Homework 1 Due: Friday, January 26

- 1. Find rings *R* and *S* such that $R \not\cong S$, but
 - (a) Spec *R* and Spec *S* are homeomorphic (as topological spaces).
 - (b) $|\operatorname{Spec} R|$ is in bijection with $|\operatorname{Spec} S|$, but $\operatorname{Spec} R$ and $\operatorname{Spec} S$ are not homeomorphic.

(HINT: For (a), you can arrange so that |Spec R| and |Spec S| each consist of a single point; for (b), there's an example in which each set has two points.)

- 2. Suppose $[\mathfrak{p}] \in \operatorname{Spec} R$. Show that $[\mathfrak{p}]$ is closed if and only if \mathfrak{p} is a maximal ideal in R.
- 3. Suppose *X* is an affine variety over the algebraically closed field *k*, with coordinate ring k[X]. Show that there is a bijection between:
 - Closed points of the affine scheme Spec *k*[*X*].
 - Points of the variety *X*.
- 4. Let $\phi : R \to S$ be a ring homomorphism.
 - (a) Suppose *R* and *S* are finitely generated *k*-algebras, where *k* is an algebraically closed field. Show that if $Q \in \text{Spec } S$ is a closed point, then $\text{Spec}(\phi)(Q)$ is a closed point of Spec *R*.
 - (b) Give an example where $Q \in \text{Spec } S$ is closed, but $\text{Spec}(\phi)(Q)$ is *not* closed.

(HINT: See HW2#2 from last semester.)

5. Let $\phi : X \to Y$ be a continuous map of topological spaces. Suppose \mathcal{F} is a sheaf on X. Define $\phi_*\mathcal{F}$, the pushforward of \mathcal{F} by ϕ , as follows: For each open $V \subset Y$, set

$$(\phi_*\mathcal{F})(V) = \mathcal{F}(\phi^{-1}(V)).$$

Prove that $\phi_* \mathcal{F}$ is a sheaf on *Y*.

Professor Jeff Achter Colorado State University M673: Algebraic geometry Spring 2007