Homework 5

Due: Friday, February 24
Even though the homework isn't due until February 24, please do problem 1 before class on Wednesday, February 22.

1. Suppose S and T and U are sets and that there are maps of sets $f: S \rightarrow U$ and $g: T \rightarrow U$. The fiber product of S and T over U, denoted $S \times_{f, u, g} T$ or $S \times_{U} T$ if the maps are understood, is

$$
S \times_{U} T:=\{(s, t): s \in S, t \in T, f(s)=g(t)\} .
$$

This set comes with projections $S \times{ }_{U} T \rightarrow S$ and $S \times_{U} T \rightarrow T$, and in some sense it's the smallest set which makes the following diagram commute:

(a) Consider the following sets:

$$
\begin{aligned}
S & =\{1,2,3,4\} \\
T & =\{a, b, c, d, e, f\} \\
U & =\{\alpha, \beta\} \\
V & =\{\gamma\}
\end{aligned}
$$

and the following maps between them:

What is $S \times{ }_{U} T$? What is $S \times_{V} T$?
(b) Suppose S and T are arbitrary sets, U is a set with one element, and $f: S \rightarrow U$ and $g: T \rightarrow U$ are the maps which send everything to the (unique) element of U. What is $S \times_{U} T$?
(c) Suppose S and T are subsets of U; denote the inclusions by $i: S \hookrightarrow U$ and $j: T \hookrightarrow U$. What is $S \times_{i, U, j} T$?
2. Consider the following functor:

$$
\begin{aligned}
& \text { Sch }^{\mathrm{opp}} \xrightarrow{F} \text { Set } \\
& \quad Z \longmapsto\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathcal{O}_{Z}(Z) \text { and } a d-b c \in \mathcal{O}_{Z}(Z)^{\times}\right\}
\end{aligned}
$$

Let X be the scheme

$$
X=\operatorname{Spec} \frac{\mathbb{Z}[a, b, c, d, z]}{z \cdot(a d-b c)=1}
$$

Show that X represents the functor F, i.e., for every Z we have

$$
X(Z)=F(Z)
$$

3. [GW] 3.23.
4. [GW] 4.1. You need only give one proof. (HINT: Elements of A are in bijection with ring homomorphisms $R[T]->A$.)
