Homework 3

Due: Friday, February 9

1. Let X be the affine scheme

$$
X=\operatorname{Spec} \frac{\mathbb{Z}[x, y, z]}{\left(x^{2}+y^{2}-z^{2}\right)}
$$

Let K be any field. Carefully explain the bijection between:

- Maps of schemes Spec $K \rightarrow X$; and
- Triples $\alpha, \beta, \gamma \in K$ such that $\alpha^{2}+\beta^{2}=\gamma^{2}$.

This should explain why $\operatorname{Mor}(\operatorname{Spec} K, X)$ is called the set of K-points of X; it is often written as $X(\operatorname{Spec} K)$, or even $X(K)$.
2. Liu, 2.3.7.
3. Let $R=\mathbb{Z}$, and let $S=\mathbb{Z}[x, y]$ with the usual grading. Consider the set $D_{+}((3)) \subseteq \operatorname{Proj}(S)$ and the point $P=\left(7, x^{2}+y^{2}\right) \in \operatorname{Proj}(S)$.
(a) Show that $\left(7, x^{2}+y^{2}\right)$ really is a prime ideal of $\mathbb{Z}[x, y]$ which doesn't contain (x, y).
(b) Find an element $f \in \mathbb{Z}[x, y]$ such that $f \in S_{+}$is homogeneous and

$$
P \in D_{+}(f) \subset D_{+}(3) .
$$

