Homework 3 Due: Friday, February 13

1. Let *R* be a ring. The nilradical of *R* is the set of all nilpotent elements of *R*:

$$\mathcal{N}(R) = \{ a \in R : \exists n \in \mathbb{N} : a^n = 0 \}.$$

(a) Show that

$$\mathcal{N}(R) = \cap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}.$$

- (b) Show that $R/\mathcal{N}(R)$ is reduced, i.e., that $\mathcal{N}(R/\mathcal{N}(R)) = (0)$.
- 2. (a) Show that $\operatorname{Spec}(R)$ and $\operatorname{Spec}(R/\mathcal{N}(R))$ are homeomorphic topological spaces.
 - (b) When are Spec(R) and $\text{Spec}(R/\mathcal{N}(R))$ isomorphic schemes?
 - (c) Suppose $p,q \in \mathbb{Z}$ are distinct primes, $m,n \in \mathbb{N}$. Show that as a topological space, $\operatorname{Spec}(\mathbb{Z}/p^mq^n)$ is a two-point space with the discrete topology.
- 3. (a) Let *R* be an integral domain and let $X = \operatorname{Spec} R$. Let $\eta = [(0)] \in X$. Use the definition of a stalk to compute $\mathcal{O}_{X,\eta}$.
 - (b) [VQA*] Relate this to last semester's field of rational functions on an irreducible variety.
- 4. Let $X = \mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$, and let $U = \mathbb{A}^2 \{[(x, y)]\}$. Let $V_1 = D(x)$ and $V_2 = D(y)$.
 - (a) Verify that $U = V_1 \cup V_2$ is an open cover of U.
 - (b) Calculate $\mathcal{O}_X(V_1)$, $\mathcal{O}_X(V_2)$ and $\mathcal{O}_X(V_1 \cap V_2)$.
 - (c) Use this to calculate $\mathcal{O}_X(U)$.

So, if U were affine, we would have $U = \text{Spec}(\mathcal{O}_X(U))$; but this isn't true!

5. Suppose Y = Spec(R/I) and Z = Spec(R/J) are closed subschemes of X = Spec(R). Say that *Y* contains *Z* if *Z* is a closed subscheme of *Y*, i.e., if $J \supset I$.

The (scheme-theoretic) union and intersection of Y and Z are:

- $Y \cup Z = \operatorname{Spec}(R/(I \cap J));$
- $Y \cap Z = \operatorname{Spec}(R/(I+J)).$

Consider the following closed subschemes of $X = \mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$:

• $Z_1 = \operatorname{Spec} k[x, y]/(x);$

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009

^{*}Vague question alert! Sometimes I just want everybody to think about something, even if there's no real associated well-defined, finite question.

- $Z_2 = \operatorname{Spec} k[x, y]/(y);$
- $Z_3 = \operatorname{Spec} k[x, y]/(y x^2).$
- (a) Graph all Z_i .
- (b) For each pair $1 \le i < j \le 3$, compute $Z_{ij} = Z_i \cap Z_j$ and $V_{ij} = Z_i \cup Z_j$. Graph them.
- (c) For which pairs of pairs does one have $Z_{ij} \subset Z_{i'j'}$?

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2009