Homework 6
 Due: Friday, March 3

1. $[\mathrm{GW}] 4.15$.
2. Let $X=\operatorname{Spec} \mathbb{Z}[x] /\left(x^{2}+1\right)$ and $Y=\operatorname{Spec} \mathbb{Z}$; consider the map $X \rightarrow Y$ which comes from $\mathbb{Z} \hookrightarrow \mathbb{Z}[x] /\left(x^{2}+1\right)$.
Suppose $Q \in Y$. Describe the fiber X_{Q}. (Hint: Your answer will depend on $Q=[(q)]$.)
3. (a) Describe $\operatorname{Spec} \mathbb{C} \times{ }_{\text {Spec } \mathbb{R}} \operatorname{Spec} \mathbb{C}$.
(b) Let $X=\operatorname{Spec} k[x], Y=\operatorname{Spec} k[y]$, and let ϕ be the morphism $X \rightarrow Y$ attached to

$$
\begin{gathered}
k[y] \longrightarrow k[x] \\
y \longrightarrow x^{2}
\end{gathered}
$$

i. Suppose char $(k) \neq 2$. Show that $X \times_{Y} X$ has two irreducible components.
ii. Suppose char $(k)=2$. Describe $X \times_{Y} X$.
(HINT: It may be marginally easier to think of two copies of X, X_{1} and X_{2}, with coordinates x_{1} and $x_{2} \ldots$)
4. Weil restriction Let $T \rightarrow S$ and $X \rightarrow T$ be schemes. The Weil restriction $\mathbf{R}_{T / S}(X)$ is the scheme such that, for each S-scheme $Z \rightarrow S$,

$$
\left.\mathbf{R}_{T / S}(X)(Z)=\operatorname{Mor}_{(} T \times_{S} Z, X\right)
$$

(If $T=\operatorname{Spec} B$ and $S=\operatorname{Spec} A$, this is usually just written as $\mathbf{R}_{B / A}(X)$.)
Let $\mathbb{G}_{m}=\operatorname{Spec} \mathbb{R}[s, t] /(s t-1) \cong \operatorname{Spec} \mathbb{R}\left[s, s^{-1}\right]$.
(a) Show that \mathbb{G}_{m} represents the functor on \mathbb{R}-schemes $Z \rightarrow \mathcal{O}_{Z}(Z)^{\times}$(the units in $\mathcal{O}_{Z}(Z)$).
(b) Show that

$$
\mathbf{R}_{\mathbb{C} / \mathbb{R}}\left(\mathbf{G}_{m}\right) \cong \operatorname{Spec}\left(\mathbb{R}\left[x, y, \frac{1}{x^{2}+y^{2}}\right]\right)
$$

(Of course, $\mathbb{R}\left[x, y,\left(x^{2}+y^{2}\right)^{-1}\right]$ means $\mathbb{R}[x, y, z] /\left(z\left(x^{2}+y^{2}\right)-1\right)$.)

