Homework 3 Due: Friday, February 9

1. Let *X* be the affine scheme

$$X = \operatorname{Spec} \frac{\mathbb{Z}[x, y, z]}{(x^2 + y^2 - z^2)}.$$

Let *K* be any field. Carefully explain the bijection between:

- Maps of schemes Spec $K \rightarrow X$; and
- Triples α , β , $\gamma \in K$ such that $\alpha^2 + \beta^2 = \gamma^2$.

This should explain why Mor(Spec K, X) is called the set of K-points of X; it is often written as X(Spec K), or even X(K).

- 2. Liu, 2.3.7.
- 3. Let $R = \mathbb{Z}$, and let $S = \mathbb{Z}[x, y]$ with the usual grading. Consider the set $D_+((3)) \subseteq \operatorname{Proj}(S)$ and the point $P = (7, x^2 + y^2) \in \operatorname{Proj}(S)$.
 - (a) Show that $(7, x^2 + y^2)$ really is a prime ideal of $\mathbb{Z}[x, y]$ which doesn't contain (x, y).
 - (b) Find an element $f \in \mathbb{Z}[x, y]$ such that $f \in S_+$ is homogeneous and

$$P \in D_+(f) \subset D_+(3).$$

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007