Homework 4 Due: Friday, February 17

- 1. [GW]3.5.
- 2. [GW]3.6.
- 3. [GW]3.7.
- 4. Let *G* be a finite group which acts on a ring *A*. (Note that *G* then acts on Spec *A*, as well.) Let *A*^{*G*} be the ring of *G*-invariants:

$$A^G = \{a \in A : \forall \sigma \in G, a^{\sigma} = a\}.$$

The inclusion $A^G \hookrightarrow A$ induces a morphism of affine schemes ω : Spec $A \to$ Spec A^G .

- (a) Show that A is integral over A^G . (HINT: If $a \in A$, consider $P_a(T) = \prod_{\sigma \in G} (T a^{\sigma})$.)
- (b) Show that ω : Spec $A \to \text{Spec } A^G$ is surjective. (HINT: Use the going-up theorem used on *HW12 last semester.*)
- (c) Suppose $\omega([\mathfrak{q}]) = \omega([\mathfrak{r}])$. Show that $\mathfrak{q} = \mathfrak{r}^{\sigma}$ for some $\sigma \in G$. If you like, you may proceed as follows:
 - i. Explain why $\mathfrak{q} \cap A^G = \mathfrak{r} \cap A^G =: \mathfrak{p}$.
 - ii. Choose some $a \in \mathfrak{q}$. Show that $\prod_{\sigma \in G} a^{\sigma} \in \mathfrak{p}$.
 - iii. Show there is some $\tau \in G$ such that $a^{\tau} \in \mathfrak{r}$.
 - iv. Use the prime avoidance lemma to show that $\mathfrak{r} = \mathfrak{q}^{\sigma}$ for some $\sigma \in G$.
- (d) Conversely, suppose $q = r^{\sigma}$ for some σ . Show that $\omega([q]) = \omega([r])$.
- 5. These parts are essentially unrelated, but neither is very difficult.
 - (a) Suppose that *W* is a subscheme of *X*. Explain why, for any field *K*, there is an inclusion of sets $W(K) \hookrightarrow X(K)$.
 - (b) Consider $X = \text{Spec}(\mathbb{F}_{p^r})$ (as a scheme over $\text{Spec} \mathbb{F}_p$). What is $\#X(\mathbb{F}_{p^m})$? (HINT: *The answer depends on whether* r|m.)

Professor Jeff Achter Colorado State University