Homework 1 Due: Friday, January 30

- 1. Describe all points of Spec $\mathbb{Q}[x]$.
- 2. (a) Let $f = x^3 8 \in \mathbb{Z}[x]$. For each point $[\mathfrak{p}] \in \operatorname{Spec} \mathbb{Z}[x]$ listed below, compute the residue field $\kappa([\mathfrak{p}])$, and evaluate $f([\mathfrak{p}])$.
 - i. [(3)]
 - ii. [(x-1)]
 - iii. $[(x^2 + 1)]$
 - iv. $[(x^2 + 1, 3)]$
 - (b) Find a ring S and a function $f \in S$ such that f is zero at every point of Spec S, but f is not the zero function. (HINT: See HW9#1 from last semester.)
- 3. Find rings *R* and *S* such that $R \not\cong S$, but
 - (a) Spec *R* and Spec *S* are homeomorphic (as topological spaces).
 - (b) $|\operatorname{Spec} R|$ is in bijection with $|\operatorname{Spec} S|$, but $\operatorname{Spec} R$ and $\operatorname{Spec} S$ are not homeomorphic.

(HINT: For (a), you can arrange so that |Spec R| and |Spec S| each consist of a single point; for (b), there's an example in which each set has two points.)

- 4. Suppose $[\mathfrak{p}] \in \operatorname{Spec} R$. Show that $[\mathfrak{p}]$ is closed if and only if \mathfrak{p} is a maximal ideal in R.
- 5. Suppose X is an affine variety over the algebraically closed field k, with coordinate ring k[X]. Show that there is a bijection between:
 - Closed points of the affine scheme Spec k[X].
 - Points of the variety *X*.

Go read the blog entry Mumford's treasure map, available at

http://www.neverendingbooks.org/index.php/mumfords-treasure-map.html