Homework 3 Due: Friday, February 10

1. Let *X* be the affine scheme

$$X = \operatorname{Spec} \frac{\mathbb{Z}[x, y, z]}{(x^2 + y^2 - z^2)}.$$

Let *B* be any ring. Carefully explain the bijection between:

- Mor(Spec B, X), and
- triples α , β , $\gamma \in B$ such that $\alpha^2 + \beta^2 = \gamma^2$.
- 2. Let *A* be an an integral domain, X = Spec A, and $\eta = [(0)] \in X$. Use the definition of a stalk [GW (2.6)] to compute $\mathcal{O}_{X,[(0)]}$.

See if you can relate this to last semester's field of rational functions on an irreducible variety.

- 3. Let $X = \mathbb{A}_k^2 = \operatorname{Spec} k[x, y]$, and let $U = \mathbb{A}^2 \{[(x, y)]\}$. Let $V_1 = D(x)$ and $V_2 = D(y)$.
 - (a) Verify that $U = V_1 \cup V_2$ is an open cover of U.
 - (b) Calculate $\mathcal{O}_X(V_1)$, $\mathcal{O}_X(V_2)$ and $\mathcal{O}_X(V_1 \cap V_2)$.
 - (c) Use this to calculate $\mathcal{O}_X(U)$.

If U were affine, we would have $U = \text{Spec}(\mathcal{O}_X(U))$; but this isn't true!

4. Let *A* and *B* be rings, and consider the ring $A \oplus B$. Note that the natural surjection $A \oplus B \rightarrow A$ corresponds to a closed immersion Spec $A \hookrightarrow \text{Spec}(A \oplus B)$.

Show that, as subscheme of Spec($A \oplus B$), Spec A is both open and closed. (HINT: *Consider* D((1,0)).)

- 5. Let *A* be a ring. An element $e \in A$ is called a nontrivial idempotent if $e^2 = e$ but $e \notin \{0, 1\}$. For example, the element $(1, 0) \in B \oplus C$ is a nontrivial idempotent of $B \oplus C$.
 - (a) List all the idempotents of the ring $\mathbb{C}[x]/(x^2 x)$.
 - (b) Let *e* be an idempotent of *A*. Show that the map

$$A \longrightarrow eA \oplus (1-e)A$$

$$a \longmapsto (ea, (1-e)a)$$

is an isomorphism.

(c) Show that Spec *A* is not connected if and only if *A* has a nontrivial idempotent. (HINT: Suppose Spec $A = Z(I) \cup Z(J)$ with $Z(I) \cap Z(J) = \emptyset$; show Spec(*A*) is homeomorphic to Spec($A/I \oplus A/J$).)

Alternatively, do [GW 2.18].

Professor Jeff Achter Colorado State University Math 673: Projective Geometry II Spring 2017