Homework 8 Due: Friday, March 31

- 1. [GW]6.16. Identify those points where the morphism is not smooth.
- 2. (a) [GW]6.12(a).
 - (b) Give an example of a field k, a scheme $X \rightarrow \text{Spec } k$ locally of finite type such that X is regular, but not geometrically regular.

Compare with [GW] Corollary 6.32.

3. Use the valuative criterion to show that $\mathbb{A}^1_k \to \operatorname{Spec} k$ is not proper.

A morphism $f : Y \to X$ of schemes is *finite* if for every open affine subset $U \subseteq X$, $f^{-1}(U)$ is affine and $\mathcal{O}_Y(f^{-1}(U))$ is a finite module over $\mathcal{O}_X(U)$.

(Equivalently, there exists some open affine cover $X = \bigcup U_{\alpha} = \bigcup \operatorname{Spec} A_{\alpha}$ such that $f^{-1}(U_{\alpha}) = \operatorname{Spec} B_{\alpha}$ is affine and B_{α} is a finite module over A_{α} .)

A morphism is *quasifinite* if, for each $P \in X$, $f^{-1}(P)$ is a finite set.

- 4. (a) Show that any finite morphism is quasifinite.
 - (b) Show that the converse is false.(HINT: 672HW3#3b).
- 5. (a) Show that the property of being quasifinite is stable under base change.
 - (b) Show that the property of being finite is stable under base change.
- 6. Consider a finite morphism $f : \operatorname{Spec} B \to \operatorname{Spec} A$. A version of the going-up theorem says:

Theorem Suppose that $A \subset B$ is an integral extension of rings. Suppose $\mathfrak{p} \subset A$ is prime; then there exists a prime q of *B* such that $\mathfrak{q} \cap A = \mathfrak{p}$. Moreover, q may be chosen to contain any given ideal *I* which satisfies the (obvious necessary) condition $I \cap A \subseteq \mathfrak{p}$.

(This formulation comes from Eisenbud's Commutative algebra, Prop. 4.15; see also 672HW12#1.)

- (a) Suppose that *f* induces an inclusion $A \subset B$; show that *f* is a closed map.
- (b) Continue to suppose $B \subset A$; show that f is proper. (HINT: 5.(*b*))

Problems 5 and 6 can be used to assemble a proof of:

Theorem A finite morphism is proper.

Professor Jeff Achter Colorado State University Math 673: Projective Geometry II Spring 2017