Homework 10 Due: Friday, April 13

1. Let *X* be a projective variety over Spec *k*. If \mathcal{F} is a coherent sheaf of \mathcal{O}_X -modules, its Euler characteristic is

$$\chi(\mathcal{F}) := \sum_{i \ge 0} (-1)^i \dim_k H^i(X, \mathcal{F}).$$

Suppose

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0$$

is an exact sequence of coherent sheaves. Show that

$$\chi(\mathcal{G}) = \chi(\mathcal{F}) + \chi(\mathcal{H}).$$

(HINT: See Liu, 5.3.26 and 7.3.16. We won't use this for a while.)

- 2. As in HW9#2, let $F \in k[X_0, X_1, X_2]$ be homogeneous of degree d, and let $X = \mathcal{Z}_+(F) \subset \mathbb{P}^2$.
 - (a) Suppose $n \gg d$. Calculate dim_k $H^0(X, \mathcal{O}_X(n))$ and dim_k $H^1(X, \mathcal{O}_X(n))$.
 - (b) Find a numerical polynomial $P_X(T)$ such that for $n \gg 0$, $P_X(n) = \chi(\mathcal{O}_X(n))$.
 - (c) What is $1 P_X(0)$? Read [672 HW 13#4] and [Liu, Exercise 7.3.4]
- 3. Let *K* be a field, and let *L* be a finite simple extension; then $L \cong K[Y]/(f(Y))$ for some polynomial *f*.

Show that

$$\Omega_{L/K} \cong \begin{cases} 0 & L/K \text{ separable} \\ L & L/K \text{ inseparable} \end{cases}$$

- 4. Let *B* be an *A*-algebra. Let $\mathfrak{p} \in \text{Spec } A$ be a prime ideal, with residue field $\kappa(\mathfrak{p}) = A/\mathfrak{p}$. What is $\Omega_{B \otimes \kappa(\mathfrak{p})/\kappa(\mathfrak{p})}$? (HINT: *See Liu 6.1.8.a.*)
- 5. Let $B = \mathbb{Z}[\sqrt{-5}] \cong \mathbb{Z}[Y]/(Y^2 + 5)$, and consider $\pi : \operatorname{Spec}(B) \to \operatorname{Spec}\mathbb{Z}$. Describe the \mathbb{Z} -module $\pi_*(\Omega_{B/\mathbb{Z}})$.

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007