Homework 10
Due: Friday, May 5

1. Let A be a ring. For each $n \in \mathbb{Z}$, calculate $H^{1}\left(\mathbb{P}_{A}^{1}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(n)\right)$. (HINT: Use the standard cover of \mathbb{P}^{1} as the union of two affine lines.)
2. Let $F\left(X_{0}, X_{1}, X_{2}\right) \in k\left[X_{0}, X_{1}, X_{2}\right]$ be homogeneous of degree d, and consider the curve $X=$ $\mathcal{Z}_{+}(X) \subset \mathbb{P}_{k}^{2}$. Suppose $[1,0,0] \notin X$.
Let $U_{1}=X \cap\left\{X_{1} \neq 0\right\}$ and let $U_{2}=X \cap\left\{X_{2} \neq 0\right\}$.
(a) Show that $\mathcal{U}=\left\{U_{1}, U_{2}\right\}$ is an open cover of X.
(b) Use the Cech complex $C^{\bullet}\left(\mathcal{U}, \mathcal{O}_{X}\right)$ to calculate the cohomology groups $H^{\bullet}\left(X, \mathcal{O}_{X}\right)$ explicitly. (HINT: You should find that

$$
\begin{aligned}
& \operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}\right)=1 \\
& \operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)=\frac{(d-1)(d-2)}{2}
\end{aligned}
$$

)
One way of defining the genus of a smooth, projective curve X is $\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)$.
3. For a scheme X, let \mathcal{O}_{X}^{\times}be the sheaf of abelian groups $U \mapsto \mathcal{O}_{X}(U)^{\times}$, which assigns to an open set U the group of invertible functions on U.
Suppose X is separated and quasicompact.
(a) Let \mathcal{L} be a quasicoherent sheaf on X. In class, we said that \mathcal{L} is invertible if and only if: There exists a cover $\mathcal{U}=\cup U_{i}$ of X, and elements $g_{i j} \in \mathcal{O}_{X}\left(U_{i j}\right)^{\times}$, such that $g_{j k} \cdot g_{i j}=$ $g_{i k} \in \mathcal{O}_{X}\left(U_{i j k}\right)^{\times}$. Make sure you understand this.
(b) For \mathcal{L} and \mathcal{U} as above, explain how to construct an element $\phi \mathcal{U}(\mathcal{L})$ of $H^{1}\left(\mathcal{U}, \mathcal{O}_{X}^{\times}\right)$, and thus an element $\phi(\mathcal{L}) \in H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$. Show that

$$
\begin{array}{r}
\text { invertible sheaves on } X \xrightarrow{\phi} H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \\
\mathcal{L} \longmapsto \phi(\mathcal{L})
\end{array}
$$

is a group homomorphism. What is $\operatorname{ker} \phi$?
(c) Show that ϕ induces an isomorphism

$$
\operatorname{Pic}(X) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)
$$

(Remember, any element of $H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$can be represented by a Cech cocycle on some open cover of X.)
4. For students in Math 605
(a) Let A be a ring, and let $I \subset A$ be a principal. Think of I as an A-module, and consider the sheaf of modules \widetilde{I} on Spec A. Show that \widetilde{I} is an invertible sheaf.
(b) Let $A=\mathbb{Z}[\sqrt{-5}]$, and let $I=(2,1+\sqrt{-5})$. (Note that I is not principal!) Show that \widetilde{I} is an invertible sheaf on Spec A.
(Hint: It suffices to check this on stalks. Suppose $\mathfrak{p} \in \operatorname{Spec} A$. On one hand, show that if $I \not \subset \mathfrak{p}$, then $I_{\mathfrak{p}}=R_{\mathfrak{p}}$. On the other hand, suppose $I \subset \mathfrak{p}$. Show that $2 \in I^{2}$, and thus $2 \in I \mathfrak{p}$. Now use Nakayama's lemma to show that $I_{\mathfrak{p}}=(1+\sqrt{-5}) \mathfrak{p}$.)

More generally, let A be a Dedekind ring (such as the ring of integers in a number field), with field of fractions K. A fractional ideal is a sub- A-module $M \subset K$ such that there exists some $d \in A$ with $d M \subseteq A$. Every fractional ideal determines an invertible sheaf on Spec A. See, e.g., [AtiyahMacdonald, Chapter 9]
5. [Katz] Let $N=2 n+1$, and consider \mathbb{P}^{N} with coordinates $X_{0}, \cdots, X_{n}, Y_{0}, \cdots, Y_{n}$. Let

$$
F=\sum_{i=0}^{n} X_{i} Y_{i}^{q}-X_{i}^{q} Y_{i},
$$

and let Z / \mathbb{F}_{q} be the (smooth, irreducible, projective) hypersurface

$$
Z=\mathcal{Z}_{\mathbb{P}_{\mathbb{F}_{q}}^{N}}(F)
$$

Show that for every hyperplane $\mathcal{Z}(L) \subset \mathbb{P}_{\mathbb{F}_{q}}^{N}$ defined over $\mathbb{F}_{q}, \mathcal{Z}(L) \cap Z$ is not smooth. If you like, you may proceed as follows.
(a) Show that $Z\left(\mathbb{F}_{q}\right)=\mathbb{P}^{N}\left(\mathbb{F}_{q}\right)$, i.e., that every point $\left[a_{0}, \cdots, a_{n}, b_{0}, \cdots, b_{n}\right]$ with each $a_{i}, b_{j} \in \mathbb{F}_{q}$ lies on Z. (Such a point corresponds to a closed point P of the scheme Z.)
(b) Suppose that $a_{0}=1$, and let f be the dehomogenization $f=f\left(1, x_{1}, \cdots, x_{n}, y_{0}, \cdots, y_{n}\right)$. Compute the linearization $d_{P}(f)$. (HINT: See 672HW9\#4)
(c) Let $\ell \in \mathbb{F}_{q}\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right]$ be a linear polynomial. Show that there exists $P \in Z$ as above such that $T_{P}(Z)=\mathcal{Z}_{\mathrm{A}^{N}}(\ell)$.
(d) Finish the claim.
6. (a) Suppose $f(x) \in K[x]$ is nonconstant. Show that $\mathcal{Z}_{\mathbb{A}^{1}}(f)$ is smooth if and only if $f(x)$ is squarefree. (HINT: You may assume that K is algebraically closed (using, e.g., [GW]§6.12 and then show $\mathcal{Z}_{\mathbb{A}^{1}}(f)$ is regular.)
(b) Using Poonen's theorem, compute

$$
\lim _{d \rightarrow \infty} \frac{\#\left\{f(x) \in \mathbb{F}_{q}[x]: \operatorname{deg} f \leq d, f \text { squarefree }\right\}}{\#\left\{f(x) \in \mathbb{F}_{q}[x]: \operatorname{deg} f \leq d\right\}}
$$

