Homework 4

Due: Friday, February 20
Even though the homework isn't due until February 20, please do problem 1 before class on Monday, February 16.

1. Suppose S and T and U are sets and that there are maps of sets $f: S \rightarrow U$ and $g: T \rightarrow U$. The fiber product of S and T over U, denoted $S \times_{f, U, g} T$ or $S \times_{U} T$ f the maps are understood, is

$$
S \times_{U} T:=\{(s, t): s \in S, t \in T, f(s)=g(t)\} .
$$

This set comes with projections $S \times{ }_{U} T \rightarrow S$ and $S \times_{U} T \rightarrow T$, and in some sense it's the smallest set which makes the following diagram commute:

(a) Consider the following sets:

$$
\begin{aligned}
S & =\{1,2,3,4\} \\
T & =\{a, b, c, d, e, f\} \\
U & =\{\alpha, \beta\} \\
V & =\{\gamma\}
\end{aligned}
$$

and the following maps between them:

$1,2 \longmapsto \alpha \quad a, b, c \longmapsto \alpha$
$3,4 \longmapsto \beta \quad d, e, f g \longmapsto \beta$

anything $\longmapsto \gamma$ anything $\longmapsto \gamma$
What is $S \times_{U} T$? What is $S \times_{V} T$?
(b) Suppose S and T are arbitrary sets, U is a set with one element, and $f: S \rightarrow U$ and $g: T \rightarrow U$ are the maps which send everything to the (unique) element of U. What is $S \times{ }_{u} T$?
(c) Suppose S and T are subsets of U; denote the inclusions by $i: S \hookrightarrow U$ and $j: T \hookrightarrow U$. What is $S \times_{i, U, j} T$?
2. Let X be the affine scheme

$$
X=\operatorname{Spec} \frac{\mathbb{Z}[x, y, z]}{\left(x^{2}+y^{2}-z^{2}\right)}
$$

Let A be any ring. Carefully explain the bijection between:

- $X(A)$, i.e., maps of schemes $\operatorname{Spec} A \rightarrow X$; and
- Triples $\alpha, \beta, \gamma \in A$ such that $\alpha^{2}+\beta^{2}=\gamma^{2}$.

3. [VQA]

(a) Describe the relationship between the sets $\mathbb{A}_{\mathbb{C}}^{1}$ and $\mathbb{A}_{\mathbb{C}}^{1}(\mathbb{C})$.
(b) Let $K=\mathbb{Q}(\sqrt{-1})$. Describe the relationship between the sets $\mathbb{A}_{\mathbb{Q}}^{1}$ and $\mathbb{A}_{\mathbb{Q}}^{1}(K)$.
4. Let A and B be rings, and consider the ring $A \oplus B$. Note that the natural surjection $A \oplus B \rightarrow$ A corresponds to a closed immersion $\operatorname{Spec} A \hookrightarrow \operatorname{Spec}(A \oplus B)$.
Show that, as subscheme of $\operatorname{Spec}(A \oplus B)$, $\operatorname{Spec} A$ is both open and closed. (Hint: Consider $D((1,0))$.)
5. Let A be a ring. An element $e \in A$ is called a nontrivial idempotent if $e^{2}=e$ but $e \notin\{0,1\}$.

For example, if B and C are rings, then the element $(1,0) \in B \oplus C$ is a nontrivial idempotent of $B \oplus C$.
(a) List all the idempotents of the ring $\mathbb{C}[x] /\left(x^{2}-x\right)$.
(b) Let e be an idempotent of A. Show that the map

$$
\begin{aligned}
& A \longrightarrow e A \oplus(1-e) A \\
& a \longmapsto(e a,(1-e) a)
\end{aligned}
$$

is an isomorphism.
(c) Show that Spec A is not connected if and only if A has a nontrivial idempotent. (Hint: Suppose $\operatorname{Spec} A=Z(I) \cup Z(J)$ with $Z(I) \cap Z(J)=\emptyset$; show $\operatorname{Spec}(A)$ is homeomorphic to $\operatorname{Spec}(A / I \oplus A / J)$.

