Homework 3

Due: Friday, February 13

1. Let R be a ring. The nilradical of R is the set of all nilpotent elements of R :

$$
\mathcal{N}(R)=\left\{a \in R: \exists n \in \mathbb{N}: a^{n}=0\right\} .
$$

(a) Show that

$$
\mathcal{N}(R)=\cap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}
$$

(b) Show that $R / \mathcal{N}(R)$ is reduced, i.e., that $\mathcal{N}(R / \mathcal{N}(R))=(0)$.
2. (a) Show that $\operatorname{Spec}(R)$ and $\operatorname{Spec}(R / \mathcal{N}(R))$ are homeomorphic topological spaces.
(b) When are $\operatorname{Spec}(R)$ and $\operatorname{Spec}(R / \mathcal{N}(R))$ isomorphic schemes?
(c) Suppose $p, q \in \mathbb{Z}$ are distinct primes, $m, n \in \mathbb{N}$. Show that as a topological space, $\operatorname{Spec}\left(\mathbb{Z} / p^{m} q^{n}\right)$ is a two-point space with the discrete topology.
3. (a) Let R be an integral domain and let $X=\operatorname{Spec} R$. Let $\eta=[(0)] \in X$. Use the definition of a stalk to compute $\mathcal{O}_{X, \eta}$.
(b) $\left[V Q A^{*}\right]$ Relate this to last semester's field of rational functions on an irreducible variety.
4. Let $X=\mathbb{A}_{k}^{2}=\operatorname{Spec} k[x, y]$, and let $U=\mathbb{A}^{2}-\{[(x, y)]\}$.

Let $V_{1}=D(x)$ and $V_{2}=D(y)$.
(a) Verify that $U=V_{1} \cup V_{2}$ is an open cover of U.
(b) Calculate $\mathcal{O}_{X}\left(V_{1}\right), \mathcal{O}_{X}\left(V_{2}\right)$ and $\mathcal{O}_{X}\left(V_{1} \cap V_{2}\right)$.
(c) Use this to calculate $\mathcal{O}_{X}(U)$.

So, if U were affine, we would have $U=\operatorname{Spec}\left(\mathcal{O}_{X}(U)\right)$; but this isn't true!
5. Suppose $Y=\operatorname{Spec}(R / I)$ and $Z=\operatorname{Spec}(R / J)$ are closed subschemes of $X=\operatorname{Spec}(R)$.

Say that Y contains Z if Z is a closed subscheme of Y, i.e., if $J \supset I$.
The (scheme-theoretic) union and intersection of Y and Z are:

- $Y \cup Z=\operatorname{Spec}(R /(I \cap J))$;
- $Y \cap Z=\operatorname{Spec}(R /(I+J))$.

Consider the following closed subschemes of $X=\mathbb{A}_{k}^{2}=\operatorname{Spec} k[x, y]$:

- $Z_{1}=\operatorname{Spec} k[x, y] /(x) ;$

[^0]- $Z_{2}=\operatorname{Spec} k[x, y] /(y)$;
- $Z_{3}=\operatorname{Spec} k[x, y] /\left(y-x^{2}\right)$.
(a) Graph all Z_{i}.
(b) For each pair $1 \leq i<j \leq 3$, compute $Z_{i j}=Z_{i} \cap Z_{j}$ and $V_{i j}=Z_{i} \cup Z_{j}$. Graph them.
(c) For which pairs of pairs does one have $Z_{i j} \subset Z_{i^{\prime} j^{\prime}}$?

[^0]: *Vague question alert! Sometimes I just want everybody to think about something, even if there's no real associated well-defined, finite question.

