Homework 3
Due: Friday, February 9

1. Let X be the affine scheme
 \[X = \text{Spec} \left(\frac{\mathbb{Z}[x, y, z]}{(x^2 + y^2 - z^2)} \right). \]
 Let K be any field. Carefully explain the bijection between:
 - Maps of schemes $\text{Spec } K \to X$; and
 - Triples $\alpha, \beta, \gamma \in K$ such that $\alpha^2 + \beta^2 = \gamma^2$.

 This should explain why $\text{Mor}(\text{Spec } K, X)$ is called the set of K-points of X; it is often written as $X(\text{Spec } K)$, or even $X(K)$.

2. Liu, 2.3.7.

3. Let $R = \mathbb{Z}$, and let $S = \mathbb{Z}[x, y]$ with the usual grading. Consider the set $D_+((3)) \subseteq \text{Proj}(S)$ and the point $P = (7, x^2 + y^2) \in \text{Proj}(S)$.
 (a) Show that $(7, x^2 + y^2)$ really is a prime ideal of $\mathbb{Z}[x, y]$ which doesn’t contain (x, y).
 (b) Find an element $f \in \mathbb{Z}[x, y]$ such that $f \in S_+$ is homogeneous and
 \[P \in D_+(f) \subseteq D_+(3). \]