Homework 9 Due: Friday, April 6

- 1. Let *A* be a ring. For each $r, n \in \mathbb{Z}$, calculate $H^r(\mathbb{P}^r_A, \mathcal{O}_{\mathbb{P}^r_A}(n))$. (HINT: Use the standard cover of \mathbb{P}^1 as the union of two affine lines.)
- 2. Let $F(X_0, X_1, X_2) \in k[X_0, X_1, X_2]$ be homogeneous of degree d, and consider the curve $X = \mathcal{Z}_+(X) \subset \mathbb{P}^2_k$. Suppose $[1, 0, 0] \notin X$.

Let $U_1 = X \cap \{X_1 \neq 0\}$ and let $U_2 = X \cap \{X_2 \neq 0\}$.

- (a) Show that $\mathcal{U} = \{U_1, U_2\}$ is an open cover of *X*.
- (b) Use the Cech complex $C^{\bullet}(\mathcal{U}, \mathcal{O}_X)$ to calculate the cohomology groups $H^{\bullet}(X, \mathcal{O}_X)$ explicitly. (HINT: *You should find that*

$$\dim_k H^0(X, \mathcal{O}_X) = 1$$
$$\dim_k H^1(X, \mathcal{O}_X) = \frac{(d-1)(d-2)}{2}$$

)

3. For a scheme *X*, let \mathcal{O}_X^{\times} be the sheaf of abelian groups $U \mapsto \mathcal{O}_X(U)^{\times}$, which assigns to an open set *U* the group of invertible functions on *U*.

Suppose X is separated and quasicompact.

- (a) Let \mathcal{L} be a quasicoherent sheaf on X. In class, we said that \mathcal{L} is invertible if and only if: There exists a cover $\mathcal{U} = \bigcup U_i$ of X, and elements $g_{ij} \in \mathcal{O}_X(U_{ij})^{\times}$, such that $g_{jk} \cdot g_{ij} = g_{ik} \in \mathcal{O}_X(U_{ijk})^{\times}$. Make sure you understand this.
- (b) For \mathcal{L} and \mathcal{U} as above, explain how to construct an element $\phi_{\mathcal{U}}(\mathcal{L})$ of $H^1_{\mathcal{U}}(X, \mathcal{O}_X^{\times})$, and thus an element $\phi(\mathcal{L}) \in H^1(X, \mathcal{O}_X^{\times})$. Show that

invertible sheaves on $X \xrightarrow{\phi} H^1(X, \mathcal{O}_X^{\times})$

 $\mathcal{L} \longmapsto \phi(\mathcal{L})$

is a group homomorphism. What is ker ϕ ?

(c) Show that ϕ induces an isomorphism

$$\operatorname{Pic}(X) \longrightarrow H^1(X, \mathcal{O}_X^{\times})$$

(Remember, any element of $H^1(X, \mathcal{O}_X^{\times})$ can be represented by a Cech cocycle on some open cover of *X*.)

- (d) Read Liu exercise 5.2.7, expecially 5.2.7.d.
- 4. (a) Liu 5.2.17.a. Show that the *d* defined here satisfies $d \circ d = 0$. Note: It suffices to assume that U = V; why?
 - (b) Liu 5.2.17.b.

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007