Homework 2
Due: Tuesday, February 3

Be prepared to present on February 3; writeup due Wednesday, February 4.

1. Liu 2.3.3. Let Spec R be an affine scheme, and $U \subset \text{Spec } R$ be a subset.
 (a) Suppose $f \in R$. Show that $Z(f)$ contains U if and only if, for each $[p] \in U$, $f \in p$.
 (b) Show that the closure \overline{U} of U in Spec R is $Z(I)$, where $I = \cap_{p \in U} p$.

2. Let $\phi : R \to S$ be a ring homomorphism.
 (a) Suppose R and S are finitely generated k-algebras, where k is an algebraically closed field. Show that if $Q \in \text{Spec } S$ is a closed point, then $\text{Spec}(\phi)(Q)$ is a closed point of $\text{Spec } R$.
 (b) Give an example where $Q \in \text{Spec } S$ is closed, but $\text{Spec}(\phi)(Q)$ is not closed.
 (HINT: See [HW1#3 from last semester].)

3. Let X be a set with two elements, equipped with the discrete topology; so, the open subsets of X are X; two one-point sets U and V; and \emptyset.
 Consider the following presheaf \mathcal{F} of abelian groups on X:
 \[
 \mathcal{F}(X) = \mathbb{Z} \oplus \mathbb{Z}
 \]
 \[
 \mathcal{F}(U) = \mathbb{Z}/3
 \]
 \[
 \mathcal{F}(V) = \mathbb{Z}/3
 \]
 \[
 \mathcal{F}(\emptyset) = \{e\}
 \]

 with restriction maps $\text{res}_{X,U}(a,b) = a \mod 3$ and $\text{res}_{X,V}(a,b) = b \mod 3$.
 Then \mathcal{F} is not a sheaf. Why?

4. Skyscraper sheaves Let X be a topological space. Let $P \in X$ be a point whose closure is Z.
 (a) Suppose $Q \in Z$. Let U be an open neighborhood of Q. Show that $P \in U$.
 (b) Let A be a finite abelian group. Define a sheaf \mathcal{S} as follows:
 \[
 \mathcal{S}(U) = \begin{cases} A & P \in U \\ \{0\} & P \notin U \end{cases}
 \]
 Compute the stalks of \mathcal{S}: show that
 \[
 \mathcal{S}_Q = \begin{cases} A & Q \in Z \\ \{0\} & \text{otherwise} \end{cases}
 \]