The formal completion of X at P is the ringed space in which the underlying space is the point P and the structure sheaf is Ô_{X,P}. Such a ringed space is an example of a formal scheme; in general, it's not actually a scheme.
- 5. Let *k* be a field in which two is invertible. Let $A = k[x, y]/(y^2 x^2(x+1))$, and let X =Spec *A*. Let $\mathfrak{p} = (x 1, y 1)A$, $\mathfrak{q} = (x, y)$, $P = [\mathfrak{p}]$ and $Q = [\mathfrak{q}]$.
 - (a) Calculate the tangent spaces $T_P X$ and $T_Q X$.
 - (b) Show that $\widehat{\mathcal{O}}_{X,P} \cong k[[t]]$.

Bonus: Show that $\widehat{\mathcal{O}}_{X,Q} \cong k[[tu]]/(tu)$.

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009