Homework 10

Due: Friday, April 13

1. Let X be a projective variety over $\operatorname{Spec} k$. If \mathcal{F} is a coherent sheaf of \mathcal{O}_{X}-modules, its Euler characteristic is

$$
\chi(\mathcal{F}):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{k} H^{i}(X, \mathcal{F})
$$

Suppose

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0
$$

is an exact sequence of coherent sheaves. Show that

$$
\chi(\mathcal{G})=\chi(\mathcal{F})+\chi(\mathcal{H}) .
$$

(HINT: See Liu, 5.3.26 and 7.3.16. We won't use this for a while.)
2. As in HW9\#2, let $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ be homogeneous of degree d, and let $X=\mathcal{Z}_{+}(F) \subset \mathbb{P}^{2}$.
(a) Suppose $n \gg d$. Calculate $\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}(n)\right)$ and $\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}(n)\right)$.
(b) Find a numerical polynomial $P_{X}(T)$ such that for $n \gg 0, P_{X}(n)=\chi\left(\mathcal{O}_{X}(n)\right)$.
(c) What is $1-P_{X}(0)$? Read [672 HW 13\#4] and [Liu, Exercise 7.3.4]
3. Let K be a field, and let L be a finite simple extension; then $L \cong K[Y] /(f(Y))$ for some polynomial f.
Show that

$$
\Omega_{L / K} \cong\left\{\begin{array}{ll}
0 & L / K \text { separable } \\
L & L / K \text { inseparable }
\end{array} .\right.
$$

4. Let B be an A-algebra. Let $\mathfrak{p} \in \operatorname{Spec} A$ be a prime ideal, with residue field $\kappa(\mathfrak{p})=A / \mathfrak{p}$. What is $\Omega_{B \otimes K(\mathfrak{p}) / K(\mathfrak{p})}$? (HINT: See Liu 6.1.8.a.)
5. Let $B=\mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[Y] /\left(Y^{2}+5\right)$, and consider $\pi: \operatorname{Spec}(B) \rightarrow \operatorname{Spec} \mathbb{Z}$. Describe the \mathbb{Z}-module $\pi_{*}\left(\Omega_{B / \mathbb{Z}}\right)$.
