Homework 7
 Due: Friday, March 9

1. Liu, 4.2.7. (Hint: See last semester, HW12\#1)
2. Liu, 4.2.3. Ignore normality.
3. Let A be a B-algebra; we identify B with its image in A. Consider the homomorphism

$$
\begin{aligned}
& A \otimes_{B} A \xrightarrow{f} A \\
& a_{1} \otimes a_{2} \longmapsto a_{1} a_{2}
\end{aligned}
$$

(This corresponds to $\Delta: \operatorname{Spec} A \rightarrow \operatorname{Spec} A \times_{\operatorname{Spec} B} \operatorname{Spec} A$.) Its kernel $I=\operatorname{ker}(f)$ is generated by elements of the form $a \otimes 1-1 \otimes a$.
Think of $A \otimes_{B} A$ as an A-module via left multiplication. Consider the map of A-modules

$$
\begin{aligned}
& A \xrightarrow{\widetilde{d}} A \otimes_{B} A \\
& a \longmapsto 1 \otimes a-a \otimes 1 .
\end{aligned}
$$

(a) Show that $\widetilde{d}(A) \subseteq I \subseteq A \otimes_{B} A$.
(b) Show that \widetilde{d} is additive; $\widetilde{d}\left(a_{1}+a_{2}\right)=\widetilde{d}\left(a_{1}\right)+\widetilde{d}\left(a_{2}\right)$.
(c) Show that $\widetilde{d}(B)=0$.
(d) Show that $\widetilde{d}\left(a_{1} a_{2}\right)-\left(a_{1} \widetilde{d}\left(a_{2}\right)+a_{2} \widetilde{d}\left(a_{1}\right)\right) \in I^{2}$.
(e) Conclude that the composition d :

$$
A \longrightarrow A \otimes_{B} A \longrightarrow I / I^{2}
$$

is an element of $\operatorname{Der}_{B}\left(A, I / I^{2}\right)$, the set of derivations from A to I / I^{2} which vanish on B. (See 10.1.2 from last semester for the definition of a derivation in the special case $B=k$.)

Remark: In fact, this is a universal derivation, in the sense that if M is any A-module, and if $d^{\prime}: A \rightarrow M$ is a B-linear derivation, then d^{\prime} factors uniquely:

