Let $A=k[x, y] /\left(y^{2}-x^{2}(x-1)\right)$, and let $X=\operatorname{Spec} A$. Let $\mathfrak{p}=(x, y)$, let $\mathfrak{q}=(x-1, y)$, and let P and Q be the corresponding points. Recall that localization commutes with taking quotients. Then:

$$
\begin{aligned}
\mathcal{O}_{X, P} & =A_{\mathfrak{p}} \\
\mathfrak{m}_{P} & =(x, y) A_{\mathfrak{p}} \\
\mathfrak{m}_{P} / \mathfrak{m}_{P}^{2} & =\frac{(x, y)\left(\frac{k[x, y]}{\left(y^{2}-x^{2}(x-1)\right)}\right)_{(x, y)}}{\left(x^{2}, x y, y^{2}\right)\left(\frac{k[x, y]}{\left(y^{2}-x^{2}(x-1)\right)}\right)_{(x, y)}} \\
& \cong \frac{(x, y) k[x, y]_{(x, y)}}{\left(x^{2}, x y, y^{2}, y^{2}-x^{2}(x-1)\right.} \\
& \cong k x \oplus k y \text { as } \kappa(P)=k \text { module }
\end{aligned}
$$

while

$$
\begin{aligned}
\mathcal{O}_{X, Q} & =A_{\mathfrak{q}} \\
\mathfrak{m}_{Q} & =(x-1, y) A_{\mathfrak{q}} \\
\mathfrak{m}_{Q} / \mathfrak{m}_{Q}^{2} & =\frac{(x-1, y)\left(\frac{k[x, y]}{\left(y^{2}-x^{2}(x-1)\right)}\right)_{(x-1, y)}}{\left((x-1)^{2},(x-1) y, y^{2}\right)\left(\frac{k[x, y]}{\left(y^{2}-x^{2}(x-1)\right)}\right)_{(x-1, y)}} \\
& \cong \frac{(x-1, y) k[x, y]_{(x-1, y)}}{\left((x-1)^{2},(x-1) y, y^{2}, y^{2}-x^{2}(x-1)\right)}
\end{aligned}
$$

But x^{2} is a unit after localization at $(x-1, y)$, thus

$$
\begin{aligned}
& \cong \frac{(x-1, y) k[x, y]}{(x-1)^{2},(x-1) Y, y^{2},(x-1)} \\
& \cong k y
\end{aligned}
$$

Take $k=\mathbb{R}$, and graph X, P and Q.

