## Homework 5 Due: February 27

If *Y* is a scheme and  $Q \in Y$ , there is a natural inclusion  $\iota_Q : Q \hookrightarrow Y$ . If  $X \xrightarrow{\alpha} Y$  is a morphism of schemes, the *fiber of X over Q is* 



1. Let  $X = \operatorname{Spec} \mathbb{Z}[x]/(x^2 + 1)$  and  $Y = \operatorname{Spec} \mathbb{Z}$ ; consider the map  $X \to Y$  which comes from  $\mathbb{Z} \hookrightarrow \mathbb{Z}[x]/(x^2 + 1)$ .

Suppose  $Q \in Y$ . Describe the fiber  $X_O$ . (HINT: Your answer will depend on Q = [(q)].)

2. Let *X* and *Y* be *S*-schemes. Use the universal property of fiber products to show that there is a natural bijection of sets

$$(X \times_S Y)(T) \longrightarrow X(T) \times_{S(T)} Y(T).$$

(HINT: Compare Liu, Example 3.1.6, page 81.)

- 3. (a) Describe Spec  $\mathbb{C} \times_{\text{Spec } \mathbb{R}} \text{Spec } \mathbb{C}$ .
  - (b) Let  $X = \operatorname{Spec} k[x]$ ,  $Y = \operatorname{Spec} k[y]$ , and let  $\phi$  be the morphism  $X \to Y$  attached to

$$k[y] \longrightarrow k[x]$$
$$y \longrightarrow x^2$$

- i. Suppose char  $(k) \neq 2$ . Show that  $X \times_Y X$  has two irreducible components.
- ii. Suppose char (k) = 2. Describe  $X \times_Y X$ .

(HINT: It may be marginally easier to think of two copies of X,  $X_1$  and  $X_2$ , with coordinates  $x_1$  and  $x_2...$ )

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009