Homework 2 Due: Friday, February 2

1. *Liu* 2.3.3

- (a) Let *U* be a subset of an affine scheme Spec *R*. Show that the closure \overline{U} of *U* in Spec *R* is $\mathcal{Z}(I)$, where $I = \bigcap_{\mathfrak{p} \in U} \mathfrak{p}$.
- (b) Let $\phi : R \to S$ be a ring homomorphism. Let $f = \text{Spec}(\phi) : \text{Spec } S \to \text{Spec } R$. Show that the closure of im(f) is $\mathcal{Z}(\ker \phi)$.
- 2. Describe the points and the sheaf of functions of each of the following schemes.
 - (a) $X_1 = \operatorname{Spec} \mathbb{C}[x]/(x^2)$
 - (b) $X_2 = \operatorname{Spec} \mathbb{C}[x]/(x^2 x)$
 - (c) $X_3 = \operatorname{Spec} \mathbb{C}[x]/(x^3 x^2)$
 - (d) $X_4 = \operatorname{Spec} \mathbb{R}[x]/(x^2 + 1)$
- 3. Constant sheaves
 - (a) Let *X* be a topological space; let *A* be a finite abelian group with more than one element; and consider the presheaf \mathcal{F} on *X* given by $\mathcal{F}(U) = A$. Show that \mathcal{F} is a sheaf if and only if each open subset of *X* is connected.
 - (b) There is a sheaf \mathcal{G} such that for every *connected* open subset $U \subseteq X$, $\mathcal{G}(U) = A$. How would you "fix" this to make a sheaf \mathcal{G} such that for every connected open $U \subseteq X$, $\mathcal{G}(U) = A$?
- 4. *Support* Let \mathcal{F} be a sheaf on X, let $U \subset X$ be an open subset, and let $s \in \mathcal{F}(U)$ be a section.
 - (a) Suppose $P \in U$. Show that the stalk of *s* at *P*, *s*_{*P*}, is zero if and only if there is some open neighborhood $P \in V \subseteq U$ such that $\operatorname{res}_{V,U}(s) = 0 \in \mathcal{F}(V)$.
 - (b) The support of *s* is

$$\operatorname{supp}(s) = \{P \in U : s_P \neq 0\}$$

Show that supp(s) is a closed subset of *U*.

5. *Skyscraper sheaves* Let *X* be a topological space, and let *A* be a finite abelian group. Let $P \in X$ be a point whose closure is *Z*, and define a sheaf $S = S_P(A)$ as follows:

$$\mathcal{S}(U) = \begin{cases} A & P \in U\\ \{0\} & P \notin U \end{cases}$$

(a) Compute the stalks of S:

$\mathcal{S}_Q = \left\{ \left. $	∫A	$Q \in Z$
	({0}	otherwise

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007 (b) Let $i : Z \to X$ be the inclusion of topological spaces. Note that *Z* is connected. Let \mathcal{F} be the constant sheaf associated to *A*. Show that

$$i_*(\mathcal{F}) = \mathcal{S}.$$

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007